From 04ad104bfb4649a9f339524f32732f451b38406c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fr=C3=A9d=C3=A9ric=20Karam=C3=A9?= <frederic.karame@univ-lemans.fr> Date: Fri, 2 Oct 2015 16:05:26 +0200 Subject: [PATCH] Fix a bug in likelihood calculation. --- src/auxiliary_particle_filter.m | 20 ++++++++++---------- src/conditional_filter_proposal.m | 2 +- src/conditional_particle_filter.m | 12 ++++++------ src/gaussian_densities.m | 7 ++++--- src/gaussian_filter_bank.m | 2 +- src/sequential_importance_particle_filter.m | 15 ++++++++------- 6 files changed, 30 insertions(+), 28 deletions(-) diff --git a/src/auxiliary_particle_filter.m b/src/auxiliary_particle_filter.m index 9282613..78c0bdd 100644 --- a/src/auxiliary_particle_filter.m +++ b/src/auxiliary_particle_filter.m @@ -64,7 +64,7 @@ end % Get initial condition for the state vector. StateVectorMean = ReducedForm.StateVectorMean; -StateVectorVarianceSquareRoot = reduced_rank_cholesky(ReducedForm.StateVectorVariance)'; +StateVectorVarianceSquareRoot = chol(ReducedForm.StateVectorVariance)';%reduced_rank_cholesky(ReducedForm.StateVectorVariance)'; state_variance_rank = size(StateVectorVarianceSquareRoot,2); Q_lower_triangular_cholesky = chol(Q)'; if pruning @@ -76,7 +76,7 @@ end set_dynare_seed('default'); % Initialization of the likelihood. -const_lik = log(2*pi)*number_of_observed_variables; +const_lik = log(2*pi)*number_of_observed_variables +log(det(H)); lik = NaN(sample_size,1); LIK = NaN; @@ -125,11 +125,11 @@ for t=1:sample_size tmp = tmp + nodes_weights(i)*local_state_space_iteration_2(yhat,nodes(i,:)*ones(1,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2); end end - PredictedObservedMean = weights*(tmp(mf1,:)'); + %PredictedObservedMean = weights*(tmp(mf1,:)'); PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:)); - dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean'); - PredictedObservedVariance = bsxfun(@times,weights,dPredictedObservedMean)*dPredictedObservedMean' +H; - wtilde = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1))) ; + %dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean'); + %PredictedObservedVariance = bsxfun(@times,weights,dPredictedObservedMean)*dPredictedObservedMean' +H; + wtilde = exp(-.5*(const_lik+sum(PredictionError.*(H\PredictionError),1))) ; tau_tilde = weights.*wtilde ; sum_tau_tilde = sum(tau_tilde) ; lik(t) = log(sum_tau_tilde) ; @@ -148,11 +148,11 @@ for t=1:sample_size tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2); end StateVectors = tmp(mf0,:); - PredictedObservedMean = mean(tmp(mf1,:),2); + %PredictedObservedMean = mean(tmp(mf1,:),2); PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:)); - dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean); - PredictedObservedVariance = (dPredictedObservedMean*dPredictedObservedMean')/number_of_particles + H; - lnw = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1))); + %dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean); + %PredictedObservedVariance = (dPredictedObservedMean*dPredictedObservedMean')/number_of_particles + H; + lnw = exp(-.5*(const_lik+sum(PredictionError.*(H\PredictionError),1))); wtilde = lnw.*factor ; weights = wtilde/sum(wtilde); end diff --git a/src/conditional_filter_proposal.m b/src/conditional_filter_proposal.m index 0ef5aed..f593ad8 100644 --- a/src/conditional_filter_proposal.m +++ b/src/conditional_filter_proposal.m @@ -113,7 +113,7 @@ else StateVectorMean = PredictedStateMean + KalmanFilterGain*(obs - PredictedObservedMean); StateVectorVariance = PredictedStateVariance - KalmanFilterGain*PredictedObservedVariance*KalmanFilterGain'; StateVectorVariance = .5*(StateVectorVariance+StateVectorVariance'); - StateVectorVarianceSquareRoot = reduced_rank_cholesky(StateVectorVariance)'; + StateVectorVarianceSquareRoot = chol(StateVectorVariance)';%reduced_rank_cholesky(StateVectorVariance)'; end ProposalStateVector = StateVectorVarianceSquareRoot*randn(size(StateVectorVarianceSquareRoot,2),1)+StateVectorMean ; diff --git a/src/conditional_particle_filter.m b/src/conditional_particle_filter.m index 4aef9f3..57ee0f1 100644 --- a/src/conditional_particle_filter.m +++ b/src/conditional_particle_filter.m @@ -57,9 +57,9 @@ function [LIK,lik] = conditional_particle_filter(ReducedForm,Y,start,ParticleOpt % AUTHOR(S) frederic DOT karame AT univ DASH lemans DOT fr % stephane DOT adjemian AT univ DASH lemans DOT fr -persistent init_flag mf0 mf1 +persistent init_flag mf1 persistent number_of_particles -persistent sample_size number_of_state_variables number_of_observed_variables +persistent sample_size number_of_observed_variables % Set default if isempty(start) @@ -68,10 +68,10 @@ end % Set persistent variables. if isempty(init_flag) - mf0 = ReducedForm.mf0; + %mf0 = ReducedForm.mf0; mf1 = ReducedForm.mf1; sample_size = size(Y,2); - number_of_state_variables = length(mf0); + %number_of_state_variables = length(mf0); number_of_observed_variables = length(mf1); init_flag = 1; number_of_particles = ParticleOptions.number_of_particles ; @@ -84,14 +84,14 @@ if isempty(H) H = 0; H_lower_triangular_cholesky = 0; else - H_lower_triangular_cholesky = reduced_rank_cholesky(H)'; + H_lower_triangular_cholesky = chol(H)'; %reduced_rank_cholesky(H)'; end % Get initial condition for the state vector. StateVectorMean = ReducedForm.StateVectorMean; StateVectorVarianceSquareRoot = reduced_rank_cholesky(ReducedForm.StateVectorVariance)'; state_variance_rank = size(StateVectorVarianceSquareRoot,2); -Q_lower_triangular_cholesky = reduced_rank_cholesky(Q)'; +Q_lower_triangular_cholesky = chol(Q)'; %reduced_rank_cholesky(Q)'; % Set seed for randn(). set_dynare_seed('default'); diff --git a/src/gaussian_densities.m b/src/gaussian_densities.m index ae3afb1..591b4d4 100644 --- a/src/gaussian_densities.m +++ b/src/gaussian_densities.m @@ -43,9 +43,10 @@ prior = probability2(st_t_1,sqr_Pss_t_t_1,particles) ; % likelihood yt_t_1_i = measurement_equations(particles,ReducedForm,ThreadsOptions) ; eta_t_i = bsxfun(@minus,obs,yt_t_1_i)' ; -yt_t_1 = sum(yt_t_1_i*weigths1,2) ; -tmp = bsxfun(@minus,yt_t_1_i,yt_t_1) ; -Pyy = bsxfun(@times,weigths2',tmp)*tmp' + H ; +%yt_t_1 = sum(yt_t_1_i*weigths1,2) ; +%tmp = bsxfun(@minus,yt_t_1_i,yt_t_1) ; +%Pyy = bsxfun(@times,weigths2',tmp)*tmp' + H ; +Pyy = H ; sqr_det = sqrt(det(Pyy)) ; foo = (eta_t_i/Pyy).*eta_t_i ; likelihood = exp(-0.5*sum(foo,2))/(normconst*sqr_det) + 1e-99 ; diff --git a/src/gaussian_filter_bank.m b/src/gaussian_filter_bank.m index 4f45f7e..f758973 100644 --- a/src/gaussian_filter_bank.m +++ b/src/gaussian_filter_bank.m @@ -118,5 +118,5 @@ else StateVectorMean = PredictedStateMean + KalmanFilterGain*PredictionError; StateVectorVariance = PredictedStateVariance - KalmanFilterGain*PredictedObservedVariance*KalmanFilterGain'; StateVectorVariance = .5*(StateVectorVariance+StateVectorVariance'); - StateVectorVarianceSquareRoot = reduced_rank_cholesky(StateVectorVariance)'; + StateVectorVarianceSquareRoot = chol(StateVectorVariance)'; %reduced_rank_cholesky(StateVectorVariance)'; end \ No newline at end of file diff --git a/src/sequential_importance_particle_filter.m b/src/sequential_importance_particle_filter.m index 24b0798..51e0bd7 100644 --- a/src/sequential_importance_particle_filter.m +++ b/src/sequential_importance_particle_filter.m @@ -66,12 +66,12 @@ if isempty(H) end % Initialization of the likelihood. -const_lik = log(2*pi)*number_of_observed_variables; +const_lik = log(2*pi)*number_of_observed_variables +log(det(H)) ; lik = NaN(sample_size,1); % Get initial condition for the state vector. StateVectorMean = ReducedForm.StateVectorMean; -StateVectorVarianceSquareRoot = reduced_rank_cholesky(ReducedForm.StateVectorVariance)'; +StateVectorVarianceSquareRoot = chol(ReducedForm.StateVectorVariance)';%reduced_rank_cholesky(ReducedForm.StateVectorVariance)'; if pruning StateVectorMean_ = StateVectorMean; StateVectorVarianceSquareRoot_ = StateVectorVarianceSquareRoot; @@ -103,12 +103,13 @@ for t=1:sample_size else tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2); end - PredictedObservedMean = tmp(mf1,:)*transpose(weights); + %PredictedObservedMean = tmp(mf1,:)*transpose(weights); PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:)); - dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean); - PredictedObservedVariance = bsxfun(@times,dPredictedObservedMean,weights)*dPredictedObservedMean' + H; - if rcond(PredictedObservedVariance) > 1e-16 - lnw = -.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1)); + %dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean); + %PredictedObservedVariance = bsxfun(@times,dPredictedObservedMean,weights)*dPredictedObservedMean' + H; + %PredictedObservedVariance = H; + if rcond(H) > 1e-16 + lnw = -.5*(const_lik+sum(PredictionError.*(H\PredictionError),1)); else LIK = NaN; return -- GitLab