StaticModel.cc 52.7 KB
Newer Older
sebastien's avatar
sebastien committed
1
/*
2
 * Copyright (C) 2003-2010 Dynare Team
sebastien's avatar
sebastien committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
21
#include <iostream>
#include <cmath>
22
#include <cstdlib>
23
#include <cassert>
24
25
#include <cstdio>
#include <cerrno>
sebastien's avatar
sebastien committed
26
#include <algorithm>
27
28
29
30
31
32
33
34
35
#include "StaticModel.hh"

// For mkdir() and chdir()
#ifdef _WIN32
# include <direct.h>
#else
# include <unistd.h>
# include <sys/stat.h>
# include <sys/types.h>
36
#endif
sebastien's avatar
sebastien committed
37

38
StaticModel::StaticModel(SymbolTable &symbol_table_arg,
39
40
41
                         NumericalConstants &num_constants_arg,
                         ExternalFunctionsTable &external_functions_table_arg) :
  ModelTree(symbol_table_arg, num_constants_arg, external_functions_table_arg),
42
43
44
  global_temporary_terms(true),
  cutoff(1e-15),
  mfs(0)
45
46
{
}
47

48
void
49
StaticModel::compileDerivative(ofstream &code_file, int eq, int symb_id, map_idx_t &map_idx) const
50
{
51
  first_derivatives_t::const_iterator it = first_derivatives.find(make_pair(eq, symbol_table.getID(eEndogenous, symb_id)));
52
53
54
55
56
57
58
59
  if (it != first_derivatives.end())
    (it->second)->compile(code_file, false, temporary_terms, map_idx, false, false);
  else
    {
      FLDZ_ fldz;
      fldz.write(code_file);
    }
}
sebastien's avatar
sebastien committed
60

61
void
62
StaticModel::compileChainRuleDerivative(ofstream &code_file, int eqr, int varr, int lag, map_idx_t &map_idx) const
63
64
65
66
67
68
69
70
71
72
73
{
  map<pair<int, pair<int, int> >, NodeID>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
  if (it != first_chain_rule_derivatives.end())
    (it->second)->compile(code_file, false, temporary_terms, map_idx, false, false);
  else
    {
      FLDZ_ fldz;
      fldz.write(code_file);
    }
}

74
75
76
77
78
79
80
81
82
83
void
StaticModel::initializeVariablesAndEquations()
{
  for(int j = 0; j < equation_number(); j++)
    {
      equation_reordered.push_back(j);
      variable_reordered.push_back(j);
    }
}

84
85
86
87
88
89
void
StaticModel::computeTemporaryTermsOrdered()
{
  map<NodeID, pair<int, int> > first_occurence;
  map<NodeID, int> reference_count;
  BinaryOpNode *eq_node;
90
91
  first_derivatives_t::const_iterator it;
  first_chain_rule_derivatives_t::const_iterator it_chr;
92
93
94
95
96
  ostringstream tmp_s;
  v_temporary_terms.clear();
  map_idx.clear();

  unsigned int nb_blocks = getNbBlocks();
97
  v_temporary_terms = vector< vector<temporary_terms_t> >(nb_blocks);
98

99
  v_temporary_terms_inuse = vector<temporary_terms_inuse_t>(nb_blocks);
100
101

  temporary_terms.clear();
102
  if (!global_temporary_terms)
103
104
105
106
107
108
109
110
111
    {
      for (unsigned int block = 0; block < nb_blocks; block++)
        {

          reference_count.clear();
          temporary_terms.clear();
          unsigned int block_size = getBlockSize(block);
          unsigned int block_nb_mfs = getBlockMfs(block);
          unsigned int block_nb_recursives = block_size - block_nb_mfs;
112
          v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
113
114
          for (unsigned int i = 0; i < block_size; i++)
            {
115
116
              if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
                getBlockEquationRenormalizedNodeID(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
117
118
              else
                {
119
                  eq_node = (BinaryOpNode *) getBlockEquationNodeID(block, i);
120
121
122
                  eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
                }
            }
123
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
124
            {
125
              NodeID id = it->second.second;
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
              id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
            }
          set<int> temporary_terms_in_use;
          temporary_terms_in_use.clear();
          v_temporary_terms_inuse[block] = temporary_terms_in_use;
        }
    }
  else
    {
      for (unsigned int block = 0; block < nb_blocks; block++)
        {
          // Compute the temporary terms reordered
          unsigned int block_size = getBlockSize(block);
          unsigned int block_nb_mfs = getBlockMfs(block);
          unsigned int block_nb_recursives = block_size - block_nb_mfs;
141
          v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
142
143
          for (unsigned int i = 0; i < block_size; i++)
            {
144
145
              if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
                getBlockEquationRenormalizedNodeID(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
146
147
              else
                {
148
                  eq_node = (BinaryOpNode *) getBlockEquationNodeID(block, i);
149
150
151
                  eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, i);
                }
            }
152
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
153
            {
154
              NodeID id = it->second.second;
155
156
157
158
159
160
161
162
163
164
165
166
167
              id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
            }

        }
      for (unsigned int block = 0; block < nb_blocks; block++)
        {
          // Collecte the temporary terms reordered
          unsigned int block_size = getBlockSize(block);
          unsigned int block_nb_mfs = getBlockMfs(block);
          unsigned int block_nb_recursives = block_size - block_nb_mfs;
          set<int> temporary_terms_in_use;
          for (unsigned int i = 0; i < block_size; i++)
            {
168
169
              if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
                getBlockEquationRenormalizedNodeID(block, i)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
170
171
              else
                {
172
                  eq_node = (BinaryOpNode *) getBlockEquationNodeID(block, i);
173
174
175
                  eq_node->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
                }
            }
176
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
177
            {
178
              NodeID id = it->second.second;
179
180
              id->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
            }
181
          for (int i = 0; i < (int) getBlockSize(block); i++)
182
            for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
183
184
                 it != v_temporary_terms[block][i].end(); it++)
              (*it)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
185
186
          v_temporary_terms_inuse[block] = temporary_terms_in_use;
        }
187
      computeTemporaryTermsMapping();
188
    }
189
190
191
192
193
}

void
StaticModel::computeTemporaryTermsMapping()
{
194
  // Add a mapping form node ID to temporary terms order
195
  int j = 0;
196
  for (temporary_terms_t::const_iterator it = temporary_terms.begin();
197
      it != temporary_terms.end(); it++)
198
    map_idx[(*it)->idx] = j++;
199
200
201
202
}

void
StaticModel::writeModelEquationsOrdered_M(const string &static_basename) const
203
204
205
206
207
208
{
  string tmp_s, sps;
  ostringstream tmp_output, tmp1_output, global_output;
  NodeID lhs = NULL, rhs = NULL;
  BinaryOpNode *eq_node;
  map<NodeID, int> reference_count;
209
  temporary_terms_t local_temporary_terms;
210
211
212
213
  ofstream  output;
  int nze;
  vector<int> feedback_variables;
  ExprNodeOutputType local_output_type;
214

Sébastien Villemot's avatar
Sébastien Villemot committed
215
  local_output_type = oMatlabStaticModelSparse;
216
  if (global_temporary_terms)
Sébastien Villemot's avatar
Sébastien Villemot committed
217
    local_temporary_terms = temporary_terms;
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

  //----------------------------------------------------------------------
  //For each block
  for (unsigned int block = 0; block < getNbBlocks(); block++)
    {
      //recursive_variables.clear();
      feedback_variables.clear();
      //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
      nze = derivative_endo[block].size();
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      unsigned int block_size = getBlockSize(block);
      unsigned int block_mfs = getBlockMfs(block);
      unsigned int block_recursive = block_size - block_mfs;

      tmp1_output.str("");
      tmp1_output << static_basename << "_" << block+1 << ".m";
      output.open(tmp1_output.str().c_str(), ios::out | ios::binary);
      output << "%\n";
      output << "% " << tmp1_output.str() << " : Computes static model for Dynare\n";
      output << "%\n";
      output << "% Warning : this file is generated automatically by Dynare\n";
      output << "%           from model file (.mod)\n\n";
      output << "%/\n";
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        output << "function y = " << static_basename << "_" << block+1 << "(y, x, params)\n";
      else
        output << "function [residual, y, g1] = " << static_basename << "_" << block+1 << "(y, x, params)\n";

      BlockType block_type;
      if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
        block_type = SIMULTANS;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) < prologue)
        block_type = PROLOGUE;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) >= equations.size() - epilogue)
        block_type = EPILOGUE;
      else
        block_type = SIMULTANS;
      output << "  % ////////////////////////////////////////////////////////////////////////" << endl
             << "  % //" << string("                     Block ").substr(int (log10(block + 1))) << block + 1 << " " << BlockType0(block_type)
             << "          //" << endl
             << "  % //                     Simulation type "
             << BlockSim(simulation_type) << "  //" << endl
             << "  % ////////////////////////////////////////////////////////////////////////" << endl;
      output << "  global options_;" << endl;
      //The Temporary terms
      if (simulation_type != EVALUATE_BACKWARD  && simulation_type != EVALUATE_FORWARD)
        output << "  g1 = zeros(" << block_mfs << ", " << block_mfs << ");" << endl;

      if (v_temporary_terms_inuse[block].size())
        {
          tmp_output.str("");
273
          for (temporary_terms_inuse_t::const_iterator it = v_temporary_terms_inuse[block].begin();
274
275
276
277
278
279
280
281
282
283
284
285
286
               it != v_temporary_terms_inuse[block].end(); it++)
            tmp_output << " T" << *it;
          output << "  global" << tmp_output.str() << ";\n";
        }

      if (simulation_type != EVALUATE_BACKWARD && simulation_type != EVALUATE_FORWARD)
        output << "  residual=zeros(" << block_mfs << ",1);\n";

      // The equations
      for (unsigned int i = 0; i < block_size; i++)
        {
          if (!global_temporary_terms)
            local_temporary_terms = v_temporary_terms[block][i];
287
          temporary_terms_t tt2;
288
289
290
291
          tt2.clear();
          if (v_temporary_terms[block].size())
            {
              output << "  " << "% //Temporary variables" << endl;
292
              for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
                   it != v_temporary_terms[block][i].end(); it++)
                {
                  output << "  " <<  sps;
                  (*it)->writeOutput(output, local_output_type, local_temporary_terms);
                  output << " = ";
                  (*it)->writeOutput(output, local_output_type, tt2);
                  // Insert current node into tt2
                  tt2.insert(*it);
                  output << ";" << endl;
                }
            }

          int variable_ID = getBlockVariableID(block, i);
          int equation_ID = getBlockEquationID(block, i);
          EquationType equ_type = getBlockEquationType(block, i);
          string sModel = symbol_table.getName(symbol_table.getID(eEndogenous, variable_ID));
          eq_node = (BinaryOpNode *) getBlockEquationNodeID(block, i);
          lhs = eq_node->get_arg1();
          rhs = eq_node->get_arg2();
          tmp_output.str("");
          lhs->writeOutput(tmp_output, local_output_type, local_temporary_terms);
          switch (simulation_type)
            {
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
            evaluation:
              output << "  % equation " << getBlockEquationID(block, i)+1 << " variable : " << sModel
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
              output << "  ";
              if (equ_type == E_EVALUATE)
                {
                  output << tmp_output.str();
                  output << " = ";
                  rhs->writeOutput(output, local_output_type, local_temporary_terms);
                }
              else if (equ_type == E_EVALUATE_S)
                {
                  output << "%" << tmp_output.str();
                  output << " = ";
                  if (isBlockEquationRenormalized(block, i))
                    {
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << "\n  ";
                      tmp_output.str("");
                      eq_node = (BinaryOpNode *) getBlockEquationRenormalizedNodeID(block, i);
                      lhs = eq_node->get_arg1();
                      rhs = eq_node->get_arg2();
                      lhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << " = ";
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                    }
                }
              else
                {
                  cerr << "Type missmatch for equation " << equation_ID+1  << "\n";
                  exit(EXIT_FAILURE);
                }
              output << ";\n";
              break;
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < block_recursive)
                goto evaluation;
              feedback_variables.push_back(variable_ID);
              output << "  % equation " << equation_ID+1 << " variable : " << sModel
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
              output << "  " << "residual(" << i+1-block_recursive << ") = (";
              goto end;
            default:
            end:
              output << tmp_output.str();
              output << ") - (";
              rhs->writeOutput(output, local_output_type, local_temporary_terms);
              output << ");\n";
            }
        }
      // The Jacobian if we have to solve the block
      if (simulation_type == SOLVE_BACKWARD_SIMPLE   || simulation_type == SOLVE_FORWARD_SIMPLE
          || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
        output << "  " << sps << "% Jacobian  " << endl;
      switch (simulation_type)
        {
        case SOLVE_BACKWARD_SIMPLE:
        case SOLVE_FORWARD_SIMPLE:
        case SOLVE_BACKWARD_COMPLETE:
        case SOLVE_FORWARD_COMPLETE:
381
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
            {
              unsigned int eq = it->first.first;
              unsigned int var = it->first.second;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
              NodeID id = it->second.second;
              output << "    g1(" << eq+1-block_recursive << ", " << var+1-block_recursive << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms);
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                     << "(" << 0
                     << ") " << varr+1
                     << ", equation=" << eqr+1 << endl;
            }
          break;
        default:
          break;
        }
      output.close();
    }
}
402
403

void
404
StaticModel::writeModelEquationsCode(const string file_name, const string bin_basename, map_idx_t map_idx) const
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
{

  ostringstream tmp_output;
  ofstream code_file;
  bool file_open = false;

  string main_name = file_name;
  main_name += ".cod";
  code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
  if (!code_file.is_open())
    {
      cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
      exit(EXIT_FAILURE);
    }
  int count_u;
  int u_count_int = 0;

  Write_Inf_To_Bin_File(file_name, u_count_int, file_open, false, symbol_table.endo_nbr());
  file_open = true;

  //Temporary variables declaration
  FDIMT_ fdimt(temporary_terms.size());
  fdimt.write(code_file);

  FBEGINBLOCK_ fbeginblock(symbol_table.endo_nbr(),
                           SOLVE_FORWARD_COMPLETE,
                           0,
                           symbol_table.endo_nbr(),
                           variable_reordered,
                           equation_reordered,
                           false,
                           symbol_table.endo_nbr(),
                           0,
                           0,
                           u_count_int
                           );
  fbeginblock.write(code_file);


  // Add a mapping form node ID to temporary terms order
  int j = 0;
446
  for (temporary_terms_t::const_iterator it = temporary_terms.begin();
447
448
449
450
451
452
453
454
455
456
457
458
       it != temporary_terms.end(); it++)
    map_idx[(*it)->idx] = j++;
  compileTemporaryTerms(code_file, temporary_terms, map_idx, false, false);

  compileModelEquations(code_file, temporary_terms, map_idx, false, false);

  FENDEQU_ fendequ;
  fendequ.write(code_file);

  vector<vector<pair<int, int> > > derivatives;
  derivatives.resize(symbol_table.endo_nbr());
  count_u = symbol_table.endo_nbr();
459
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
460
461
462
463
464
465
466
467
468
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
          NodeID d1 = it->second;
          unsigned int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          unsigned int var = symbol_table.getTypeSpecificID(symb);
469
470
          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var);
          fnumexpr.write(code_file);
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
          if (!derivatives[eq].size())
            derivatives[eq].clear();
          derivatives[eq].push_back(make_pair(var, count_u));

          d1->compile(code_file, false, temporary_terms, map_idx, false, false);

          FSTPSU_ fstpsu(count_u);
          fstpsu.write(code_file);
          count_u++;
        }
    }
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
    {
      FLDR_ fldr(i);
      fldr.write(code_file);
      for(vector<pair<int, int> >::const_iterator it = derivatives[i].begin();
          it != derivatives[i].end(); it++)
        {
          FLDSU_ fldsu(it->second);
          fldsu.write(code_file);
          FLDSV_ fldsv(eEndogenous, it->first);
          fldsv.write(code_file);
          FBINARY_ fbinary(oTimes);
          fbinary.write(code_file);
          if (it != derivatives[i].begin())
            {
              FBINARY_ fbinary(oPlus);
              fbinary.write(code_file);
            }
        }
      FBINARY_ fbinary(oMinus);
      fbinary.write(code_file);
      FSTPSU_ fstpsu(i);
      fstpsu.write(code_file);
    }
  FENDBLOCK_ fendblock;
  fendblock.write(code_file);
  FEND_ fend;
  fend.write(code_file);
  code_file.close();
}

void
514
StaticModel::writeModelEquationsCode_Block(const string file_name, const string bin_basename, map_idx_t map_idx) const
515
516
{
  struct Uff_l
517
  {
518
519
520
    int u, var, lag;
    Uff_l *pNext;
  };
521

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
  struct Uff
  {
    Uff_l *Ufl, *Ufl_First;
  };

  int i, v;
  string tmp_s;
  ostringstream tmp_output;
  ofstream code_file;
  NodeID lhs = NULL, rhs = NULL;
  BinaryOpNode *eq_node;
  Uff Uf[symbol_table.endo_nbr()];
  map<NodeID, int> reference_count;
  vector<int> feedback_variables;
  bool file_open = false;

  string main_name = file_name;
  main_name += ".cod";
  code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
  if (!code_file.is_open())
    {
      cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
      exit(EXIT_FAILURE);
    }
  //Temporary variables declaration

  FDIMT_ fdimt(temporary_terms.size());
  fdimt.write(code_file);

  for (unsigned int block = 0; block < getNbBlocks(); block++)
    {
      feedback_variables.clear();
      if (block > 0)
        {
          FENDBLOCK_ fendblock;
          fendblock.write(code_file);
        }
      int count_u;
      int u_count_int = 0;
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      unsigned int block_size = getBlockSize(block);
      unsigned int block_mfs = getBlockMfs(block);
      unsigned int block_recursive = block_size - block_mfs;

      if (simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE
          || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
        {
569
          Write_Inf_To_Bin_File_Block(file_name, bin_basename, block, u_count_int, file_open);
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
          file_open = true;
        }

      FBEGINBLOCK_ fbeginblock(block_mfs,
                               simulation_type,
                               getBlockFirstEquation(block),
                               block_size,
                               variable_reordered,
                               equation_reordered,
                               blocks_linear[block],
                               symbol_table.endo_nbr(),
                               0,
                               0,
                               u_count_int
                               );
      fbeginblock.write(code_file);

      // The equations
      for (i = 0; i < (int) block_size; i++)
        {
          //The Temporary terms
591
          temporary_terms_t tt2;
592
593
594
          tt2.clear();
          if (v_temporary_terms[block].size())
            {
595
              for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
596
597
                   it != v_temporary_terms[block][i].end(); it++)
                {
598
599
                  FNUMEXPR_ fnumexpr(TemporaryTerm, (int)(map_idx.find((*it)->idx)->second));
                  fnumexpr.write(code_file);
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
                  (*it)->compile(code_file, false, tt2, map_idx, false, false);
                  FSTPST_ fstpst((int)(map_idx.find((*it)->idx)->second));
                  fstpst.write(code_file);
                  // Insert current node into tt2
                  tt2.insert(*it);
                }
            }

          int variable_ID, equation_ID;
          EquationType equ_type;
          switch (simulation_type)
            {
            evaluation:
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
              equ_type = getBlockEquationType(block, i);
616
617
618
619
              {
                FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
                fnumexpr.write(code_file);
              }
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
              if (equ_type == E_EVALUATE)
                {
                  eq_node = (BinaryOpNode *) getBlockEquationNodeID(block, i);
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
                  rhs->compile(code_file, false, temporary_terms, map_idx, false, false);
                  lhs->compile(code_file, true, temporary_terms, map_idx, false, false);
                }
              else if (equ_type == E_EVALUATE_S)
                {
                  eq_node = (BinaryOpNode *) getBlockEquationRenormalizedNodeID(block, i);
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
                  rhs->compile(code_file, false, temporary_terms, map_idx, false, false);
                  lhs->compile(code_file, true, temporary_terms, map_idx, false, false);
                }
              break;
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < (int) block_recursive)
                goto evaluation;
              variable_ID = getBlockVariableID(block, i);
              equation_ID = getBlockEquationID(block, i);
              feedback_variables.push_back(variable_ID);
              Uf[equation_ID].Ufl = NULL;
              goto end;
            default:
            end:
648
649
              FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
              fnumexpr.write(code_file);
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
              eq_node = (BinaryOpNode *) getBlockEquationNodeID(block, i);
              lhs = eq_node->get_arg1();
              rhs = eq_node->get_arg2();
              lhs->compile(code_file, false, temporary_terms, map_idx, false, false);
              rhs->compile(code_file, false, temporary_terms, map_idx, false, false);

              FBINARY_ fbinary(oMinus);
              fbinary.write(code_file);

              FSTPR_ fstpr(i - block_recursive);
              fstpr.write(code_file);
            }
        }
      FENDEQU_ fendequ;
      fendequ.write(code_file);
      // The Jacobian if we have to solve the block
      if    (simulation_type != EVALUATE_BACKWARD
             && simulation_type != EVALUATE_FORWARD)
        {
          switch (simulation_type)
            {
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
673
674
675
676
              {
                FNUMEXPR_ fnumexpr(FirstEndoDerivative, 0, 0);
                fnumexpr.write(code_file);
              }
sebastien's avatar
sebastien committed
677
              compileDerivative(code_file, getBlockEquationID(block, 0), getBlockVariableID(block, 0), map_idx);
678
              {
679
680
                FSTPG_ fstpg(0);
                fstpg.write(code_file);
681
              }
682
              break;
683

684
685
686
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              count_u = feedback_variables.size();
687
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
688
689
690
691
692
                {
                  unsigned int eq = it->first.first;
                  unsigned int var = it->first.second;
                  unsigned int eqr = getBlockEquationID(block, eq);
                  unsigned int varr = getBlockVariableID(block, var);
693
                  if (eq >= block_recursive && var >= block_recursive)
694
695
696
697
698
699
700
701
702
703
704
705
706
707
                    {
                      if (!Uf[eqr].Ufl)
                        {
                          Uf[eqr].Ufl = (Uff_l *) malloc(sizeof(Uff_l));
                          Uf[eqr].Ufl_First = Uf[eqr].Ufl;
                        }
                      else
                        {
                          Uf[eqr].Ufl->pNext = (Uff_l *) malloc(sizeof(Uff_l));
                          Uf[eqr].Ufl = Uf[eqr].Ufl->pNext;
                        }
                      Uf[eqr].Ufl->pNext = NULL;
                      Uf[eqr].Ufl->u = count_u;
                      Uf[eqr].Ufl->var = varr;
708
709
                      FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr);
                      fnumexpr.write(code_file);
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
                      compileChainRuleDerivative(code_file, eqr, varr, 0, map_idx);
                      FSTPSU_ fstpsu(count_u);
                      fstpsu.write(code_file);
                      count_u++;
                    }
                }
              for (i = 0; i < (int) block_size; i++)
                {
                  if (i >= (int) block_recursive)
                    {
                      FLDR_ fldr(i-block_recursive);
                      fldr.write(code_file);

                      FLDZ_ fldz;
                      fldz.write(code_file);

                      v = getBlockEquationID(block, i);
                      for (Uf[v].Ufl = Uf[v].Ufl_First; Uf[v].Ufl; Uf[v].Ufl = Uf[v].Ufl->pNext)
                        {
                          FLDSU_ fldsu(Uf[v].Ufl->u);
                          fldsu.write(code_file);
                          FLDSV_ fldsv(eEndogenous, Uf[v].Ufl->var);
                          fldsv.write(code_file);

                          FBINARY_ fbinary(oTimes);
                          fbinary.write(code_file);

                          FCUML_ fcuml;
                          fcuml.write(code_file);
                        }
                      Uf[v].Ufl = Uf[v].Ufl_First;
                      while (Uf[v].Ufl)
                        {
                          Uf[v].Ufl_First = Uf[v].Ufl->pNext;
                          free(Uf[v].Ufl);
                          Uf[v].Ufl = Uf[v].Ufl_First;
                        }
                      FBINARY_ fbinary(oMinus);
                      fbinary.write(code_file);

                      FSTPSU_ fstpsu(i - block_recursive);
                      fstpsu.write(code_file);

                    }
                }
              break;
            default:
              break;
            }
        }
    }
  FENDBLOCK_ fendblock;
  fendblock.write(code_file);
  FEND_ fend;
  fend.write(code_file);
  code_file.close();
}
767
768

void
769
StaticModel::Write_Inf_To_Bin_File_Block(const string &static_basename, const string &bin_basename, const int &num,
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
                                   int &u_count_int, bool &file_open) const
{
  int j;
  std::ofstream SaveCode;
  if (file_open)
    SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::in | ios::binary | ios::ate);
  else
    SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::binary);
  if (!SaveCode.is_open())
    {
      cout << "Error : Can't open file \"" << bin_basename << "_static.bin\" for writing\n";
      exit(EXIT_FAILURE);
    }
  u_count_int = 0;
  unsigned int block_size = getBlockSize(num);
  unsigned int block_mfs = getBlockMfs(num);
  unsigned int block_recursive = block_size - block_mfs;
787
  for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[num].begin(); it != (blocks_derivatives[num]).end(); it++)
788
789
790
791
    {
      unsigned int eq = it->first.first;
      unsigned int var = it->first.second;
      int lag = 0;
792
      if (eq >= block_recursive && var >= block_recursive)
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
        {
          int v = eq - block_recursive;
          SaveCode.write(reinterpret_cast<char *>(&v), sizeof(v));
          int varr = var - block_recursive;
          SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
          SaveCode.write(reinterpret_cast<char *>(&lag), sizeof(lag));
          int u = u_count_int + block_mfs;
          SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
          u_count_int++;
        }
    }

  for (j = block_recursive; j < (int) block_size; j++)
    {
      unsigned int varr = getBlockVariableID(num, j);
      SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
    }
  for (j = block_recursive; j < (int) block_size; j++)
    {
      unsigned int eqr = getBlockEquationID(num, j);
      SaveCode.write(reinterpret_cast<char *>(&eqr), sizeof(eqr));
    }
  SaveCode.close();
}
817
818
819

map<pair<int, pair<int, int > >, NodeID>
StaticModel::collect_first_order_derivatives_endogenous()
sebastien's avatar
sebastien committed
820
{
821
  map<pair<int, pair<int, int > >, NodeID> endo_derivatives;
822
  for (first_derivatives_t::iterator it2 = first_derivatives.begin();
823
824
       it2 != first_derivatives.end(); it2++)
    {
825
      if (getTypeByDerivID(it2->first.second) == eEndogenous)
826
827
        {
          int eq = it2->first.first;
828
          int var = symbol_table.getTypeSpecificID(it2->first.second);
829
830
831
832
          int lag = 0;
          endo_derivatives[make_pair(eq, make_pair(var, lag))] = it2->second;
        }
    }
833
  return endo_derivatives;
834
835
836
}

void
837
StaticModel::computingPass(const eval_context_t &eval_context, bool no_tmp_terms, bool hessian, bool block, bool bytecode)
838
{
839
  // Compute derivatives w.r. to all endogenous, and possibly exogenous and exogenous deterministic
840
841
  set<int> vars;

842
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
843
844
845
846
    vars.insert(symbol_table.getID(eEndogenous, i));

  // Launch computations
  cout << "Computing static model derivatives:" << endl
847
       << " - order 1" << endl;
848
849
850
851
852
853
854
855
856
857
858
859
  first_derivatives.clear();

  computeJacobian(vars);

  if (hessian)
    {
      cout << " - order 2" << endl;
      computeHessian(vars);
    }

  if (block)
    {
860
      jacob_map_t contemporaneous_jacobian, static_jacobian;
861
862
863
864
865
866

      // for each block contains pair<Size, Feddback_variable>
      vector<pair<int, int> > blocks;

      evaluateAndReduceJacobian(eval_context, contemporaneous_jacobian, static_jacobian, dynamic_jacobian, cutoff, false);

sebastien's avatar
sebastien committed
867
      computeNonSingularNormalization(contemporaneous_jacobian, cutoff, static_jacobian, dynamic_jacobian);
868

869
      computePrologueAndEpilogue(static_jacobian, equation_reordered, variable_reordered);
870
871
872

      map<pair<int, pair<int, int> >, NodeID> first_order_endo_derivatives = collect_first_order_derivatives_endogenous();

873
      equation_type_and_normalized_equation = equationTypeDetermination(first_order_endo_derivatives, variable_reordered, equation_reordered, mfs);
874
875
876
877

      cout << "Finding the optimal block decomposition of the model ...\n";

      if (prologue+epilogue < (unsigned int) equation_number())
878
        computeBlockDecompositionAndFeedbackVariablesForEachBlock(static_jacobian, dynamic_jacobian, equation_reordered, variable_reordered, blocks, equation_type_and_normalized_equation, false, false, mfs, inv_equation_reordered, inv_variable_reordered);
879

880
      block_type_firstequation_size_mfs = reduceBlocksAndTypeDetermination(dynamic_jacobian, blocks, equation_type_and_normalized_equation, variable_reordered, equation_reordered);
881
882
883
884
885
886
887
888
889
890
891
892
893
894

      printBlockDecomposition(blocks);

      computeChainRuleJacobian(blocks_derivatives);

      blocks_linear = BlockLinear(blocks_derivatives, variable_reordered);

      collect_block_first_order_derivatives();

      global_temporary_terms = true;
      if (!no_tmp_terms)
        computeTemporaryTermsOrdered();
    }
  else
895
896
897
898
899
900
901
902
    {
      if (!no_tmp_terms)
        {
          computeTemporaryTerms(true);
          if (bytecode)
            computeTemporaryTermsMapping();
        }
    }
sebastien's avatar
sebastien committed
903
904
905
}

void
906
StaticModel::writeStaticMFile(const string &func_name) const
sebastien's avatar
sebastien committed
907
908
{
  // Writing comments and function definition command
909
910
911
912
913
914
915
916
917
918
919
  string filename = func_name + "_static.m";

  ofstream output;
  output.open(filename.c_str(), ios::out | ios::binary);
  if (!output.is_open())
    {
      cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
      exit(EXIT_FAILURE);
    }

  output << "function [residual, g1, g2] = " << func_name + "_static(y, x, params)" << endl
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
         << "%" << endl
         << "% Status : Computes static model for Dynare" << endl
         << "%" << endl
         << "% Warning : this file is generated automatically by Dynare" << endl
         << "%           from model file (.mod)" << endl
         << endl
         << "residual = zeros( " << equations.size() << ", 1);" << endl
         << endl
         << "%" << endl
         << "% Model equations" << endl
         << "%" << endl
         << endl;

  writeModelLocalVariables(output, oMatlabStaticModel);

  writeTemporaryTerms(temporary_terms, output, oMatlabStaticModel);

  writeModelEquations(output, oMatlabStaticModel);

  output << "if ~isreal(residual)" << endl
         << "  residual = real(residual)+imag(residual).^2;" << endl
         << "end" << endl
         << "if nargout >= 2," << endl
         << "  g1 = zeros(" << equations.size() << ", " << symbol_table.endo_nbr() << ");" << endl
         << endl
         << "%" << endl
         << "% Jacobian matrix" << endl
         << "%" << endl
         << endl;
sebastien's avatar
sebastien committed
949
950

  // Write Jacobian w.r. to endogenous only
951
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
sebastien's avatar
sebastien committed
952
953
954
       it != first_derivatives.end(); it++)
    {
      int eq = it->first.first;
955
      int symb_id = it->first.second;
sebastien's avatar
sebastien committed
956
957
      NodeID d1 = it->second;

958
      output << "  g1(" << eq+1 << "," << symbol_table.getTypeSpecificID(symb_id)+1 << ")=";
959
960
      d1->writeOutput(output, oMatlabStaticModel, temporary_terms);
      output << ";" << endl;
sebastien's avatar
sebastien committed
961
962
    }

963
964
965
966
967
968
969
970
971
972
973
974
  output << "  if ~isreal(g1)" << endl
         << "    g1 = real(g1)+2*imag(g1);" << endl
         << "  end" << endl
         << "end" << endl
         << "if nargout >= 3," << endl
         << "%" << endl
         << "% Hessian matrix" << endl
         << "%" << endl
         << endl;

  int g2ncols = symbol_table.endo_nbr() * symbol_table.endo_nbr();
  if (second_derivatives.size())
975
    {
976
      output << "  v2 = zeros(" << NNZDerivatives[1] << ",3);" << endl;
977

978
979
      // Write Hessian w.r. to endogenous only (only if 2nd order derivatives have been computed)
      int k = 0; // Keep the line of a 2nd derivative in v2
980
      for (second_derivatives_t::const_iterator it = second_derivatives.begin();
981
           it != second_derivatives.end(); it++)
982
        {
983
984
985
986
987
988
989
          int eq = it->first.first;
          int symb_id1 = it->first.second.first;
          int symb_id2 = it->first.second.second;
          NodeID d2 = it->second;

          int tsid1 = symbol_table.getTypeSpecificID(symb_id1);
          int tsid2 = symbol_table.getTypeSpecificID(symb_id2);
sebastien's avatar
sebastien committed
990

991
992
          int col_nb = tsid1*symbol_table.endo_nbr()+tsid2;
          int col_nb_sym = tsid2*symbol_table.endo_nbr()+tsid1;
sebastien's avatar
sebastien committed
993

994
995
996
997
998
          output << "v2(" << k+1 << ",1)=" << eq + 1 << ";" << endl
                 << "v2(" << k+1 << ",2)=" << col_nb + 1 << ";" << endl
                 << "v2(" << k+1 << ",3)=";
          d2->writeOutput(output, oMatlabStaticModel, temporary_terms);
          output << ";" << endl;
sebastien's avatar
sebastien committed
999
1000

          k++;
1001
1002
1003
1004
1005
1006
1007
1008
1009

          // Treating symetric elements
          if (symb_id1 != symb_id2)
            {
              output << "v2(" << k+1 << ",1)=" << eq + 1 << ";" << endl
                     << "v2(" << k+1 << ",2)=" << col_nb_sym + 1 << ";" << endl
                     << "v2(" << k+1 << ",3)=v2(" << k << ",3);" << endl;
              k++;
            }
1010
        }
sebastien's avatar
sebastien committed
1011

1012
      output << "  g2 = sparse(v2(:,1),v2(:,2),v2(:,3)," << equations.size() << "," << g2ncols << ");" << endl;
sebastien's avatar
sebastien committed
1013
    }
1014
1015
1016
1017
1018
  else // Either hessian is all zero, or we didn't compute it
    output << "  g2 = sparse([],[],[]," << equations.size() << "," << g2ncols << ");" << endl;

  output << "end;" << endl; // Close the if nargout >= 3 statement
  output.close();
sebastien's avatar
sebastien committed
1019
1020
}

1021
1022
void
StaticModel::writeStaticFile(const string &basename, bool block, bool bytecode) const
1023
1024
{
  int r;
sebastien's avatar
sebastien committed
1025

1026
  //assert(block);
1027

1028
#ifdef _WIN32
1029
  r = mkdir(basename.c_str());
1030
#else
1031
  r = mkdir(basename.c_str(), 0777);
1032
#endif
1033
1034
1035
1036
1037
1038
  if (r < 0 && errno != EEXIST)
    {
      perror("ERROR");
      exit(EXIT_FAILURE);
    }
  if (block && bytecode)
1039
1040
1041
    writeModelEquationsCode_Block(basename + "_static", basename, map_idx);
  else if (!block && bytecode)
    writeModelEquationsCode(basename + "_static", basename, map_idx);
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
  else if (block && !bytecode)
    {
      chdir(basename.c_str());
      writeModelEquationsOrdered_M(basename + "_static");
      chdir("..");
      writeStaticBlockMFSFile(basename);
    }
  else
    writeStaticMFile(basename);
}
1052
1053

void
1054
StaticModel::writeStaticBlockMFSFile(const string &basename) const
1055
{
1056
  string filename = basename + "_static.m";
1057

1058
1059
1060
  ofstream output;
  output.open(filename.c_str(), ios::out | ios::binary);
  if (!output.is_open())
1061
    {
1062
1063
      cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
      exit(EXIT_FAILURE);
1064
1065
    }

1066
  string func_name = basename + "_static";
1067

1068
1069
1070
1071
  output << "function [residual, g1, y] = " << func_name << "(nblock, y, x, params)" << endl
         << "  residual = [];" << endl
         << "  g1 = [];" << endl
         << "  switch nblock" << endl;
1072

1073
  unsigned int nb_blocks = getNbBlocks();
1074

1075
  for (int b = 0; b < (int) nb_blocks; b++)
1076
1077
    {

1078
      set<int> local_var;
1079

1080
      output << "    case " << b+1 << endl;
1081

1082
1083
      BlockSimulationType simulation_type = getBlockSimulationType(b);

1084
1085
1086
1087
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        output << "      y = " << func_name << "_" << b+1 << "(y, x, params);\n";
      else
        output << "      [residual, y, g1] = " << func_name << "_" << b+1 << "(y, x, params);\n";
sebastien's avatar
sebastien committed
1088
    }
1089
1090
1091
  output << "  end" << endl
         << "end" << endl;
  output.close();
sebastien's avatar
sebastien committed
1092

1093
}
sebastien's avatar
sebastien committed
1094

1095
1096
1097
1098
1099
void
StaticModel::writeOutput(ostream &output, bool block) const
{
  if (!block)
    return;
1100

1101
1102
  unsigned int nb_blocks = getNbBlocks();
  output << "M_.blocksMFS = cell(" << nb_blocks << ", 1);" << endl;
1103
  for (int b = 0; b < (int) nb_blocks; b++)
1104
    {
1105
1106
1107
1108
1109
      output << "M_.blocksMFS{" << b+1 << "} = [ ";
      unsigned int block_size = getBlockSize(b);
      unsigned int block_mfs = getBlockMfs(b);
      unsigned int block_recursive = block_size - block_mfs;
      BlockSimulationType simulation_type = getBlockSimulationType(b);
1110

1111
      if (simulation_type != EVALUATE_BACKWARD && simulation_type != EVALUATE_FORWARD)
1112
        for (int i = block_recursive; i < (int) block_size; i++)
1113
          output << getBlockVariableID(b, i)+1 << "; ";
1114

1115
      output << "];" << endl;
1116
    }
sebastien's avatar
sebastien committed
1117
1118
}

1119
1120
1121
1122
SymbolType
StaticModel::getTypeByDerivID(int deriv_id) const throw (UnknownDerivIDException)
{
  return symbol_table.getType(getSymbIDByDerivID(deriv_id));
1123
}
1124

1125
1126
int
StaticModel::getLagByDerivID(int deriv_id) const throw (UnknownDerivIDException)
1127
{
1128
  return 0;
1129
}
1130

1131
1132
int
StaticModel::getSymbIDByDerivID(int deriv_id) const throw (UnknownDerivIDException)
1133
{
1134
  return deriv_id;
1135
1136
}

1137
1138
int
StaticModel::getDerivID(int symb_id, int lag) const throw (UnknownDerivIDException)
1139
{
1140
1141
1142
1143
1144
  if (symbol_table.getType(symb_id) == eEndogenous)
    return symb_id;
  else
    return -1;
}
1145

1146
1147
1148
1149
1150
1151
1152
1153
map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>
StaticModel::get_Derivatives(int block)
{
  map<pair<pair<int, pair<int, int> >, pair<int, int> >, int> Derivatives;
  Derivatives.clear();
  int block_size = getBlockSize(block);
  int block_nb_recursive = block_size - getBlockMfs(block);
  int lag = 0;
1154
  for (int eq = 0; eq < block_size; eq++)
1155
    {
1156
      int eqr = getBlockEquationID(block, eq);
1157
      for (int var = 0; var < block_size; var++)
1158
        {
1159
          int varr = getBlockVariableID(block, var);
1160
          if (dynamic_jacobian.find(make_pair(lag, make_pair(eqr, varr))) != dynamic_jacobian.end())
1161
1162
1163
            {
              bool OK = true;
              map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>::const_iterator its = Derivatives.find(make_pair(make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr)));
1164
              if (its != Derivatives.end())
1165
                {
1166
1167
                  if (its->second == 2)
                    OK = false;
1168
                }
1169

1170
              if (OK)
1171
                {
1172
                  if (getBlockEquationType(block, eq) == E_EVALUATE_S && eq < block_nb_recursive)
1173
1174
1175
1176
1177
1178
                    //It's a normalized equation, we have to recompute the derivative using chain rule derivative function
                    Derivatives[make_pair(make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr))] = 1;
                  else
                    //It's a feedback equation we can use the derivatives
                    Derivatives[make_pair(make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr))] = 0;
                }
1179
              if (var < block_nb_recursive)
1180
1181
                {
                  int eqs = getBlockEquationID(block, var);
1182
                  for (int vars = block_nb_recursive; vars < block_size; vars++)
1183
1184
1185
                    {
                      int varrs = getBlockVariableID(block, vars);
                      //A new derivative needs to be computed using the chain rule derivative function (a feedback variable appears in a recursive equation)
1186
                      if (Derivatives.find(make_pair(make_pair(lag, make_pair(var, vars)), make_pair(eqs, varrs))) != Derivatives.end())
1187
1188
1189
1190
                        Derivatives[make_pair(make_pair(lag, make_pair(eq, vars)), make_pair(eqr, varrs))] = 2;
                    }
                }
            }
1191
1192
        }
    }
1193

1194
  return (Derivatives);
1195
}
1196
1197

void
1198
StaticModel::computeChainRuleJacobian(blocks_derivatives_t &blocks_derivatives)
1199
{
1200
1201
  map<int, NodeID> recursive_variables;
  unsigned int nb_blocks = getNbBlocks();
1202
  blocks_derivatives = blocks_derivatives_t(nb_blocks);
1203
  for (unsigned int block = 0; block < nb_blocks; block++)
1204
    {
1205
      block_derivatives_equation_variable_laglead_nodeid_t tmp_derivatives;
1206
1207
1208
1209
1210
      recursive_variables.clear();
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      int block_size = getBlockSize(block);
      int block_nb_mfs = getBlockMfs(block);
      int block_nb_recursives = block_size - block_nb_mfs;
1211
      if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
1212
        {
1213
          blocks_derivatives.push_back(block_derivatives_equation_variable_laglead_nodeid_t(0));
1214
          for (int i = 0; i < block_nb_recursives; i++)
1215
1216
1217
1218
1219
1220
1221
1222
            {
              if (getBlockEquationType(block, i) == E_EVALUATE_S)
                recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationRenormalizedNodeID(block, i);
              else
                recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationNodeID(block, i);
            }
          map<pair<pair<int, pair<int, int> >, pair<int, int> >, int> Derivatives = get_Derivatives(block);
          map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>::const_iterator it = Derivatives.begin();
1223
          for (int i = 0; i < (int) Derivatives.size(); i++)
1224
            {
1225
1226
1227
1228
1229
1230
1231
1232
              int Deriv_type = it->second;
              pair<pair<int