identification_analysis.m 13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
function [ide_hess, ide_moments, ide_model, ide_lre, derivatives_info, info] = identification_analysis(params,indx,indexo,options_ident,data_info, prior_exist, name_tex, init)
% function [ide_hess, ide_moments, ide_model, ide_lre, derivatives_info, info] = identification_analysis(params,indx,indexo,options_ident,data_info, prior_exist, name_tex, init)
% given the parameter vector params, wraps all identification analyses
%
% INPUTS
%    o params             [array] parameter values for identification checks
%    o indx               [array] index of estimated parameters
%    o indexo             [array] index of estimated shocks
%    o options_ident      [structure] identification options
%    o data_info          [structure] data info for Kalmna Filter
%    o prior_exist        [integer] 
%                           =1 when prior exists and indentification is checked only for estimated params and shocks
%                           =0 when prior is not defined and indentification is checked for all params and shocks
%    o nem_tex            [char] list of tex names
%    o init               [integer] flag  for initialization of persistent vars
%    
% OUTPUTS
%    o ide_hess           [structure] identification results using Asymptotic Hessian
%    o ide_moments        [structure] identification results using theoretical moments
%    o ide_model          [structure] identification results using reduced form solution
%    o ide_lre            [structure] identification results using LRE model
%    o derivatives_info   [structure] info about analytic derivs
%    o info               output from dynare resolve
%    
% SPECIAL REQUIREMENTS
%    None

% Copyright (C) 2008-2011 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License 
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global oo_ M_ options_ bayestopt_ estim_params_
persistent indH indJJ indLRE

nparam=length(params);
np=length(indx);
offset=nparam-np;
set_all_parameters(params);

nlags = options_ident.ar;
useautocorr = options_ident.useautocorr;
advanced = options_ident.advanced;
replic = options_ident.replic;
periods = options_ident.periods;
max_dim_cova_group = options_ident.max_dim_cova_group;
59
normalize_jacobians = options_ident.normalize_jacobians;
60
61
62
63
64
65
66
67
[I,J]=find(M_.lead_lag_incidence');

ide_hess = struct();
ide_moments = struct();
ide_model = struct();
ide_lre = struct();
derivatives_info = struct();

68
[A,B,ys,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_);
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
if info(1)==0,
    oo0=oo_;
    tau=[oo_.dr.ys(oo_.dr.order_var); vec(A); dyn_vech(B*M_.Sigma_e*B')];
    yy0=oo_.dr.ys(I);
    [residual, g1 ] = feval([M_.fname,'_dynamic'],yy0, ...
        oo_.exo_steady_state', M_.params, ...
        oo_.dr.ys, 1);
    vg1 = [oo_.dr.ys(oo_.dr.order_var); vec(g1)];

    [JJ, H, gam, gp, dA, dOm, dYss] = getJJ(A, B, M_,oo0,options_,0,indx,indexo,bayestopt_.mf2,nlags,useautocorr);
    derivatives_info.DT=dA;
    derivatives_info.DOm=dOm;
    derivatives_info.DYss=dYss;
    if init,
        indJJ = (find(max(abs(JJ'))>1.e-8));
84
85
86
87
88
89
90
91
92
93
        while length(indJJ)<nparam && nlags<10,
            disp('The number of moments with non-zero derivative is smaller than the number of parameters')
            disp(['Try increasing ar = ', int2str(nlags+1)])           
            nlags=nlags+1;
            [JJ, H, gam, gp, dA, dOm, dYss] = getJJ(A, B, M_,oo0,options_,0,indx,indexo,bayestopt_.mf2,nlags,useautocorr);
            derivatives_info.DT=dA;
            derivatives_info.DOm=dOm;
            derivatives_info.DYss=dYss;
            evalin('caller',['options_ident.ar=',int2str(nlags),';']);
        end
94
95
        if length(indJJ)<nparam,
            disp('The number of moments with non-zero derivative is smaller than the number of parameters')
96
97
98
            disp('up to 10 lags: check your model')           
            disp('Either further increase ar or reduce the list of estimated parameters')           
            error('IDETooManyParams',''),
99
        end
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        indH = (find(max(abs(H'))>1.e-8));
        indLRE = (find(max(abs(gp'))>1.e-8));
    end
    TAU(:,1)=tau(indH);
    LRE(:,1)=vg1(indLRE);
    GAM(:,1)=gam(indJJ);
    siJ = (JJ(indJJ,:));
    siH = (H(indH,:));   
    siLRE = (gp(indLRE,:));
    ide_strength_J=NaN(1,nparam);
    ide_strength_J_prior=NaN(1,nparam);
    if init, %~isempty(indok),
        normaliz = abs(params);
        if prior_exist,
            if ~isempty(estim_params_.var_exo),
                normaliz1 = estim_params_.var_exo(:,7); % normalize with prior standard deviation
            else
                normaliz1=[];
            end
            if ~isempty(estim_params_.param_vals),
                normaliz1 = [normaliz1; estim_params_.param_vals(:,7)]'; % normalize with prior standard deviation
            end
            %                         normaliz = max([normaliz; normaliz1]);
            normaliz1(isinf(normaliz1)) = 1;
            
        else
            normaliz1 = NaN(1,nparam);
        end
        try,
            options_.irf = 0;
            options_.noprint = 1;
            options_.order = 1;
            options_.periods = data_info.gend+100;
            options_.kalman_algo = 1;
            info = stoch_simul(options_.varobs);
            datax=oo_.endo_simul(options_.varobs_id,100+1:end);
            %                         datax=data;
            derivatives_info.no_DLIK=1;
            [fval,cost_flag,ys,trend_coeff,info,DLIK,AHess] = DsgeLikelihood(params',data_info.gend,datax,data_info.data_index,data_info.number_of_observations,data_info.no_more_missing_observations,derivatives_info);
            AHess=-AHess;
            ide_hess.AHess= AHess;
            deltaM = sqrt(diag(AHess));
            iflag=any((deltaM.*deltaM)==0);
            tildaM = AHess./((deltaM)*(deltaM'));
            if iflag || rank(AHess)>rank(tildaM),
                [ide_hess.cond, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(AHess, 1);
            else
                [ide_hess.cond, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(tildaM, 1);
            end
            indok = find(max(ide_hess.indno,[],1)==0);
            cparam(indok,indok) = inv(AHess(indok,indok));
            normaliz(indok) = sqrt(diag(cparam(indok,indok)))';
152
153
154
155
156
            cmm = NaN(size(siJ,1),size(siJ,1));
            ind1=find(ide_hess.ind0);
            cmm = siJ(:,ind1)*((AHess(ind1,ind1))\siJ(:,ind1)');
            chh = siH(:,ind1)*((AHess(ind1,ind1))\siH(:,ind1)');
            ind1=ind1(ind1>offset);
157
            clre = siLRE(:,ind1-offset)*((AHess(ind1,ind1))\siLRE(:,ind1-offset)');
158
            rhoM=sqrt(1./diag(inv(tildaM(indok,indok))));
159
%             deltaM = deltaM.*abs(params');
160
161
162
163
164
            flag_score=1;
        catch,
            replic = max([replic, length(indJJ)*3]);
            cmm = simulated_moment_uncertainty(indJJ, periods, replic);
%             MIM=siJ(:,indok)'*(cmm\siJ(:,indok));
165
166
167
168
169
170
171
172
173
174
175
176
177
%           look for independent moments!
            sd=sqrt(diag(cmm));
            cc=cmm./(sd*sd');
            ix=[];
            for jc=1:length(cmm),
                jcheck=find(abs(cc(:,jc))>(1-1.e-6));
                ix=[ix; jcheck(jcheck>jc)];
            end
            iy=find(~ismember([1:length(cmm)],ix));
            indJJ=indJJ(iy);
            GAM=GAM(iy);
            cmm=cmm(iy,iy);
            siJ = (JJ(indJJ,:));
178
179
180
181
182
183
184
185
186
187
188
189
190
            MIM=siJ'*(cmm\siJ);
            ide_hess.AHess= MIM;
            deltaM = sqrt(diag(MIM));
            iflag=any((deltaM.*deltaM)==0);
            tildaM = MIM./((deltaM)*(deltaM'));
            if iflag || rank(MIM)>rank(tildaM),
                [ide_hess.cond, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(MIM, 1);
            else
                [ide_hess.cond, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(tildaM, 1);
            end
            indok = find(max(ide_hess.indno,[],1)==0);
%             rhoM=sqrt(1-1./diag(inv(tildaM)));
%             rhoM=(1-1./diag(inv(tildaM)));
191
192
193
            ind1=find(ide_hess.ind0);
            chh = siH(:,ind1)*((MIM(ind1,ind1))\siH(:,ind1)');
            ind1=ind1(ind1>offset);
194
            clre = siLRE(:,ind1-offset)*((MIM(ind1,ind1))\siLRE(:,ind1-offset)');
195
196
            rhoM(indok)=sqrt(1./diag(inv(tildaM(indok,indok))));
            normaliz(indok) = (sqrt(diag(inv(tildaM(indok,indok))))./deltaM(indok))'; %sqrt(diag(inv(MIM(indok,indok))))';
197
%             deltaM = deltaM.*abs(params');
198
199
200
201
202
            flag_score=0;
        end
        ide_strength_J(indok) = (1./(normaliz(indok)'./abs(params(indok)')));
        ide_strength_J_prior(indok) = (1./(normaliz(indok)'./normaliz1(indok)'));
        ide_strength_J(params==0)=ide_strength_J_prior(params==0);
203
204
205
        deltaM_prior = deltaM.*abs(normaliz1');
        deltaM = deltaM.*abs(params');
        deltaM(params==0)=deltaM_prior(params==0);
206
207
208
209
        quant = siJ./repmat(sqrt(diag(cmm)),1,nparam);
        siJnorm = vnorm(quant).*normaliz1;
        %                 siJnorm = vnorm(siJ(inok,:)).*normaliz;
        quant=[];
210
211
212
213
214
%         inok = find((abs(TAU)<1.e-8));
%         isok = find((abs(TAU)>=1.e-8));
%         quant(isok,:) = siH(isok,:)./repmat(TAU(isok,1),1,nparam);
%         quant(inok,:) = siH(inok,:)./repmat(mean(abs(TAU)),length(inok),nparam);
        quant = siH./repmat(sqrt(diag(chh)),1,nparam);
215
216
217
        siHnorm = vnorm(quant).*normaliz1;
        %                 siHnorm = vnorm(siH./repmat(TAU,1,nparam)).*normaliz;
        quant=[];
218
219
220
221
222
%         inok = find((abs(LRE)<1.e-8));
%         isok = find((abs(LRE)>=1.e-8));
%         quant(isok,:) = siLRE(isok,:)./repmat(LRE(isok,1),1,np);
%         quant(inok,:) = siLRE(inok,:)./repmat(mean(abs(LRE)),length(inok),np);
        quant = siLRE./repmat(sqrt(diag(clre)),1,np);
223
224
225
226
        siLREnorm = vnorm(quant).*normaliz1(offset+1:end);
        %                 siLREnorm = vnorm(siLRE./repmat(LRE,1,nparam-offset)).*normaliz(offset+1:end);
        ide_hess.ide_strength_J=ide_strength_J; 
        ide_hess.ide_strength_J_prior=ide_strength_J_prior; 
227
228
        ide_hess.deltaM=deltaM; 
        ide_hess.deltaM_prior=deltaM_prior; 
229
230
231
232
233
        ide_moments.siJnorm=siJnorm; 
        ide_model.siHnorm=siHnorm; 
        ide_lre.siLREnorm=siLREnorm; 
        ide_hess.flag_score=flag_score; 
    end,
234
235
236
237
238
239
240
241
242
243
244
245
    if normalize_jacobians,
        normH = max(abs(siH)')';
        normH = normH(:,ones(nparam,1));
        normJ = max(abs(siJ)')';
        normJ = normJ(:,ones(nparam,1));
        normLRE = max(abs(siLRE)')';
        normLRE = normLRE(:,ones(size(gp,2),1));
    else
        normH = 1;
        normJ = 1;
        normLRE = 1;
    end
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    ide_moments.indJJ=indJJ;
    ide_model.indH=indH;
    ide_lre.indLRE=indLRE;
    ide_moments.siJ=siJ;
    ide_model.siH=siH;
    ide_lre.siLRE=siLRE;
    ide_moments.GAM=GAM;
    ide_model.TAU=TAU;
    ide_lre.LRE=LRE;
%     [ide_checks.idemodel_Mco, ide_checks.idemoments_Mco, ide_checks.idelre_Mco, ...
%         ide_checks.idemodel_Pco, ide_checks.idemoments_Pco, ide_checks.idelre_Pco, ...
%         ide_checks.idemodel_cond, ide_checks.idemoments_cond, ide_checks.idelre_cond, ...
%         ide_checks.idemodel_ee, ide_checks.idemoments_ee, ide_checks.idelre_ee, ...
%         ide_checks.idemodel_ind, ide_checks.idemoments_ind, ...
%         ide_checks.idemodel_indno, ide_checks.idemoments_indno, ...
%         ide_checks.idemodel_ino, ide_checks.idemoments_ino] = ...
%         identification_checks(H(indH,:)./normH(:,ones(nparam,1)),JJ(indJJ,:)./normJ(:,ones(nparam,1)), gp(indLRE,:)./normLRE(:,ones(size(gp,2),1)));
    [ide_moments.cond, ide_moments.ind0, ide_moments.indno, ide_moments.ino, ide_moments.Mco, ide_moments.Pco, ide_moments.jweak, ide_moments.jweak_pair] = ...
264
        identification_checks(JJ(indJJ,:)./normJ, 0);
265
    [ide_model.cond, ide_model.ind0, ide_model.indno, ide_model.ino, ide_model.Mco, ide_model.Pco, ide_model.jweak, ide_model.jweak_pair] = ...
266
        identification_checks(H(indH,:)./normH, 0);
267
    [ide_lre.cond, ide_lre.ind0, ide_lre.indno, ide_lre.ino, ide_lre.Mco, ide_lre.Pco, ide_lre.jweak, ide_lre.jweak_pair] = ...
268
269
270
        identification_checks(gp(indLRE,:)./normLRE, 0);
    normJ=1;
    [U, S, V]=svd(JJ(indJJ,:)./normJ,0);
271
272
273
274
275
276
277
278
279
280
281
    S=diag(S);
    if nparam>8
        ide_moments.S = S([1:4, end-3:end]);
        ide_moments.V = V(:,[1:4, end-3:end]);
    else
        ide_moments.S = S;
        ide_moments.V = V;
    end
    
    indok = find(max(ide_moments.indno,[],1)==0);
    if advanced,
282
        [ide_moments.pars, ide_moments.cosnJ] = ident_bruteforce(JJ(indJJ,:)./normJ,max_dim_cova_group,options_.TeX,name_tex);
283
    end
284
end