stab_map_.m 24.1 KB
Newer Older
1
function x0 = stab_map_(OutputDirectoryName,opt_gsa)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
%
% function x0 = stab_map_(OutputDirectoryName)
%
% Mapping of stability regions in the prior ranges applying
% Monte Carlo filtering techniques.
%
% INPUTS (from opt_gsa structure)
% Nsam = MC sample size
% fload = 0 to run new MC; 1 to load prevoiusly generated analysis
% alpha2 =  significance level for bivariate sensitivity analysis
% [abs(corrcoef) > alpha2]
% prepSA = 1: save transition matrices for mapping reduced form
%        = 0: no transition matrix saved (default)
% pprior = 1: sample from prior ranges (default): sample saved in
%            _prior.mat   file
%        = 0: sample from posterior ranges: sample saved in
%            _mc.mat file
% OUTPUT:
% x0: one parameter vector for which the model is stable.
%
% GRAPHS
% 1) Pdf's of marginal distributions under the stability (dotted
%     lines) and unstability (solid lines) regions
% 2) Cumulative distributions of:
%   - stable subset (dotted lines)
%   - unacceptable subset (solid lines)
% 3) Bivariate plots of significant correlation patterns
%  ( abs(corrcoef) > alpha2) under the stable and unacceptable subsets
%
31
% USES qmc_sequence, stab_map_1, stab_map_2
32
%
33
% Written by Marco Ratto
34
35
36
37
38
39
% Joint Research Centre, The European Commission,
% (http://eemc.jrc.ec.europa.eu/),
% marco.ratto@jrc.it
%
% Reference:
% M. Ratto, Global Sensitivity Analysis for Macroeconomic models, MIMEO, 2006.
40
41
42
43
44
45
46
47
48
49
50
51
52
53

% Copyright (C) 2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
54
%
55
56
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
57
58
59
60

%global bayestopt_ estim_params_ dr_ options_ ys_ fname_
global bayestopt_ estim_params_ options_ oo_ M_

61
% opt_gsa=options_.opt_gsa;
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

Nsam   = opt_gsa.Nsam;
fload  = opt_gsa.load_stab;
ksstat = opt_gsa.ksstat;
alpha2 = opt_gsa.alpha2_stab;
pvalue_ks = opt_gsa.pvalue_ks;
pvalue_corr = opt_gsa.pvalue_corr;
prepSA = (opt_gsa.redform | opt_gsa.identification);
pprior = opt_gsa.pprior;
neighborhood_width = opt_gsa.neighborhood_width;
ilptau = opt_gsa.ilptau;
nliv   = opt_gsa.morris_nliv;
ntra   = opt_gsa.morris_ntra;

dr_ = oo_.dr;
%if isfield(dr_,'ghx'),
ys_ = oo_.dr.ys;
79
80
81
nspred = M_.nspred; %size(dr_.ghx,2);
nboth = M_.nboth;
nfwrd = M_.nfwrd;
82
83
84
85
86
87
88
89
90
%end
fname_ = M_.fname;

np = estim_params_.np;
nshock = estim_params_.nvx;
nshock = nshock + estim_params_.nvn;
nshock = nshock + estim_params_.ncx;
nshock = nshock + estim_params_.ncn;
lpmat0=[];
91
xparam1=[];
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

pshape = bayestopt_.pshape(nshock+1:end);
p1 = bayestopt_.p1(nshock+1:end);
p2 = bayestopt_.p2(nshock+1:end);
p3 = bayestopt_.p3(nshock+1:end);
p4 = bayestopt_.p4(nshock+1:end);

if nargin==0,
    OutputDirectoryName='';
end

opt=options_;
options_.periods=0;
options_.nomoments=1;
options_.irf=0;
options_.noprint=1;
options_.simul=0;
if fload==0,
    %   if prepSA
    %     T=zeros(size(dr_.ghx,1),size(dr_.ghx,2)+size(dr_.ghu,2),Nsam/2);
    %   end

    if isfield(dr_,'ghx'),
        egg=zeros(length(dr_.eigval),Nsam);
    end
    yys=zeros(length(dr_.ys),Nsam);

    if opt_gsa.morris == 1
        [lpmat, OutFact] = Sampling_Function_2(nliv, np+nshock, ntra, ones(np+nshock, 1), zeros(np+nshock,1), []);
        lpmat = lpmat.*(nliv-1)/nliv+1/nliv/2;
        Nsam=size(lpmat,1);
        lpmat0 = lpmat(:,1:nshock);
        lpmat = lpmat(:,nshock+1:end);
125
126
127
%     elseif opt_gsa.morris==3,
%         lpmat = prep_ide(Nsam,np,5);
%         Nsam=size(lpmat,1);
128
    else
129
        if np<52 && ilptau>0,
130
            [lpmat] = qmc_sequence(np, int64(1), 0, Nsam)';
131
            if np>30 || ilptau==2, % scrambled lptau
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
                for j=1:np,
                    lpmat(:,j)=lpmat(randperm(Nsam),j);
                end
            end
        else %ilptau==0
            %[lpmat] = rand(Nsam,np);
            for j=1:np,
                lpmat(:,j) = randperm(Nsam)'./(Nsam+1); %latin hypercube
            end

        end
    end
    %   try
    dummy=prior_draw_gsa(1);
    %   catch
    %     if pprior,
    %       if opt_gsa.prior_range==0;
    %         error('Some unknown prior is specified or ML estimation,: use prior_range=1 option!!');
    %       end
    %     end
    %
    %   end
    if pprior,
        for j=1:nshock,
            if opt_gsa.morris~=1,
                lpmat0(:,j) = randperm(Nsam)'./(Nsam+1); %latin hypercube
            end
            if opt_gsa.prior_range
                lpmat0(:,j)=lpmat0(:,j).*(bayestopt_.ub(j)-bayestopt_.lb(j))+bayestopt_.lb(j);
            end
        end
        if opt_gsa.prior_range
            %       if opt_gsa.identification,
            %         deltx=min(0.001, 1/Nsam/2);
            %         for j=1:np,
            %           xdelt(:,:,j)=prior_draw_gsa(0,[lpmat0 lpmat]+deltx);
            %         end
            %       end
            for j=1:np,
                lpmat(:,j)=lpmat(:,j).*(bayestopt_.ub(j+nshock)-bayestopt_.lb(j+nshock))+bayestopt_.lb(j+nshock);
            end
        else
            xx=prior_draw_gsa(0,[lpmat0 lpmat]);
            %       if opt_gsa.identification,
            %         deltx=min(0.001, 1/Nsam/2);
            %         ldum=[lpmat0 lpmat];
            %         ldum = prior_draw_gsa(0,ldum+deltx);
            %         for j=1:nshock+np,
            %           xdelt(:,:,j)=xx;
            %           xdelt(:,j,j)=ldum(:,j);
            %         end
            %         clear ldum
            %       end
            lpmat0=xx(:,1:nshock);
            lpmat=xx(:,nshock+1:end);
            clear xx;
        end
    else
        %         for j=1:nshock,
        %             xparam1(j) = oo_.posterior_mode.shocks_std.(bayestopt_.name{j});
        %             sd(j) = oo_.posterior_std.shocks_std.(bayestopt_.name{j});
        %             lpmat0(:,j) = randperm(Nsam)'./(Nsam+1); %latin hypercube
        %             lb = max(bayestopt_.lb(j), xparam1(j)-2*sd(j));
        %             ub1=xparam1(j)+(xparam1(j) - lb); % define symmetric range around the mode!
        %             ub = min(bayestopt_.ub(j),ub1);
        %             if ub<ub1,
        %                 lb=xparam1(j)-(ub-xparam1(j)); % define symmetric range around the mode!
        %             end
        %             lpmat0(:,j) = lpmat0(:,j).*(ub-lb)+lb;
        %         end
        %         %
        %         for j=1:np,
        %             xparam1(j+nshock) = oo_.posterior_mode.parameters.(bayestopt_.name{j+nshock});
        %             sd(j+nshock) = oo_.posterior_std.parameters.(bayestopt_.name{j+nshock});
        %             lb = max(bayestopt_.lb(j+nshock),xparam1(j+nshock)-2*sd(j+nshock));
        %             ub1=xparam1(j+nshock)+(xparam1(j+nshock) - lb); % define symmetric range around the mode!
        %             ub = min(bayestopt_.ub(j+nshock),ub1);
        %             if ub<ub1,
        %                 lb=xparam1(j+nshock)-(ub-xparam1(j+nshock)); % define symmetric range around the mode!
        %             end
        %             %ub = min(bayestopt_.ub(j+nshock),xparam1(j+nshock)+2*sd(j+nshock));
        %             if np>30 & np<52
        %                 lpmat(:,j) = lpmat(randperm(Nsam),j).*(ub-lb)+lb;
        %             else
        %                 lpmat(:,j) = lpmat(:,j).*(ub-lb)+lb;
        %             end
        %         end
        %load([fname_,'_mode'])
        eval(['load ' options_.mode_file '.mat;']);
        if neighborhood_width>0,
            for j=1:nshock,
                lpmat0(:,j) = randperm(Nsam)'./(Nsam+1); %latin hypercube
                ub=min([bayestopt_.ub(j) xparam1(j)*(1+neighborhood_width)]);
                lb=max([bayestopt_.lb(j) xparam1(j)*(1-neighborhood_width)]);
                lpmat0(:,j)=lpmat0(:,j).*(ub-lb)+lb;
            end
            for j=1:np,
                ub=min([bayestopt_.ub(j+nshock) xparam1(j+nshock)*(1+neighborhood_width)]);
                lb=max([bayestopt_.lb(j+nshock) xparam1(j+nshock)*(1-neighborhood_width)]);
                lpmat(:,j)=lpmat(:,j).*(ub-lb)+lb;
            end
        else
            d = chol(inv(hh));
            lp=randn(Nsam*2,nshock+np)*d+kron(ones(Nsam*2,1),xparam1');
            for j=1:Nsam*2,
                lnprior(j) = any(lp(j,:)'<=bayestopt_.lb | lp(j,:)'>=bayestopt_.ub);
            end
            ireal=[1:2*Nsam];
            ireal=ireal(find(lnprior==0));
            lp=lp(ireal,:);
            Nsam=min(Nsam, length(ireal));
            lpmat0=lp(1:Nsam,1:nshock);
            lpmat=lp(1:Nsam,nshock+1:end);
            clear lp lnprior ireal;
        end
    end
    %
249
    h = dyn_waitbar(0,'Please wait...');
250
251
252
253
254
255
256
257
258
    istable=[1:Nsam];
    jstab=0;
    iunstable=[1:Nsam];
    iindeterm=zeros(1,Nsam);
    iwrong=zeros(1,Nsam);
    for j=1:Nsam,
        M_.params(estim_params_.param_vals(:,1)) = lpmat(j,:)';
        %try stoch_simul([]);
        try
259
260
261
            [Tt,Rr,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_,'restrict');
            infox(j,1)=info(1);
            if infox(j,1)==0 && ~exist('T'),
262
                dr_=oo_.dr;
263
264
265
266
267
268
269
270
271
272
273
274
275
276
                if prepSA,
                    try
                        T=zeros(size(dr_.ghx,1),size(dr_.ghx,2)+size(dr_.ghu,2),Nsam);
                    catch ME
                        if strcmp('MATLAB:nomem',ME.identifier),
                            prepSA=0;
                            disp('The model is too large for storing state space matrices ...')
                            disp('for mapping reduced form or for identification')
                        end
                        T=[];
                    end
                else
                    T=[];
                end
277
278
                egg=zeros(length(dr_.eigval),Nsam);
            end
279
            if infox(j,1),
280
281
282
283
%                 disp('no solution'),
                if isfield(oo_.dr,'ghx'),
                    oo_.dr=rmfield(oo_.dr,'ghx');
                end
284
                if (infox(j,1)<3 || infox(j,1)>5) && isfield(oo_.dr,'eigval'),
285
286
                    oo_.dr=rmfield(oo_.dr,'eigval');
                end
287
            end
288
        catch ME
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
            if isfield(oo_.dr,'eigval'),
                oo_.dr=rmfield(oo_.dr,'eigval');
            end
            if isfield(oo_.dr,'ghx'),
                oo_.dr=rmfield(oo_.dr,'ghx');
            end
            disp('No solution could be found'),
        end
        dr_ = oo_.dr;
        if isfield(dr_,'ghx'),
            egg(:,j) = sort(dr_.eigval);
            iunstable(j)=0;
            if prepSA
                jstab=jstab+1;
                T(:,:,jstab) = [dr_.ghx dr_.ghu];
                %         [A,B] = ghx2transition(squeeze(T(:,:,jstab)), ...
                %           bayestopt_.restrict_var_list, ...
                %           bayestopt_.restrict_columns, ...
                %           bayestopt_.restrict_aux);
            end
            if ~exist('nspred'),
                nspred = dr_.nspred; %size(dr_.ghx,2);
                nboth = dr_.nboth;
                nfwrd = dr_.nfwrd;
            end
        else
            istable(j)=0;
            if isfield(dr_,'eigval')
                egg(:,j) = sort(dr_.eigval);
                if exist('nspred')
                    if any(isnan(egg(1:nspred,j)))
                        iwrong(j)=j;
                    else
322
                        if (nboth || nfwrd) && abs(egg(nspred+1,j))<=options_.qz_criterium,
323
324
325
326
327
328
329
330
331
332
333
334
335
336
                            iindeterm(j)=j;
                        end
                    end
                end
            else
                if exist('egg'),
                    egg(:,j)=ones(size(egg,1),1).*NaN;
                end
                iwrong(j)=j;
            end
        end
        ys_=real(dr_.ys);
        yys(:,j) = ys_;
        ys_=yys(:,1);
337
        dyn_waitbar(j/Nsam,h,['MC iteration ',int2str(j),'/',int2str(Nsam)])
338
    end
339
    dyn_waitbar_close(h);
340
    if prepSA && jstab,
341
        T=T(:,:,1:jstab);
342
343
    else
        T=[];
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    end
    istable=istable(find(istable));  % stable params
    iunstable=iunstable(find(iunstable));   % unstable params
    iindeterm=iindeterm(find(iindeterm));  % indeterminacy
    iwrong=iwrong(find(iwrong));  % dynare could not find solution

    %     % map stable samples
    %     istable=[1:Nsam];
    %     for j=1:Nsam,
    %         if any(isnan(egg(1:nspred,j)))
    %             istable(j)=0;
    %         else
    %             if abs(egg(nspred,j))>=options_.qz_criterium; %(1-(options_.qz_criterium-1)); %1-1.e-5;
    %                 istable(j)=0;
    %                 %elseif (dr_.nboth | dr_.nfwrd) & abs(egg(nspred+1,j))<=options_.qz_criterium; %1+1.e-5;
    %             elseif (nboth | nfwrd) & abs(egg(nspred+1,j))<=options_.qz_criterium; %1+1.e-5;
    %                 istable(j)=0;
    %             end
    %         end
    %     end
    %     istable=istable(find(istable));  % stable params
    %
    %     % map unstable samples
    %     iunstable=[1:Nsam];
    %     for j=1:Nsam,
    %         %if abs(egg(dr_.npred+1,j))>1+1.e-5 & abs(egg(dr_.npred,j))<1-1.e-5;
    %         %if (dr_.nboth | dr_.nfwrd),
    %         if ~any(isnan(egg(1:5,j)))
    %             if (nboth | nfwrd),
    %                 if abs(egg(nspred+1,j))>options_.qz_criterium & abs(egg(nspred,j))<options_.qz_criterium; %(1-(options_.qz_criterium-1));
    %                     iunstable(j)=0;
    %                 end
    %             else
    %                 if abs(egg(nspred,j))<options_.qz_criterium; %(1-(options_.qz_criterium-1));
    %                     iunstable(j)=0;
    %                 end
    %             end
    %         end
    %     end
    %     iunstable=iunstable(find(iunstable));   % unstable params
    bkpprior.pshape=bayestopt_.pshape;
    bkpprior.p1=bayestopt_.p1;
    bkpprior.p2=bayestopt_.p2;
    bkpprior.p3=bayestopt_.p3;
    bkpprior.p4=bayestopt_.p4;
    if pprior,
        if ~prepSA
            save([OutputDirectoryName '/' fname_ '_prior.mat'], ...
                'bkpprior','lpmat','lpmat0','iunstable','istable','iindeterm','iwrong', ...
393
                'egg','yys','nspred','nboth','nfwrd','infox')
394
395
396
        else
            save([OutputDirectoryName '/' fname_ '_prior.mat'], ...
                'bkpprior','lpmat','lpmat0','iunstable','istable','iindeterm','iwrong', ...
397
                'egg','yys','T','nspred','nboth','nfwrd','infox')
398
399
400
401
402
403
        end

    else
        if ~prepSA
            save([OutputDirectoryName '/' fname_ '_mc.mat'], ...
                'lpmat','lpmat0','iunstable','istable','iindeterm','iwrong', ...
404
                'egg','yys','nspred','nboth','nfwrd','infox')
405
406
407
        else
            save([OutputDirectoryName '/' fname_ '_mc.mat'], ...
                'lpmat','lpmat0','iunstable','istable','iindeterm','iwrong', ...
408
                'egg','yys','T','nspred','nboth','nfwrd','infox')
409
410
411
412
413
414
415
416
        end
    end
else
    if pprior,
        filetoload=[OutputDirectoryName '/' fname_ '_prior.mat'];
    else
        filetoload=[OutputDirectoryName '/' fname_ '_mc.mat'];
    end
417
    load(filetoload,'lpmat','lpmat0','iunstable','istable','iindeterm','iwrong','egg','yys','nspred','nboth','nfwrd','infox')
418
    Nsam = size(lpmat,1);
419
420
421
    if pprior==0,
        eval(['load ' options_.mode_file '.mat;']);
    end
422
423


424
    if prepSA && isempty(strmatch('T',who('-file', filetoload),'exact')),
425
        h = dyn_waitbar(0,'Please wait...');
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
        options_.periods=0;
        options_.nomoments=1;
        options_.irf=0;
        options_.noprint=1;
        stoch_simul([]);
        %T=zeros(size(dr_.ghx,1),size(dr_.ghx,2)+size(dr_.ghu,2),length(istable));
        ntrans=length(istable);
        for j=1:ntrans,
            M_.params(estim_params_.param_vals(:,1)) = lpmat(istable(j),:)';
            %stoch_simul([]);
            [Tt,Rr,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_,'restrict');
            % This syntax is not compatible with the current version of dynare_resolve [stepan].
            %[Tt,Rr,SteadyState,info] = dynare_resolve(bayestopt_.restrict_var_list,...
            %    bayestopt_.restrict_columns,...
            %    bayestopt_.restrict_aux);
            if ~exist('T')
                T=zeros(size(dr_.ghx,1),size(dr_.ghx,2)+size(dr_.ghu,2),ntrans);
            end
            dr_ = oo_.dr;
            T(:,:,j) = [dr_.ghx dr_.ghu];
            if ~exist('nspred')
                nspred = dr_.nspred; %size(dr_.ghx,2);
                nboth = dr_.nboth;
                nfwrd = dr_.nfwrd;
            end
            ys_=real(dr_.ys);
            yys(:,j) = ys_;
            ys_=yys(:,1);
454
            dyn_waitbar(j/ntrans,h,['MC iteration ',int2str(j),'/',int2str(ntrans)])
455
        end
456
        dyn_waitbar_close(h);
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        save(filetoload,'T','-append')
    elseif prepSA
        load(filetoload,'T')
    end
end

if pprior
    aname='prior_stab';
    auname='prior_unacceptable';
    aunstname='prior_unstable';
    aindname='prior_indeterm';
    awrongname='prior_wrong';
    asname='prior_stable';
else
    aname='mc_stab';
    auname='mc_unacceptable';
    aunstname='mc_unstable';
    aindname='mc_indeterm';
    awrongname='mc_wrong';
    asname='mc_stable';
end
delete([OutputDirectoryName,'/',fname_,'_',aname,'_*.*']);
%delete([OutputDirectoryName,'/',fname_,'_',aname,'_SA_*.*']);
delete([OutputDirectoryName,'/',fname_,'_',asname,'_corr_*.*']);
delete([OutputDirectoryName,'/',fname_,'_',auname,'_corr_*.*']);
delete([OutputDirectoryName,'/',fname_,'_',aunstname,'_corr_*.*']);
delete([OutputDirectoryName,'/',fname_,'_',aindname,'_corr_*.*']);

485
if length(iunstable)>0 && length(iunstable)<Nsam,
486
487
    fprintf(['%4.1f%% of the prior support gives unique saddle-path solution.\n'],length(istable)/Nsam*100)
    fprintf(['%4.1f%% of the prior support gives explosive dynamics.\n'],(length(iunstable)-length(iwrong)-length(iindeterm) )/Nsam*100)
488
489
490
491
492
493
    if ~isempty(iindeterm),
        fprintf(['%4.1f%% of the prior support gives indeterminacy.'],length(iindeterm)/Nsam*100)
    end
    if ~isempty(iwrong),
        disp(' ');
        disp(['For ',num2str(length(iwrong)/Nsam*100,'%1.3f'),'\% of the prior support dynare could not find a solution.'])
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        disp(' ');
        if any(infox==1),
            disp(['    For ',num2str(length(find(infox==1))/Nsam*100,'%1.3f'),'\% The model doesn''t determine the current variables uniquely.'])
        end
        if any(infox==2),
            disp(['    For ',num2str(length(find(infox==2))/Nsam*100,'%1.3f'),'\% MJDGGES returned an error code.'])
        end
        if any(infox==6),
            disp(['    For ',num2str(length(find(infox==6))/Nsam*100,'%1.3f'),'\% The jacobian evaluated at the deterministic steady state is complex.'])
        end
        if any(infox==19),
            disp(['    For ',num2str(length(find(infox==19))/Nsam*100,'%1.3f'),'\% The steadystate routine thrown an exception (inconsistent deep parameters).'])
        end
        if any(infox==20),
            disp(['    For ',num2str(length(find(infox==20))/Nsam*100,'%1.3f'),'\% Cannot find the steady state.'])
        end
        if any(infox==21),
            disp(['    For ',num2str(length(find(infox==21))/Nsam*100,'%1.3f'),'\% The steady state is complex.'])
        end
        if any(infox==22),
            disp(['    For ',num2str(length(find(infox==22))/Nsam*100,'%1.3f'),'\% The steady has NaNs.'])
        end
        if any(infox==23),
            disp(['    For ',num2str(length(find(infox==23))/Nsam*100,'%1.3f'),'\% M_.params has been updated in the steadystate routine and has complex valued scalars.'])
        end
        if any(infox==24),
            disp(['    For ',num2str(length(find(infox==24))/Nsam*100,'%1.3f'),'\% M_.params has been updated in the steadystate routine and has some NaNs.'])
        end
        if any(infox==30),
            disp(['    For ',num2str(length(find(infox==30))/Nsam*100,'%1.3f'),'\% Ergodic variance can''t be computed.'])
        end

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    end
    disp(' ');
    % Blanchard Kahn
    [proba, dproba] = stab_map_1(lpmat, istable, iunstable, aname,0);
%     indstab=find(dproba>ksstat);
    indstab=find(proba<pvalue_ks);
    disp('Smirnov statistics in driving acceptable behaviour')
    for j=1:length(indstab),
        disp([M_.param_names(estim_params_.param_vals(indstab(j),1),:),'   d-stat = ', num2str(dproba(indstab(j)),'%1.3f'),'   p-value = ', num2str(proba(indstab(j)),'%1.3f')])
    end
    disp(' ');
    if ~isempty(indstab)
        stab_map_1(lpmat, istable, iunstable, aname, 1, indstab, OutputDirectoryName);
    end
    ixun=iunstable(find(~ismember(iunstable,[iindeterm,iwrong])));
    if ~isempty(iindeterm),
        [proba, dproba] = stab_map_1(lpmat, [1:Nsam], iindeterm, [aname, '_indet'],0);
%         indindet=find(dproba>ksstat);
        indindet=find(proba<pvalue_ks);
        disp('Smirnov statistics in driving indeterminacy')
        for j=1:length(indindet),
            disp([M_.param_names(estim_params_.param_vals(indindet(j),1),:),'   d-stat = ', num2str(dproba(indindet(j)),'%1.3f'),'   p-value = ', num2str(proba(indindet(j)),'%1.3f')])
        end
        disp(' ');
        if ~isempty(indindet)
            stab_map_1(lpmat, [1:Nsam], iindeterm, [aname, '_indet'], 1, indindet, OutputDirectoryName);
        end
    end

    if ~isempty(ixun),
        [proba, dproba] = stab_map_1(lpmat, [1:Nsam], ixun, [aname, '_unst'],0);
%         indunst=find(dproba>ksstat);
        indunst=find(proba<pvalue_ks);
        disp('Smirnov statistics in driving instability')
        for j=1:length(indunst),
            disp([M_.param_names(estim_params_.param_vals(indunst(j),1),:),'   d-stat = ', num2str(dproba(indunst(j)),'%1.3f'),'   p-value = ', num2str(proba(indunst(j)),'%1.3f')])
        end
        disp(' ');
        if ~isempty(indunst)
            stab_map_1(lpmat, [1:Nsam], ixun, [aname, '_unst'], 1, indunst, OutputDirectoryName);
        end
    end

    if ~isempty(iwrong),
        [proba, dproba] = stab_map_1(lpmat, [1:Nsam], iwrong, [aname, '_wrong'],0);
%         indwrong=find(dproba>ksstat);
        indwrong=find(proba<pvalue_ks);
        disp('Smirnov statistics in driving no solution')
        for j=1:length(indwrong),
            disp([M_.param_names(estim_params_.param_vals(indwrong(j),1),:),'   d-stat = ', num2str(dproba(indwrong(j)),'%1.3f'),'   p-value = ', num2str(proba(indwrong(j)),'%1.3f')])
        end
        disp(' ');
        if ~isempty(indwrong)
            stab_map_1(lpmat, [1:Nsam], iwrong, [aname, '_wrong'], 1, indwrong, OutputDirectoryName);
        end
    end

    disp(' ')
    disp('Starting bivariate analysis:')

    c0=corrcoef(lpmat(istable,:));
    c00=tril(c0,-1);

589
    stab_map_2(lpmat(istable,:),alpha2, pvalue_corr, asname, OutputDirectoryName,xparam1);
590
    if length(iunstable)>10,
591
        stab_map_2(lpmat(iunstable,:),alpha2, pvalue_corr, auname, OutputDirectoryName,xparam1);
592
593
    end
    if length(iindeterm)>10,
594
        stab_map_2(lpmat(iindeterm,:),alpha2, pvalue_corr, aindname, OutputDirectoryName,xparam1);
595
596
    end
    if length(ixun)>10,
597
        stab_map_2(lpmat(ixun,:),alpha2, pvalue_corr, aunstname, OutputDirectoryName,xparam1);
598
599
    end
    if length(iwrong)>10,
600
        stab_map_2(lpmat(iwrong,:),alpha2, pvalue_corr, awrongname, OutputDirectoryName,xparam1);
601
602
603
604
605
606
607
608
609
610
611
    end

    x0=0.5.*(bayestopt_.ub(1:nshock)-bayestopt_.lb(1:nshock))+bayestopt_.lb(1:nshock);
    x0 = [x0; lpmat(istable(1),:)'];
    if istable(end)~=Nsam
        M_.params(estim_params_.param_vals(:,1)) = lpmat(istable(1),:)';
        [oo_.dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_);
        %     stoch_simul([]);
    end
else
    if length(iunstable)==0,
612
        disp('All parameter values in the specified ranges give unique saddle-path solution!')
613
614
615
616
617
618
619
620
621
        x0=0.5.*(bayestopt_.ub(1:nshock)-bayestopt_.lb(1:nshock))+bayestopt_.lb(1:nshock);
        x0 = [x0; lpmat(istable(1),:)'];
    else
        disp('All parameter values in the specified ranges are not acceptable!')
        x0=[];
    end

end

622
623
xparam1=x0;
save prior_ok xparam1;
624
625
626
627
628
629
630
631
632
633
634
635
636

options_.periods=opt.periods;
if isfield(opt,'nomoments'),
    options_.nomoments=opt.nomoments;
end
options_.irf=opt.irf;
options_.noprint=opt.noprint;
if isfield(opt,'simul'),
    options_.simul=opt.simul;
end