From 8d401a22f5138773f7092456c9553ebbb11dd3a9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fr=C3=A9d=C3=A9ric=20Karam=C3=A9?= <frederic.karame@univ-lemans.fr> Date: Tue, 20 Oct 2015 15:12:56 +0200 Subject: [PATCH] Fix the calculation of the likelihood on the APF. --- src/auxiliary_particle_filter.m | 93 ++++++++++++++++----------------- 1 file changed, 44 insertions(+), 49 deletions(-) diff --git a/src/auxiliary_particle_filter.m b/src/auxiliary_particle_filter.m index 78c0bdd..a48973b 100644 --- a/src/auxiliary_particle_filter.m +++ b/src/auxiliary_particle_filter.m @@ -1,8 +1,9 @@ function [LIK,lik] = auxiliary_particle_filter(ReducedForm,Y,start,ParticleOptions,ThreadsOptions) -% Evaluates the likelihood of a nonlinear model with a particle filter allowing eventually resampling. - -% Copyright (C) 2011-2014 Dynare Team +% Evaluates the likelihood of a nonlinear model with the auxiliary particle filter +% allowing eventually resampling. +% +% Copyright (C) 2011-2015 Dynare Team % % This file is part of Dynare (particles module). % @@ -20,7 +21,7 @@ function [LIK,lik] = auxiliary_particle_filter(ReducedForm,Y,start,ParticleOptio % along with Dynare. If not, see <http://www.gnu.org/licenses/>. persistent init_flag mf0 mf1 number_of_particles -persistent sample_size number_of_state_variables number_of_observed_variables number_of_structural_innovations +persistent sample_size number_of_observed_variables number_of_structural_innovations % Set default if isempty(start) @@ -40,7 +41,6 @@ if isempty(init_flag) mf0 = ReducedForm.mf0; mf1 = ReducedForm.mf1; sample_size = size(Y,2); - number_of_state_variables = length(mf0); number_of_observed_variables = length(mf1); number_of_structural_innovations = length(ReducedForm.Q); number_of_particles = ParticleOptions.number_of_particles; @@ -58,55 +58,44 @@ ghxu = ReducedForm.ghxu; % Get covariance matrices Q = ReducedForm.Q; H = ReducedForm.H; -if isempty(H) - H = 0; -end % Get initial condition for the state vector. StateVectorMean = ReducedForm.StateVectorMean; -StateVectorVarianceSquareRoot = chol(ReducedForm.StateVectorVariance)';%reduced_rank_cholesky(ReducedForm.StateVectorVariance)'; +StateVectorVarianceSquareRoot = chol(ReducedForm.StateVectorVariance)'; state_variance_rank = size(StateVectorVarianceSquareRoot,2); Q_lower_triangular_cholesky = chol(Q)'; -if pruning - StateVectorMean_ = StateVectorMean; - StateVectorVarianceSquareRoot_ = StateVectorVarianceSquareRoot; -end % Set seed for randn(). set_dynare_seed('default'); % Initialization of the likelihood. -const_lik = log(2*pi)*number_of_observed_variables +log(det(H)); +const_lik = log(2*pi)*number_of_observed_variables+log(det(H)); lik = NaN(sample_size,1); LIK = NaN; % Initialization of the weights across particles. weights = ones(1,number_of_particles)/number_of_particles ; StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean); +%StateVectors = bsxfun(@plus,zeros(state_variance_rank,number_of_particles),StateVectorMean); if pruning StateVectors_ = StateVectors; end -epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,number_of_particles); -yhat = zeros(2,number_of_particles) ; -if pruning - yhat_ = zeros(2,number_of_particles) ; - [tmp, tmp_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,ThreadsOptions.local_state_space_iteration_2); - StateVectors_ = tmp_(mf0,:); -else - tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2); -end -StateVectors = tmp(mf0,:) ; - -if ParticleOptions.proposal_approximation.cubature - [nodes,nodes_weights] = spherical_radial_sigma_points(number_of_structural_innovations) ; - nodes_weights = ones(size(nodes,1),1)*nodes_weights ; -elseif ParticleOptions.proposal_approximation.unscented - [nodes,nodes_weights,nodes_weights_c] = unscented_sigma_points(number_of_structural_innovations,ParticleOptions); -else - error('Estimation: This approximation for the proposal is not implemented or unknown!') -end -nodes = Q_lower_triangular_cholesky*nodes ; +% Uncomment for building the mean average predictions based on a sparse +% grids of structural shocks. Otherwise, all shocks are set to 0 in the +% prediction. +%if ParticleOptions.proposal_approximation.cubature +% [nodes,nodes_weights] = spherical_radial_sigma_points(number_of_structural_innovations) ; +% nodes_weights = ones(size(nodes,1),1)*nodes_weights ; +%elseif ParticleOptions.proposal_approximation.unscented +% [nodes,nodes_weights,nodes_weights_c] = unscented_sigma_points(number_of_structural_innovations,ParticleOptions); +%else +% error('Estimation: This approximation for the proposal is not implemented or unknown!') +%end +%nodes = Q_lower_triangular_cholesky*nodes ; + +nodes = zeros(1,number_of_structural_innovations) ; +nodes_weights = 1 ; for t=1:sample_size yhat = bsxfun(@minus,StateVectors,state_variables_steady_state); @@ -125,21 +114,19 @@ for t=1:sample_size tmp = tmp + nodes_weights(i)*local_state_space_iteration_2(yhat,nodes(i,:)*ones(1,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2); end end - %PredictedObservedMean = weights*(tmp(mf1,:)'); PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:)); - %dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean'); - %PredictedObservedVariance = bsxfun(@times,weights,dPredictedObservedMean)*dPredictedObservedMean' +H; - wtilde = exp(-.5*(const_lik+sum(PredictionError.*(H\PredictionError),1))) ; - tau_tilde = weights.*wtilde ; - sum_tau_tilde = sum(tau_tilde) ; - lik(t) = log(sum_tau_tilde) ; - tau_tilde = tau_tilde/sum_tau_tilde; + %tau_tilde = weights.*(exp(-.5*(const_lik+sum(PredictionError.*(H\PredictionError),1))) + 1e-99) ; + % Replace Gaussian density with a Student density with 3 degrees of + % freedom for fat tails. + z = sum(PredictionError.*(H\PredictionError),1) ; + tau_tilde = weights.*(tpdf(z,3*ones(size(z)))+1e-99) ; + tau_tilde = tau_tilde/sum(tau_tilde) ; indx = resample(0,tau_tilde',ParticleOptions); if pruning yhat_ = yhat_(:,indx) ; end yhat = yhat(:,indx) ; - factor = weights(indx)./tau_tilde(indx) ; + weights_stage_1 = weights(indx)./tau_tilde(indx) ; epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,number_of_particles); if pruning [tmp, tmp_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,ThreadsOptions.local_state_space_iteration_2); @@ -148,13 +135,21 @@ for t=1:sample_size tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2); end StateVectors = tmp(mf0,:); - %PredictedObservedMean = mean(tmp(mf1,:),2); PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:)); - %dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean); - %PredictedObservedVariance = (dPredictedObservedMean*dPredictedObservedMean')/number_of_particles + H; - lnw = exp(-.5*(const_lik+sum(PredictionError.*(H\PredictionError),1))); - wtilde = lnw.*factor ; - weights = wtilde/sum(wtilde); + weights_stage_2 = weights_stage_1.*(exp(-.5*(const_lik+sum(PredictionError.*(H\PredictionError),1))) + 1e-99) ; + lik(t) = log(mean(weights_stage_2)) ; + weights = weights_stage_2/sum(weights_stage_2); + if (ParticleOptions.resampling.status.generic && neff(weights)<ParticleOptions.resampling.threshold*sample_size) || ParticleOptions.resampling.status.systematic + if pruning + temp = resample([StateVectors' StateVectors_'],weights',ParticleOptions); + StateVectors = temp(:,1:number_of_state_variables)'; + StateVectors_ = temp(:,number_of_state_variables+1:2*number_of_state_variables)'; + else + StateVectors = resample(StateVectors',weights',ParticleOptions)'; + end + weights = ones(1,number_of_particles)/number_of_particles; + end end +%plot(lik) ; LIK = -sum(lik(start:end)); \ No newline at end of file -- GitLab