subsref.m 9.76 KB
Newer Older
Stéphane Adjemian's avatar
Stéphane Adjemian committed
1
2
3
function us = subsref(ts, S)
%@info:
%! @deftypefn {Function File} {@var{us} =} subsref (@var{ts},S)
Stéphane Adjemian's avatar
Stéphane Adjemian committed
4
%! @anchor{@dynSeries/subsref}
Stéphane Adjemian's avatar
Stéphane Adjemian committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
%! @sp 1
%! Overloads the subsref method for the Dynare time series class (@ref{dynSeries}).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item ts
%! Dynare time series object instantiated by @ref{dynSeries}.
%! @item S
%! Matlab's structure array S with two fields, type and subs. The type field is string containing '()', '@{@}', or '.', where '()' specifies
%! integer subscripts, '@{@}' specifies cell array subscripts, and '.' specifies subscripted structure fields. The subs field is a cell array
%! or a string containing the actual subscripts (see matlab's documentation).
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item us
%! Dynare time series object. Depending on the calling sequence @var{us} is a transformation of @var{ts} obtained by applying a public method on @var{ts},
%! or a dynSeries object built by extracting a variable from @var{ts}, or a dynSeries object containing a subsample of the all the variable in @var{ts}.
%! @end table
%! @sp 2
%! @strong{Example 1.} Let @var{ts} be a dynSeries object containing three variables named 'A1', 'A2' and 'A3'. Then the following syntax:
%! @example
%!   us = ts.A1;
%! @end example
%!will create a new dynSeries object @var{us} containing the variable 'A1'.
%! @sp 1
%! @strong{Example 2.} Let @var{ts} be a dynSeries object. Then the following syntax:
%! @example
%!   us = ts.log;
%! @end example
%!will create a new dynSeries object @var{us} containing all the variables of @var{ts} transformed by the neperian logarithm.
%! @sp 1
%! @strong{Example 3.} Let @var{ts} be a dynSeries object. The following syntax:
%! @example
%!   us = ts(3:50);
%! @end example
%!will create a new dynSeries object @var{us} by selecting a subsample out of @var{ts}.
%! @end deftypefn
%@eod:

Stéphane Adjemian's avatar
Stéphane Adjemian committed
47
% Copyright (C) 2011, 2012 Dynare Team
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR(S) stephane DOT adjemian AT univ DASH lemans DOT fr

66
if length(S)==1 && isequal(S.type,'.')
Stéphane Adjemian's avatar
Stéphane Adjemian committed
67
    switch S.subs
68
      case {'data','nobs','vobs','name','tex','freq','time','init'}        % Public members.
Stéphane Adjemian's avatar
Stéphane Adjemian committed
69
70
71
        us = builtin('subsref', ts, S);
      case {'log','exp'}                                                   % Give "dot access" to public methods.
        us = feval(S.subs,ts);
72
73
74
      case {'save'}
        us = NaN;
        save(ts);
Stéphane Adjemian's avatar
Stéphane Adjemian committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
      otherwise                                                            % Extract a sub-object by selecting one variable.
        ndx = strmatch(S.subs,ts.name);
        if ~isempty(ndx)
            us = dynSeries();
            us.data = ts.data(:,ndx);
            us.name = deblank(ts.name(ndx,:));
            us.tex  = deblank(ts.tex(ndx,:));
            us.nobs = ts.nobs;
            us.vobs = 1;
            us.freq = ts.freq;
            us.init = ts.init;
            return
        else
            error('dynSeries::subsref: Unknown public method, public member or variable!')
89
90
        end
    end
Stéphane Adjemian's avatar
Stéphane Adjemian committed
91
92
    return
end
93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
if length(S)==1 && isequal(S.type,'()')
    if ischar(S.subs{1})
        us = dynSeries(S.subs{1});
    else
        % Extract a sub-object by selecting a sub-sample.
        if size(ts.data,2)>1
            S.subs = [S.subs, ':'];
        end
        us.data = builtin('subsref', ts.data, S);
        us.nobs = size(us.data,1);
        us.vobs = ts.vobs;
        us.freq = ts.freq;
        us.time = builtin('subsref', ts.time, S);
        us.init = ts.init+S.subs{1}(1);
        us.name = ts.name;
        us.tex  = ts.tex;
        return
111
    end
Stéphane Adjemian's avatar
Stéphane Adjemian committed
112
end
113

114
115
116
if (length(S)==2) && (isequal(S(1).subs,'init'))
    if isequal(S(2).type,'.') && ( isequal(S(2).subs,'freq') || isequal(S(2).subs,'time') )
        us = builtin('subsref', ts.init, S(2));
117
118
119
    else
        error('dynSeries:subsref:: I don''t understand what you are trying to do!')
    end
120
121
122
123
124
    return
end

if (length(S)==1) && isequal(S(1).type,'{}')
    us = extract(ts,S(1).subs{:});
125
126
127
128
129
130
131
    return
end

if (length(S)==2) && isequal(S(1).subs,'save') && isequal(S(1).type,'.') && isequal(S(2).type,'()')
    us = NaN;
    save(ts,S(2).subs{:});
    return
132
133
end

134
135
136
137
138
if (length(S)==2) && isequal(S(1).subs,'set_names') && isequal(S(1).type,'.') && isequal(S(2).type,'()')
    us = set_names(ts,S(2).subs{:});
    return
end

139
140
141
142
143
if (length(S)==2) && isequal(S(1).subs,'name') && isequal(S(1).type,'.') && isequal(S(2).type,'{}')
    us = ts.name{S(2).subs{1}};
    return
end

144

145

146
147
148
149
150
%@test:1
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
151
%$ A_name = {'A1';'A2'};
152
153
154
155
156
157
158
159
160
161
162
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1(2:9);
%$
%$ % Expected results.
%$ e.data = [transpose(2:9),2*transpose(2:9)];
%$ e.nobs = 8;
%$ e.vobs = 2;
163
%$ e.name = {'A1';'A2'};
164
%$ e.freq = 1;
165
%$ e.init = dynDate(2);
166
167
168
%$
%$ % Check the results.
%$ t(1) = dyn_assert(a.data,e.data);
169
170
171
172
%$ t(2) = dyn_assert(a.nobs,e.nobs);
%$ t(3) = dyn_assert(a.vobs,e.vobs);
%$ t(4) = dyn_assert(a.freq,e.freq);
%$ t(5) = dyn_assert(a.init,e.init);
173
174
175
176
177
178
179
180
%$ T = all(t);
%@eof:1

%@test:2
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
181
%$ A_name = {'A1';'A2'};
182
183
184
185
186
187
188
189
190
191
192
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1.A1;
%$
%$ % Expected results.
%$ e.data = transpose(1:10);
%$ e.nobs = 10;
%$ e.vobs = 1;
193
%$ e.name = {'A1'};
194
%$ e.freq = 1;
195
%$ e.init = dynDate(1);
196
197
198
%$
%$ % Check the results.
%$ t(1) = dyn_assert(a.data,e.data);
199
%$ t(2) = dyn_assert(a.init,e.init);
200
201
202
203
204
205
206
207
208
209
210
%$ t(3) = dyn_assert(a.nobs,e.nobs);
%$ t(4) = dyn_assert(a.vobs,e.vobs);
%$ t(5) = dyn_assert(a.freq,e.freq);
%$ T = all(t);
%@eof:2

%@test:3
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
211
%$ A_name = {'A1';'A2'};
212
213
214
215
216
217
218
219
220
221
222
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1.log;
%$
%$ % Expected results.
%$ e.data = log(A);
%$ e.nobs = 10;
%$ e.vobs = 2;
223
%$ e.name = {'A1';'A2'};
224
%$ e.freq = 1;
225
%$ e.init = dynDate(1);
226
227
228
%$
%$ % Check the results.
%$ t(1) = dyn_assert(a.data,e.data);
229
230
231
232
%$ t(2) = dyn_assert(a.nobs,e.nobs);
%$ t(3) = dyn_assert(a.vobs,e.vobs);
%$ t(4) = dyn_assert(a.freq,e.freq);
%$ t(5) = dyn_assert(a.init,e.init);
233
234
%$ T = all(t);
%@eof:3
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

%@test:4
%$ % Create an empty dynSeries object.
%$ dataset = dynSeries();
%$
%$ t = zeros(5,1);
%$
%$ try
%$    A = dataset('dynseries_test_data.csv');
%$    t(1) = 1;
%$ catch
%$    t = 0;
%$ end
%$
%$ % Check the results.
%$ if length(t)>1
%$     t(2) = dyn_assert(A.nobs,4);
%$     t(3) = dyn_assert(A.vobs,4);
%$     t(4) = dyn_assert(A.freq,4);
%$     t(5) = dyn_assert(A.init,dynDate('1990Q1'));
%$ end
%$ T = all(t);
%@eof:4
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

%@test:5
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10),3*transpose(1:10)];
%$
%$ % Define names
%$ A_name = {'A1';'A2';'B1'};
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1{'A1','B1'};
%$
%$ % Expected results.
%$ e.data = A(:,[1,3]);
%$ e.nobs = 10;
%$ e.vobs = 2;
%$ e.name = {'A1';'B1'};
%$ e.freq = 1;
%$ e.init = dynDate(1);
%$
%$ t(1) = dyn_assert(e.data,a.data);
%$ t(2) = dyn_assert(e.nobs,a.nobs);
%$ t(3) = dyn_assert(e.vobs,a.vobs);
%$ t(4) = dyn_assert(e.name,a.name);
%$ t(5) = dyn_assert(e.init,a.init);
%$ T = all(t);
%@eof:5

%@test:6
%$ % Define a data set.
%$ A = rand(10,24);
%$
%$ % Define names
%$ A_name = {'GDP_1';'GDP_2';'GDP_3'; 'GDP_4'; 'GDP_5'; 'GDP_6'; 'GDP_7'; 'GDP_8'; 'GDP_9'; 'GDP_10'; 'GDP_11'; 'GDP_12'; 'HICP_1';'HICP_2';'HICP_3'; 'HICP_4'; 'HICP_5'; 'HICP_6'; 'HICP_7'; 'HICP_8'; 'HICP_9'; 'HICP_10'; 'HICP_11'; 'HICP_12';};
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1{'GDP_@0-9@'};
%$ b = ts1{'@A-Z@_1'};
%$
%$ % Expected results.
%$ e1.data = A(:,1:12);
%$ e1.nobs = 10;
%$ e1.vobs = 12;
%$ e1.name = {'GDP_1';'GDP_2';'GDP_3'; 'GDP_4'; 'GDP_5'; 'GDP_6'; 'GDP_7'; 'GDP_8'; 'GDP_9'; 'GDP_10'; 'GDP_11'; 'GDP_12'};
%$ e1.freq = 1;
%$ e1.init = dynDate(1);
%$ e2.data = A(:,[1, 13]);
%$ e2.nobs = 10;
%$ e2.vobs = 2;
%$ e2.name = {'GDP_1';'HICP_1'};
%$ e2.freq = 1;
%$ e2.init = dynDate(1);
%$
%$ % Check results.
%$ t(1) = dyn_assert(e1.data,a.data);
%$ t(2) = dyn_assert(e1.nobs,a.nobs);
%$ t(3) = dyn_assert(e1.vobs,a.vobs);
%$ t(4) = dyn_assert(e1.name,a.name);
%$ t(5) = dyn_assert(e1.init,a.init);
%$ t(6) = dyn_assert(e2.data,b.data);
%$ t(7) = dyn_assert(e2.nobs,b.nobs);
%$ t(8) = dyn_assert(e2.vobs,b.vobs);
%$ t(9) = dyn_assert(e2.name,b.name);
%$ t(10) = dyn_assert(e2.init,b.init);
%$ T = all(t);
%@eof:6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
%@test:7
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
%$ A_name = {'A1';'A2'};
%$
%$ % Instantiate a time series object.
%$ try
%$    ts1 = dynSeries(A,[],A_name,[]);
%$    ts1.save;
%$    t = 1;
%$ catch
%$    t = 0;
%$ end
%$
%$ T = all(t);
%@eof:7

%@test:8
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
%$ A_name = {'A1';'A2'};
%$
%$ % Instantiate a time series object.
%$ try
%$    ts1 = dynSeries(A,[],A_name,[]);
%$    ts1.save('test_generated_data_file','m');
%$    t = 1;
%$ catch
%$    t = 0;
%$ end
%$
%$ T = all(t);
%@eof:8