sequential_importance_particle_filter.m 6.56 KB
Newer Older
1
2
3
4
5
6
7
function [LIK,lik] = sequential_importance_particle_filter(ReducedForm,Y,start,DynareOptions)
% Evaluates the likelihood of a nonlinear model with a particle filter (optionally with resampling).

%@info:
%! @deftypefn {Function File} {@var{y}, @var{y_} =} sequential_importance_particle_filter (@var{ReducedForm},@var{Y}, @var{start}, @var{DynareOptions})
%! @anchor{particle/sequential_importance_particle_filter}
%! @sp 1
8
%! Evaluates the likelihood of a nonlinear model with a particle filter (optionally with resampling).
9
10
11
12
13
14
15
16
%!
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item ReducedForm
%! Structure describing the state space model (built in @ref{non_linear_dsge_likelihood}).
%! @item Y
17
%! p*smpl matrix of doubles (p is the number of observed variables), the (detrended) data.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
%! @item start
%! Integer scalar, likelihood evaluation starts at observation 'start'.
%! @item DynareOptions
%! Structure specifying Dynare's options.
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item LIK
%! double scalar, value of (minus) the logged likelihood.
%! @item lik
%! smpl*1 vector of doubles, density of the observations at each period.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @ref{non_linear_dsge_likelihood}
%! @sp 2
%! @strong{This function calls:}
%!
%! @end deftypefn
%@eod:

Sébastien Villemot's avatar
Sébastien Villemot committed
41
% Copyright (C) 2011-2012 Dynare Team
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR(S) frederic DOT karame AT univ DASH evry DOT fr
59
%           stephane DOT adjemian AT univ DASH lemans DOT fr
60

61
62
persistent init_flag
persistent mf0 mf1
63
64
65
66
67
68
69
70
persistent number_of_particles
persistent sample_size number_of_observed_variables number_of_structural_innovations

% Set default value for start
if isempty(start)
    start = 1;
end

71
72
73
% Set flag for prunning
pruning = DynareOptions.particle.pruning;

74
75
76
77
78
% Get steady state and mean.
steadystate = ReducedForm.steadystate;
constant = ReducedForm.constant;
state_variables_steady_state = ReducedForm.state_variables_steady_state;

79
% Set persistent variables (if needed).
80
81
82
83
84
if isempty(init_flag)
    mf0 = ReducedForm.mf0;
    mf1 = ReducedForm.mf1;
    sample_size = size(Y,2);
    number_of_observed_variables = length(mf1);
85
    number_of_structural_innovations = length(ReducedForm.Q);
86
87
88
89
90
91
92
93
94
95
96
97
98
    number_of_particles = DynareOptions.particle.number_of_particles;
    init_flag = 1;
end

% Set local state space model (first order approximation).
ghx  = ReducedForm.ghx;
ghu  = ReducedForm.ghu;

% Set local state space model (second order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;

99
% Get covariance matrices.
100
101
102
103
104
105
106
107
108
Q = ReducedForm.Q;
H = ReducedForm.H;
if isempty(H)
    H = 0;
end

% Get initial condition for the state vector.
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = reduced_rank_cholesky(ReducedForm.StateVectorVariance)';
109
110
111
112
113
114
if pruning
    StateVectorMean_ = StateVectorMean;
    StateVectorVarianceSquareRoot_ = StateVectorVarianceSquareRoot;
end

% Get the rank of StateVectorVarianceSquareRoot
115
state_variance_rank = size(StateVectorVarianceSquareRoot,2);
116
117

% Factorize the covariance matrix of the structural innovations
118
119
120
Q_lower_triangular_cholesky = chol(Q)';

% Set seed for randn().
121
set_dynare_seed('default');
122
123

% Initialization of the likelihood.
124
const_lik = log(2*pi)*number_of_observed_variables;
125
126
127
lik  = NaN(sample_size,1);

% Initialization of the weights across particles.
128
weights = ones(1,number_of_particles)/number_of_particles ;
129
StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean);
130
131
132
133
134
if pruning
    StateVectors_ = StateVectors;
end

% Loop over observations
135
136
137
for t=1:sample_size
    yhat = bsxfun(@minus,StateVectors,state_variables_steady_state);
    epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,number_of_particles);
138
139
140
141
142
143
    if pruning
        yhat_ = bsxfun(@minus,StateVectors_,state_variables_steady_state);
        [tmp, tmp_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,DynareOptions.threads.local_state_space_iteration_2);
    else
        tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2);
    end
144
    PredictedObservedMean = tmp(mf1,:)*transpose(weights);
145
146
    PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
    dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean);
147
    PredictedObservedVariance = bsxfun(@times,dPredictedObservedMean,weights)*dPredictedObservedMean' + H;
148
149
150
    lnw = -.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1));
    dfac = max(lnw);
    wtilde = weights.*exp(lnw-dfac);
151
    lik(t) = log(sum(wtilde))+dfac;
152
    weights = wtilde/sum(wtilde);
153
154
155
156
157
158
    if (strcmp(DynareOptions.particle.resampling.status,'generic') && neff(weights)<DynareOptions.particle.resampling.neff_threshold*sample_size ) || strcmp(DynareOptions.particle.resampling.status,'systematic')
        idx = resample(weights,DynareOptions.particle.resampling.method1,DynareOptions.particle.resampling.method2);
        StateVectors = tmp(mf0,idx);
        if pruning
            StateVectors_ = tmp_(mf0,idx);
        end
Stéphane Adjemian's avatar
Stéphane Adjemian committed
159
        weights = ones(1,number_of_particles)/number_of_particles;
Stéphane Adjemian's avatar
Stéphane Adjemian committed
160
    elseif strcmp(DynareOptions.particle.resampling.status,'smoothed')
Stéphane Adjemian's avatar
Stéphane Adjemian committed
161
        StateVectors = multivariate_smooth_resampling(weights',tmp(mf0,:)',number_of_particles,DynareOptions.particle.resampling.number_of_partitions)';
162
163
164
        if pruning
            StateVectors_ = multivariate_smooth_resampling(weights',tmp_(mf0,:)',number_of_particles,DynareOptions.particle.resampling.number_of_partitions)';
        end
Stéphane Adjemian's avatar
Stéphane Adjemian committed
165
        weights = ones(1,number_of_particles)/number_of_particles;
Stéphane Adjemian's avatar
Stéphane Adjemian committed
166
    elseif strcmp(DynareOptions.particle.resampling.status,'none')
167
        StateVectors = tmp(mf0,:);
168
169
170
        if pruning
            StateVectors_ = tmp_(mf0,:)
        end
171
172
173
    end
end

174
175
176
177
178
179
LIK = -sum(lik(start:end));



function n = neff(w)
    n = dot(w,w);