sequential_importance_particle_filter.m 5.29 KB
Newer Older
1
2
3
4
5
6
7
function [LIK,lik] = sequential_importance_particle_filter(ReducedForm,Y,start,DynareOptions)
% Evaluates the likelihood of a nonlinear model with a particle filter (optionally with resampling).

%@info:
%! @deftypefn {Function File} {@var{y}, @var{y_} =} sequential_importance_particle_filter (@var{ReducedForm},@var{Y}, @var{start}, @var{DynareOptions})
%! @anchor{particle/sequential_importance_particle_filter}
%! @sp 1
8
%! Evaluates the likelihood of a nonlinear model with a particle filter (optionally with resampling).
9
10
11
12
13
14
15
16
%!
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item ReducedForm
%! Structure describing the state space model (built in @ref{non_linear_dsge_likelihood}).
%! @item Y
17
%! p*smpl matrix of doubles (p is the number of observed variables), the (detrended) data.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
%! @item start
%! Integer scalar, likelihood evaluation starts at observation 'start'.
%! @item DynareOptions
%! Structure specifying Dynare's options.
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item LIK
%! double scalar, value of (minus) the logged likelihood.
%! @item lik
%! smpl*1 vector of doubles, density of the observations at each period.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @ref{non_linear_dsge_likelihood}
%! @sp 2
%! @strong{This function calls:}
%!
%! @end deftypefn
%@eod:

41
% Copyright (C) 2011, 2012 Dynare Team
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR(S) frederic DOT karame AT univ DASH evry DOT fr
59
%           stephane DOT adjemian AT univ DASH lemans DOT fr
60

61
62
persistent init_flag
persistent mf0 mf1
63
64
65
66
67
68
69
70
71
72
73
74
75
persistent number_of_particles
persistent sample_size number_of_observed_variables number_of_structural_innovations

% Set default value for start
if isempty(start)
    start = 1;
end

% Get steady state and mean.
steadystate = ReducedForm.steadystate;
constant = ReducedForm.constant;
state_variables_steady_state = ReducedForm.state_variables_steady_state;

76
% Set persistent variables (if needed).
77
78
79
80
81
if isempty(init_flag)
    mf0 = ReducedForm.mf0;
    mf1 = ReducedForm.mf1;
    sample_size = size(Y,2);
    number_of_observed_variables = length(mf1);
82
    number_of_structural_innovations = length(ReducedForm.Q);
83
84
85
86
87
88
89
90
91
92
93
94
95
    number_of_particles = DynareOptions.particle.number_of_particles;
    init_flag = 1;
end

% Set local state space model (first order approximation).
ghx  = ReducedForm.ghx;
ghu  = ReducedForm.ghu;

% Set local state space model (second order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;

96
% Get covariance matrices.
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
Q = ReducedForm.Q;
H = ReducedForm.H;
if isempty(H)
    H = 0;
end

% Get initial condition for the state vector.
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = reduced_rank_cholesky(ReducedForm.StateVectorVariance)';
state_variance_rank = size(StateVectorVarianceSquareRoot,2);
Q_lower_triangular_cholesky = chol(Q)';

% Set seed for randn().
stream=RandStream('mt19937ar','Seed',1);
RandStream.setDefaultStream(stream);

% Initialization of the likelihood.
114
const_lik = log(2*pi)*number_of_observed_variables;
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
lik  = NaN(sample_size,1);

% Initialization of the weights across particles.
nb_obs_resamp = 0 ;
weights = ones(1,number_of_particles) ;
StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean);
for t=1:sample_size
    yhat = bsxfun(@minus,StateVectors,state_variables_steady_state);
    epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,number_of_particles);
    tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu);
    PredictedObservedMean = mean(tmp(mf1,:),2);
    PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
    dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean);
    PredictedObservedVariance = (dPredictedObservedMean*dPredictedObservedMean')/number_of_particles+H;
    lnw = -.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1));
    dfac = max(lnw);
    wtilde = weights.*exp(lnw-dfac);
    lik(t) = log(mean(wtilde))+dfac;
    weights = wtilde/sum(wtilde);
    Neff = 1/(weights*weights');
135
    if (Neff<.5*sample_size && strcmpi(DynareOptions.particle.resampling.status,'generic')) || strcmpi(DynareOptions.particle.resampling.status,'systematic')
136
        nb_obs_resamp = nb_obs_resamp+1 ;
137
        StateVectors = tmp(mf0,resample(weights,DynareOptions.particle.resampling.method1,DynareOptions.particle.resampling.method2));
138
        weights = ones(1,number_of_particles) ;
139
    elseif strcmpi(DynareOptions.particle_filter.resampling.status,'none')
140
        StateVectors = tmp(mf0,:);
141
        weights = number_of_particles*weights;
142
143
144
145
    end
end

LIK = -sum(lik(start:end));