Skip to content
Snippets Groups Projects

bvar_forward.mod

  • Clone with SSH
  • Clone with HTTPS
  • Embed
  • Share
    The snippet can be accessed without any authentication.
    Authored by Stéphane Adjemian

    Estimation of a DSGE-VAR model

    snippetfile1.txt 2.78 KiB
    //$ stephane [DOT] adjemian [AT] ens [DOT] fr
    //$ 07-31-2008
    
    //$ Declaration of the endogenous variables of the DSGE model.
    var a g mc mrs n winf pie r rw y;
    
    //$ Declaration of the exogenous variables of the DSGE model. 
    varexo e_a e_g e_lam e_ms;
    
    //$ Declaration of the deep parameters and of dsge_prior_weight
    parameters invsig delta gam rho gampie gamy rhoa rhog bet 
    	   thetabig omega eps 
    	   dsge_prior_weight;
    
    eps=6;
    thetabig=2;
    bet=0.99;
    invsig=2.5;
    gampie=1.5;
    gamy=0.125;
    gam=1;
    delta=0.36;
    omega=0.54;
    rhoa=0.5;
    rhog=0.5;
    rho=0.5;
    
    //$ Calibration of dsge_prior_weight. 
    
    dsge_prior_weight = .8;
    
    
    
    //$ Specification of the DSGE model used as a prior of the VAR model. 
    model(linear);
    
    	y=y(+1)-(1/invsig)*(r-pie(+1)+g(+1)-g);
    	y=a+(1-delta)*n;
    	mc=rw+n-y;
    	mrs=invsig*y+gam*n-g;
    	r=rho*r(-1)+(1-rho)*(gampie*pie+gamy*y)+e_ms;
    	rw=rw(-1)+winf-pie;
    	a=rhoa*a(-1)+e_a;
    	g=rhog*g(-1)+e_g;
    	rw=mrs;
    
    	//$ HYBRID PHILLIPS CURVED USED FOR THE SUMULATIONS:
    	//   pie = (omega/(1+omega*bet))*pie(-1)+(bet/(1+omega*bet))*pie(1)+(1-delta)*
          	//   (1-(1-1/thetabig)*bet)*(1-(1-1/thetabig))/((1-1/thetabig)*(1+delta*(eps-1)))/(1+omega*bet)*(mc+e_lam);
    
    	//$ FORWARD LOOKING PHILLIPS CURVE:
    	    pie=bet*pie(+1)+(1-delta)*(1-(1-1/thetabig)*bet)*(1-(1-1/thetabig))/((1-1/thetabig)*(1+delta*(eps-1)))*(mc+e_lam);
    end;
    
    
    
    //$ Declaration of the prior beliefs about the deep parameters and (if needed) the weight of the DSGE prior.  
    estimated_params;
        stderr e_a, uniform_pdf,,,0,2;
        stderr e_g, uniform_pdf,,,0,2;
        stderr e_ms, uniform_pdf,,,0,2;
        stderr e_lam, uniform_pdf,,,0,2;
    
        invsig, gamma_pdf, 2.5, 1.76;
        gam, normal_pdf, 1, 0.5;
        rho, uniform_pdf,,,0,1;
        gampie, normal_pdf, 1.5, 0.25;
        gamy, gamma_pdf, 0.125, 0.075;
        rhoa, uniform_pdf,,,0,1;
        rhog, uniform_pdf,,,0,1;
        thetabig, gamma_pdf, 3, 1.42, 1, ;
    
        //$Parameter for the hybrid Phillips curve
        //omega, uniform_pdf,,,0,1;
    
        //$ If the weight of the dsge prior is to be estimated
        //$ uncomment the following line.
        //dsge_prior_weight, uniform_pdf,,,0,2;
    end;
    
    
    //$ Declaration of the observed endogenous variables. Note that they are the variables of the VAR (4 by default) and that we must 
    //$ have as many observed variables as exogenous variables. 
    varobs pie r rw y;
    
    options_.gradient_method = 3;
    
    //$ The option bayesian_irf triggers the computation of the DSGE-VAR and DSGE posterior distribution of the IRFs.
    //$ The Dashed lines are the first, fifth (ie the median) and ninth posterior deciles of the DSGE-VAR's IRFs, the bold dark curve is the 
    //$ posterior median of the DSGE's IRfs and the shaded surface covers the space between the first and ninth posterior deciles of the DSGE's IRFs.  
    estimation(datafile=datarabanal_hybrid,first_obs=50,mh_nblocks = 1,nobs=90,mode_compute=4,mh_replic=20000,bayesian_irf);
    0% Loading or .
    You are about to add 0 people to the discussion. Proceed with caution.
    Please register or to comment