subsref.m 11.1 KB
Newer Older
Stéphane Adjemian's avatar
Stéphane Adjemian committed
1
2
3
function us = subsref(ts, S)
%@info:
%! @deftypefn {Function File} {@var{us} =} subsref (@var{ts},S)
Stéphane Adjemian's avatar
Stéphane Adjemian committed
4
%! @anchor{@dynSeries/subsref}
Stéphane Adjemian's avatar
Stéphane Adjemian committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
%! @sp 1
%! Overloads the subsref method for the Dynare time series class (@ref{dynSeries}).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item ts
%! Dynare time series object instantiated by @ref{dynSeries}.
%! @item S
%! Matlab's structure array S with two fields, type and subs. The type field is string containing '()', '@{@}', or '.', where '()' specifies
%! integer subscripts, '@{@}' specifies cell array subscripts, and '.' specifies subscripted structure fields. The subs field is a cell array
%! or a string containing the actual subscripts (see matlab's documentation).
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item us
%! Dynare time series object. Depending on the calling sequence @var{us} is a transformation of @var{ts} obtained by applying a public method on @var{ts},
%! or a dynSeries object built by extracting a variable from @var{ts}, or a dynSeries object containing a subsample of the all the variable in @var{ts}.
%! @end table
%! @sp 2
%! @strong{Example 1.} Let @var{ts} be a dynSeries object containing three variables named 'A1', 'A2' and 'A3'. Then the following syntax:
%! @example
%!   us = ts.A1;
%! @end example
%!will create a new dynSeries object @var{us} containing the variable 'A1'.
%! @sp 1
%! @strong{Example 2.} Let @var{ts} be a dynSeries object. Then the following syntax:
%! @example
%!   us = ts.log;
%! @end example
%!will create a new dynSeries object @var{us} containing all the variables of @var{ts} transformed by the neperian logarithm.
%! @sp 1
%! @strong{Example 3.} Let @var{ts} be a dynSeries object. The following syntax:
%! @example
%!   us = ts(3:50);
%! @end example
%!will create a new dynSeries object @var{us} by selecting a subsample out of @var{ts}.
%! @end deftypefn
%@eod:

Stéphane Adjemian's avatar
Stéphane Adjemian committed
47
% Copyright (C) 2011, 2012 Dynare Team
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR(S) stephane DOT adjemian AT univ DASH lemans DOT fr

66
if length(S)==1 && isequal(S.type,'.')
Stéphane Adjemian's avatar
Stéphane Adjemian committed
67
    switch S.subs
68
      case {'data','nobs','vobs','name','tex','freq','time','init'}        % Public members.
Stéphane Adjemian's avatar
Stéphane Adjemian committed
69
        us = builtin('subsref', ts, S);
70
      case {'log','exp','ygrowth','qgrowth','ydiff','qdiff'}               % Give "dot access" to public methods.
Stéphane Adjemian's avatar
Stéphane Adjemian committed
71
        us = feval(S.subs,ts);
72
73
74
      case {'save'}
        us = NaN;
        save(ts);
Stéphane Adjemian's avatar
Stéphane Adjemian committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
      otherwise                                                            % Extract a sub-object by selecting one variable.
        ndx = strmatch(S.subs,ts.name);
        if ~isempty(ndx)
            us = dynSeries();
            us.data = ts.data(:,ndx);
            us.name = deblank(ts.name(ndx,:));
            us.tex  = deblank(ts.tex(ndx,:));
            us.nobs = ts.nobs;
            us.vobs = 1;
            us.freq = ts.freq;
            us.init = ts.init;
            return
        else
            error('dynSeries::subsref: Unknown public method, public member or variable!')
89
90
        end
    end
Stéphane Adjemian's avatar
Stéphane Adjemian committed
91
92
    return
end
93

94
95
96
if length(S)==1 && isequal(S.type,'()')
    if ischar(S.subs{1})
        us = dynSeries(S.subs{1});
97
98
99
100
    elseif isa(S.subs{1},'dynDates')
        [junk,tdx] = intersect(ts.time.time,S.subs{1}.time,'rows');
        us = dynSeries();
        us.data = ts.data(tdx,:);
101
        us.time = ts.time(tdx,:);
102
103
104
105
106
107
        us.name = deblank(ts.name);
        us.tex  = deblank(ts.tex);
        us.nobs = length(tdx);
        us.vobs = ts.vobs;
        us.freq = ts.freq;
        us.init = ts.init+tdx(1);
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    else
        % Extract a sub-object by selecting a sub-sample.
        if size(ts.data,2)>1
            S.subs = [S.subs, ':'];
        end
        us.data = builtin('subsref', ts.data, S);
        us.nobs = size(us.data,1);
        us.vobs = ts.vobs;
        us.freq = ts.freq;
        us.time = builtin('subsref', ts.time, S);
        us.init = ts.init+S.subs{1}(1);
        us.name = ts.name;
        us.tex  = ts.tex;
        return
122
    end
Stéphane Adjemian's avatar
Stéphane Adjemian committed
123
end
124

125
126
127
if (length(S)==2) && (isequal(S(1).subs,'init'))
    if isequal(S(2).type,'.') && ( isequal(S(2).subs,'freq') || isequal(S(2).subs,'time') )
        us = builtin('subsref', ts.init, S(2));
128
129
130
    else
        error('dynSeries:subsref:: I don''t understand what you are trying to do!')
    end
131
132
133
    return
end

134
135
136
137
138
if (length(S)==2) && (isequal(S(1).type,'.')) && (isequal(S(1).subs,'data')) && (isequal(S(2).type,'()')) 
    us = builtin('subsref',ts.data,S(2));
    return
end

139
140
if (length(S)==1) && isequal(S(1).type,'{}')
    us = extract(ts,S(1).subs{:});
141
142
143
    return
end

144
145
146
147
148
149
150
if (length(S)==2) && isequal(S(1).type,'{}')
    us = extract(ts,S(1).subs{:});
    us = subsref(us, S(2));
    return
end


151
152
153
154
if (length(S)==2) && isequal(S(1).subs,'save') && isequal(S(1).type,'.') && isequal(S(2).type,'()')
    us = NaN;
    save(ts,S(2).subs{:});
    return
155
156
end

157
158
159
160
161
if (length(S)==2) && isequal(S(1).subs,'set_names') && isequal(S(1).type,'.') && isequal(S(2).type,'()')
    us = set_names(ts,S(2).subs{:});
    return
end

162
163
164
165
166
if (length(S)==2) && isequal(S(1).subs,'name') && isequal(S(1).type,'.') && isequal(S(2).type,'{}')
    us = ts.name{S(2).subs{1}};
    return
end

167

168

169
170
171
172
173
%@test:1
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
174
%$ A_name = {'A1';'A2'};
175
176
177
178
179
180
181
182
183
184
185
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1(2:9);
%$
%$ % Expected results.
%$ e.data = [transpose(2:9),2*transpose(2:9)];
%$ e.nobs = 8;
%$ e.vobs = 2;
186
%$ e.name = {'A1';'A2'};
187
%$ e.freq = 1;
188
%$ e.init = dynDate(2);
189
190
191
%$
%$ % Check the results.
%$ t(1) = dyn_assert(a.data,e.data);
192
193
194
195
%$ t(2) = dyn_assert(a.nobs,e.nobs);
%$ t(3) = dyn_assert(a.vobs,e.vobs);
%$ t(4) = dyn_assert(a.freq,e.freq);
%$ t(5) = dyn_assert(a.init,e.init);
196
197
198
199
200
201
202
203
%$ T = all(t);
%@eof:1

%@test:2
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
204
%$ A_name = {'A1';'A2'};
205
206
207
208
209
210
211
212
213
214
215
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1.A1;
%$
%$ % Expected results.
%$ e.data = transpose(1:10);
%$ e.nobs = 10;
%$ e.vobs = 1;
216
%$ e.name = {'A1'};
217
%$ e.freq = 1;
218
%$ e.init = dynDate(1);
219
220
221
%$
%$ % Check the results.
%$ t(1) = dyn_assert(a.data,e.data);
222
%$ t(2) = dyn_assert(a.init,e.init);
223
224
225
226
227
228
229
230
231
232
233
%$ t(3) = dyn_assert(a.nobs,e.nobs);
%$ t(4) = dyn_assert(a.vobs,e.vobs);
%$ t(5) = dyn_assert(a.freq,e.freq);
%$ T = all(t);
%@eof:2

%@test:3
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
234
%$ A_name = {'A1';'A2'};
235
236
237
238
239
240
241
242
243
244
245
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1.log;
%$
%$ % Expected results.
%$ e.data = log(A);
%$ e.nobs = 10;
%$ e.vobs = 2;
246
%$ e.name = {'A1';'A2'};
247
%$ e.freq = 1;
248
%$ e.init = dynDate(1);
249
250
251
%$
%$ % Check the results.
%$ t(1) = dyn_assert(a.data,e.data);
252
253
254
255
%$ t(2) = dyn_assert(a.nobs,e.nobs);
%$ t(3) = dyn_assert(a.vobs,e.vobs);
%$ t(4) = dyn_assert(a.freq,e.freq);
%$ t(5) = dyn_assert(a.init,e.init);
256
257
%$ T = all(t);
%@eof:3
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

%@test:4
%$ % Create an empty dynSeries object.
%$ dataset = dynSeries();
%$
%$ t = zeros(5,1);
%$
%$ try
%$    A = dataset('dynseries_test_data.csv');
%$    t(1) = 1;
%$ catch
%$    t = 0;
%$ end
%$
%$ % Check the results.
%$ if length(t)>1
%$     t(2) = dyn_assert(A.nobs,4);
%$     t(3) = dyn_assert(A.vobs,4);
%$     t(4) = dyn_assert(A.freq,4);
%$     t(5) = dyn_assert(A.init,dynDate('1990Q1'));
%$ end
%$ T = all(t);
%@eof:4
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

%@test:5
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10),3*transpose(1:10)];
%$
%$ % Define names
%$ A_name = {'A1';'A2';'B1'};
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1{'A1','B1'};
%$
%$ % Expected results.
%$ e.data = A(:,[1,3]);
%$ e.nobs = 10;
%$ e.vobs = 2;
%$ e.name = {'A1';'B1'};
%$ e.freq = 1;
%$ e.init = dynDate(1);
%$
%$ t(1) = dyn_assert(e.data,a.data);
%$ t(2) = dyn_assert(e.nobs,a.nobs);
%$ t(3) = dyn_assert(e.vobs,a.vobs);
%$ t(4) = dyn_assert(e.name,a.name);
%$ t(5) = dyn_assert(e.init,a.init);
%$ T = all(t);
%@eof:5

%@test:6
%$ % Define a data set.
%$ A = rand(10,24);
%$
%$ % Define names
%$ A_name = {'GDP_1';'GDP_2';'GDP_3'; 'GDP_4'; 'GDP_5'; 'GDP_6'; 'GDP_7'; 'GDP_8'; 'GDP_9'; 'GDP_10'; 'GDP_11'; 'GDP_12'; 'HICP_1';'HICP_2';'HICP_3'; 'HICP_4'; 'HICP_5'; 'HICP_6'; 'HICP_7'; 'HICP_8'; 'HICP_9'; 'HICP_10'; 'HICP_11'; 'HICP_12';};
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1{'GDP_@0-9@'};
%$ b = ts1{'@A-Z@_1'};
%$
%$ % Expected results.
%$ e1.data = A(:,1:12);
%$ e1.nobs = 10;
%$ e1.vobs = 12;
%$ e1.name = {'GDP_1';'GDP_2';'GDP_3'; 'GDP_4'; 'GDP_5'; 'GDP_6'; 'GDP_7'; 'GDP_8'; 'GDP_9'; 'GDP_10'; 'GDP_11'; 'GDP_12'};
%$ e1.freq = 1;
%$ e1.init = dynDate(1);
%$ e2.data = A(:,[1, 13]);
%$ e2.nobs = 10;
%$ e2.vobs = 2;
%$ e2.name = {'GDP_1';'HICP_1'};
%$ e2.freq = 1;
%$ e2.init = dynDate(1);
%$
%$ % Check results.
%$ t(1) = dyn_assert(e1.data,a.data);
%$ t(2) = dyn_assert(e1.nobs,a.nobs);
%$ t(3) = dyn_assert(e1.vobs,a.vobs);
%$ t(4) = dyn_assert(e1.name,a.name);
%$ t(5) = dyn_assert(e1.init,a.init);
%$ t(6) = dyn_assert(e2.data,b.data);
%$ t(7) = dyn_assert(e2.nobs,b.nobs);
%$ t(8) = dyn_assert(e2.vobs,b.vobs);
%$ t(9) = dyn_assert(e2.name,b.name);
%$ t(10) = dyn_assert(e2.init,b.init);
%$ T = all(t);
%@eof:6

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
%@test:7
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
%$ A_name = {'A1';'A2'};
%$
%$ % Instantiate a time series object.
%$ try
%$    ts1 = dynSeries(A,[],A_name,[]);
%$    ts1.save;
%$    t = 1;
%$ catch
%$    t = 0;
%$ end
%$
%$ T = all(t);
%@eof:7

%@test:8
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
%$ A_name = {'A1';'A2'};
%$
%$ % Instantiate a time series object.
%$ try
%$    ts1 = dynSeries(A,[],A_name,[]);
%$    ts1.save('test_generated_data_file','m');
%$    t = 1;
%$ catch
%$    t = 0;
%$ end
%$
%$ T = all(t);
%@eof:8
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

%@test:9
%$ % Define a data set.
%$ A = [transpose(1:60),2*transpose(1:60),3*transpose(1:60)];
%$
%$ % Define names
%$ A_name = {'A1';'A2';'B1'};
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,'1971Q1',A_name,[]);
%$
%$ % Define the range of a subsample.
%$ range = dynDate('1971Q2'):dynDate('1971Q4');
%$ % Call the tested method.
%$ a = ts1(range);
%$
%$ % Expected results.
%$ e.data = A(2:4,:);
%$ e.nobs = 3;
%$ e.vobs = 3;
%$ e.name = {'A1';'A2';'B1'};
%$ e.freq = 4;
%$ e.init = dynDate('1971Q2');
%$
%$ t(1) = dyn_assert(e.data,a.data);
%$ t(2) = dyn_assert(e.nobs,a.nobs);
%$ t(3) = dyn_assert(e.vobs,a.vobs);
%$ t(4) = dyn_assert(e.name,a.name);
%$ t(5) = dyn_assert(e.init,a.init);
%$ T = all(t);
%@eof:9