StaticModel.cc 64.2 KB
Newer Older
sebastien's avatar
sebastien committed
1
/*
2
 * Copyright (C) 2003-2010 Dynare Team
sebastien's avatar
sebastien committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
21
#include <iostream>
#include <cmath>
22
#include <cstdlib>
23
#include <cassert>
24
25
#include <cstdio>
#include <cerrno>
sebastien's avatar
sebastien committed
26
#include <algorithm>
27
28
29
30
31
32
33
34
35
#include "StaticModel.hh"

// For mkdir() and chdir()
#ifdef _WIN32
# include <direct.h>
#else
# include <unistd.h>
# include <sys/stat.h>
# include <sys/types.h>
36
#endif
sebastien's avatar
sebastien committed
37

38
StaticModel::StaticModel(SymbolTable &symbol_table_arg,
39
40
41
                         NumericalConstants &num_constants_arg,
                         ExternalFunctionsTable &external_functions_table_arg) :
  ModelTree(symbol_table_arg, num_constants_arg, external_functions_table_arg),
42
43
44
  global_temporary_terms(true),
  cutoff(1e-15),
  mfs(0)
45
46
{
}
47

48
void
49
StaticModel::compileDerivative(ofstream &code_file, unsigned int &instruction_number, int eq, int symb_id, map_idx_t &map_idx, temporary_terms_t temporary_terms) const
50
{
51
  first_derivatives_t::const_iterator it = first_derivatives.find(make_pair(eq, symbol_table.getID(eEndogenous, symb_id)));
52
  if (it != first_derivatives.end())
53
    (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
54
55
56
  else
    {
      FLDZ_ fldz;
57
      fldz.write(code_file, instruction_number);
58
59
    }
}
sebastien's avatar
sebastien committed
60

61
void
62
StaticModel::compileChainRuleDerivative(ofstream &code_file, unsigned int &instruction_number, int eqr, int varr, int lag, map_idx_t &map_idx, temporary_terms_t temporary_terms) const
63
{
64
  map<pair<int, pair<int, int> >, expr_t>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
65
  if (it != first_chain_rule_derivatives.end())
66
    (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
67
68
69
  else
    {
      FLDZ_ fldz;
70
      fldz.write(code_file, instruction_number);
71
72
73
    }
}

74
75
76
77
78
79
80
81
82
83
void
StaticModel::initializeVariablesAndEquations()
{
  for(int j = 0; j < equation_number(); j++)
    {
      equation_reordered.push_back(j);
      variable_reordered.push_back(j);
    }
}

84
85
86
void
StaticModel::computeTemporaryTermsOrdered()
{
87
88
  map<expr_t, pair<int, int> > first_occurence;
  map<expr_t, int> reference_count;
89
  BinaryOpNode *eq_node;
90
91
  first_derivatives_t::const_iterator it;
  first_chain_rule_derivatives_t::const_iterator it_chr;
92
93
94
95
96
  ostringstream tmp_s;
  v_temporary_terms.clear();
  map_idx.clear();

  unsigned int nb_blocks = getNbBlocks();
97
  v_temporary_terms = vector< vector<temporary_terms_t> >(nb_blocks);
98
  v_temporary_terms_local = vector< vector<temporary_terms_t> >(nb_blocks);
99

100
  v_temporary_terms_inuse = vector<temporary_terms_inuse_t>(nb_blocks);
101

102
103
  map_idx2 = vector<map_idx_t>(nb_blocks);

104
  temporary_terms.clear();
105
106
107

  //local temporay terms
  for (unsigned int block = 0; block < nb_blocks; block++)
108
    {
109
110
111
112
113
114
      map<expr_t, int> reference_count_local;
      reference_count_local.clear();
      map<expr_t, pair<int, int> > first_occurence_local;
      first_occurence_local.clear();
      temporary_terms_t temporary_terms_l;
      temporary_terms_l.clear();
115

116
117
118
119
120
121
122
123
124
125
      unsigned int block_size = getBlockSize(block);
      unsigned int block_nb_mfs = getBlockMfs(block);
      unsigned int block_nb_recursives = block_size - block_nb_mfs;
      v_temporary_terms_local[block] = vector<temporary_terms_t>(block_size);

      for (unsigned int i = 0; i < block_size; i++)
        {
          if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
            getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count_local, temporary_terms_l, first_occurence_local, block, v_temporary_terms_local,  i);
          else
126
            {
127
128
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              eq_node->computeTemporaryTerms(reference_count_local, temporary_terms_l, first_occurence_local, block, v_temporary_terms_local,  i);
129
130
            }
        }
131
132
133
134
135
136
137
138
139
      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
        {
          expr_t id = it->second.second;
          id->computeTemporaryTerms(reference_count_local, temporary_terms_l, first_occurence_local, block, v_temporary_terms_local,  block_size-1);
        }
      set<int> temporary_terms_in_use;
      temporary_terms_in_use.clear();
      v_temporary_terms_inuse[block] = temporary_terms_in_use;
      computeTemporaryTermsMapping(temporary_terms_l, map_idx2[block]);
140
    }
141
142
143

  // global temporay terms
  for (unsigned int block = 0; block < nb_blocks; block++)
144
    {
145
146
147
148
149
150
      // Compute the temporary terms reordered
      unsigned int block_size = getBlockSize(block);
      unsigned int block_nb_mfs = getBlockMfs(block);
      unsigned int block_nb_recursives = block_size - block_nb_mfs;
      v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
      for (unsigned int i = 0; i < block_size; i++)
151
        {
152
153
154
          if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
            getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
          else
155
            {
156
157
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, i);
158
159
            }
        }
160
      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
161
        {
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
          expr_t id = it->second.second;
          id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
        }
    }

  for (unsigned int block = 0; block < nb_blocks; block++)
    {
      // Collecte the temporary terms reordered
      unsigned int block_size = getBlockSize(block);
      unsigned int block_nb_mfs = getBlockMfs(block);
      unsigned int block_nb_recursives = block_size - block_nb_mfs;
      set<int> temporary_terms_in_use;
      for (unsigned int i = 0; i < block_size; i++)
        {
          if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
            getBlockEquationRenormalizedExpr(block, i)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
          else
179
            {
180
181
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              eq_node->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
182
183
            }
        }
184
185
186
187
188
189
190
191
192
193
      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
        {
          expr_t id = it->second.second;
          id->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
        }
      for (int i = 0; i < (int) getBlockSize(block); i++)
        for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
             it != v_temporary_terms[block][i].end(); it++)
          (*it)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
      v_temporary_terms_inuse[block] = temporary_terms_in_use;
194
    }
195
  computeTemporaryTermsMapping(temporary_terms, map_idx);
196
197
198
}

void
199
StaticModel::computeTemporaryTermsMapping(temporary_terms_t &temporary_terms, map_idx_t &map_idx)
200
{
201
  // Add a mapping form node ID to temporary terms order
202
  int j = 0;
203
  for (temporary_terms_t::const_iterator it = temporary_terms.begin();
204
      it != temporary_terms.end(); it++)
205
    map_idx[(*it)->idx] = j++;
206
207
208
209
}

void
StaticModel::writeModelEquationsOrdered_M(const string &static_basename) const
210
211
212
{
  string tmp_s, sps;
  ostringstream tmp_output, tmp1_output, global_output;
213
  expr_t lhs = NULL, rhs = NULL;
214
  BinaryOpNode *eq_node;
215
  map<expr_t, int> reference_count;
216
  temporary_terms_t local_temporary_terms;
217
218
219
  ofstream  output;
  int nze;
  vector<int> feedback_variables;
220
  deriv_node_temp_terms_t tef_terms;
221
  ExprNodeOutputType local_output_type;
222

Sébastien Villemot's avatar
Sébastien Villemot committed
223
  local_output_type = oMatlabStaticModelSparse;
224
  if (global_temporary_terms)
Sébastien Villemot's avatar
Sébastien Villemot committed
225
    local_temporary_terms = temporary_terms;
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

  //----------------------------------------------------------------------
  //For each block
  for (unsigned int block = 0; block < getNbBlocks(); block++)
    {
      //recursive_variables.clear();
      feedback_variables.clear();
      //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
      nze = derivative_endo[block].size();
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      unsigned int block_size = getBlockSize(block);
      unsigned int block_mfs = getBlockMfs(block);
      unsigned int block_recursive = block_size - block_mfs;

      tmp1_output.str("");
      tmp1_output << static_basename << "_" << block+1 << ".m";
      output.open(tmp1_output.str().c_str(), ios::out | ios::binary);
      output << "%\n";
      output << "% " << tmp1_output.str() << " : Computes static model for Dynare\n";
      output << "%\n";
      output << "% Warning : this file is generated automatically by Dynare\n";
      output << "%           from model file (.mod)\n\n";
      output << "%/\n";
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        output << "function y = " << static_basename << "_" << block+1 << "(y, x, params)\n";
      else
        output << "function [residual, y, g1] = " << static_basename << "_" << block+1 << "(y, x, params)\n";

      BlockType block_type;
      if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
        block_type = SIMULTANS;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) < prologue)
        block_type = PROLOGUE;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) >= equations.size() - epilogue)
        block_type = EPILOGUE;
      else
        block_type = SIMULTANS;
      output << "  % ////////////////////////////////////////////////////////////////////////" << endl
             << "  % //" << string("                     Block ").substr(int (log10(block + 1))) << block + 1 << " " << BlockType0(block_type)
             << "          //" << endl
             << "  % //                     Simulation type "
             << BlockSim(simulation_type) << "  //" << endl
             << "  % ////////////////////////////////////////////////////////////////////////" << endl;
      output << "  global options_;" << endl;
      //The Temporary terms
      if (simulation_type != EVALUATE_BACKWARD  && simulation_type != EVALUATE_FORWARD)
276
        output << " g1 = spalloc("  << block_mfs << ", " << block_mfs << ", " << derivative_endo[block].size() << ");" << endl;
277
278
279
280

      if (v_temporary_terms_inuse[block].size())
        {
          tmp_output.str("");
281
          for (temporary_terms_inuse_t::const_iterator it = v_temporary_terms_inuse[block].begin();
282
283
284
285
286
287
288
289
290
291
292
293
294
               it != v_temporary_terms_inuse[block].end(); it++)
            tmp_output << " T" << *it;
          output << "  global" << tmp_output.str() << ";\n";
        }

      if (simulation_type != EVALUATE_BACKWARD && simulation_type != EVALUATE_FORWARD)
        output << "  residual=zeros(" << block_mfs << ",1);\n";

      // The equations
      for (unsigned int i = 0; i < block_size; i++)
        {
          if (!global_temporary_terms)
            local_temporary_terms = v_temporary_terms[block][i];
295
          temporary_terms_t tt2;
296
297
298
299
          tt2.clear();
          if (v_temporary_terms[block].size())
            {
              output << "  " << "% //Temporary variables" << endl;
300
              for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
301
302
                   it != v_temporary_terms[block][i].end(); it++)
                {
303
304
305
                  if (dynamic_cast<ExternalFunctionNode *>(*it) != NULL)
                    (*it)->writeExternalFunctionOutput(output, local_output_type, tt2, tef_terms);

306
                  output << "  " <<  sps;
307
                  (*it)->writeOutput(output, local_output_type, local_temporary_terms, tef_terms);
308
                  output << " = ";
309
                  (*it)->writeOutput(output, local_output_type, tt2, tef_terms);
310
311
312
313
314
315
316
317
318
319
                  // Insert current node into tt2
                  tt2.insert(*it);
                  output << ";" << endl;
                }
            }

          int variable_ID = getBlockVariableID(block, i);
          int equation_ID = getBlockEquationID(block, i);
          EquationType equ_type = getBlockEquationType(block, i);
          string sModel = symbol_table.getName(symbol_table.getID(eEndogenous, variable_ID));
320
          eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
          lhs = eq_node->get_arg1();
          rhs = eq_node->get_arg2();
          tmp_output.str("");
          lhs->writeOutput(tmp_output, local_output_type, local_temporary_terms);
          switch (simulation_type)
            {
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
            evaluation:
              output << "  % equation " << getBlockEquationID(block, i)+1 << " variable : " << sModel
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
              output << "  ";
              if (equ_type == E_EVALUATE)
                {
                  output << tmp_output.str();
                  output << " = ";
                  rhs->writeOutput(output, local_output_type, local_temporary_terms);
                }
              else if (equ_type == E_EVALUATE_S)
                {
                  output << "%" << tmp_output.str();
                  output << " = ";
                  if (isBlockEquationRenormalized(block, i))
                    {
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << "\n  ";
                      tmp_output.str("");
348
                      eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
                      lhs = eq_node->get_arg1();
                      rhs = eq_node->get_arg2();
                      lhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << " = ";
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                    }
                }
              else
                {
                  cerr << "Type missmatch for equation " << equation_ID+1  << "\n";
                  exit(EXIT_FAILURE);
                }
              output << ";\n";
              break;
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < block_recursive)
                goto evaluation;
              feedback_variables.push_back(variable_ID);
              output << "  % equation " << equation_ID+1 << " variable : " << sModel
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
              output << "  " << "residual(" << i+1-block_recursive << ") = (";
              goto end;
            default:
            end:
              output << tmp_output.str();
              output << ") - (";
              rhs->writeOutput(output, local_output_type, local_temporary_terms);
              output << ");\n";
            }
        }
      // The Jacobian if we have to solve the block
      if (simulation_type == SOLVE_BACKWARD_SIMPLE   || simulation_type == SOLVE_FORWARD_SIMPLE
          || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
        output << "  " << sps << "% Jacobian  " << endl;
      switch (simulation_type)
        {
        case SOLVE_BACKWARD_SIMPLE:
        case SOLVE_FORWARD_SIMPLE:
        case SOLVE_BACKWARD_COMPLETE:
        case SOLVE_FORWARD_COMPLETE:
392
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
393
394
395
396
397
            {
              unsigned int eq = it->first.first;
              unsigned int var = it->first.second;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
398
              expr_t id = it->second.second;
399
400
401
402
403
404
405
406
407
408
409
              output << "    g1(" << eq+1-block_recursive << ", " << var+1-block_recursive << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms);
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                     << "(" << 0
                     << ") " << varr+1
                     << ", equation=" << eqr+1 << endl;
            }
          break;
        default:
          break;
        }
410
      writePowerDeriv(output, false);
411
412
413
      output.close();
    }
}
414
415

void
416
StaticModel::writeModelEquationsCode(const string file_name, const string bin_basename, map_idx_t map_idx) const
417
418
419
420
{

  ostringstream tmp_output;
  ofstream code_file;
421
  unsigned int instruction_number = 0;
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
  bool file_open = false;

  string main_name = file_name;
  main_name += ".cod";
  code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
  if (!code_file.is_open())
    {
      cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
      exit(EXIT_FAILURE);
    }
  int count_u;
  int u_count_int = 0;

  Write_Inf_To_Bin_File(file_name, u_count_int, file_open, false, symbol_table.endo_nbr());
  file_open = true;

  //Temporary variables declaration
439
440
  FDIMST_ fdimst(temporary_terms.size());
  fdimst.write(code_file, instruction_number);
441
442
443
444
445
446
447
448
449
450
  FBEGINBLOCK_ fbeginblock(symbol_table.endo_nbr(),
                           SOLVE_FORWARD_COMPLETE,
                           0,
                           symbol_table.endo_nbr(),
                           variable_reordered,
                           equation_reordered,
                           false,
                           symbol_table.endo_nbr(),
                           0,
                           0,
451
452
                           u_count_int,
                           symbol_table.endo_nbr()
453
                           );
454
  fbeginblock.write(code_file, instruction_number);
455
456
457

  // Add a mapping form node ID to temporary terms order
  int j = 0;
458
  for (temporary_terms_t::const_iterator it = temporary_terms.begin();
459
460
       it != temporary_terms.end(); it++)
    map_idx[(*it)->idx] = j++;
461
  compileTemporaryTerms(code_file, instruction_number, temporary_terms, map_idx, false, false);
462

463
  compileModelEquations(code_file, instruction_number, temporary_terms, map_idx, false, false);
464
465

  FENDEQU_ fendequ;
466
  fendequ.write(code_file, instruction_number);
467

468
469
470
471
472
473
  // Get the current code_file position and jump if eval = true
  streampos pos1 = code_file.tellp();
  FJMPIFEVAL_ fjmp_if_eval(0);
  fjmp_if_eval.write(code_file, instruction_number);
  int prev_instruction_number = instruction_number;

474
475
476
  vector<vector<pair<int, int> > > derivatives;
  derivatives.resize(symbol_table.endo_nbr());
  count_u = symbol_table.endo_nbr();
477
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
478
479
480
481
482
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
483
          expr_t d1 = it->second;
484
485
486
          unsigned int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          unsigned int var = symbol_table.getTypeSpecificID(symb);
487
          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var);
488
          fnumexpr.write(code_file, instruction_number);
489
490
491
492
          if (!derivatives[eq].size())
            derivatives[eq].clear();
          derivatives[eq].push_back(make_pair(var, count_u));

493
          d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
494
495

          FSTPSU_ fstpsu(count_u);
496
          fstpsu.write(code_file, instruction_number);
497
498
499
500
501
502
          count_u++;
        }
    }
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
    {
      FLDR_ fldr(i);
503
      fldr.write(code_file, instruction_number);
504
      if (derivatives[i].size())
505
        {
506
507
          for(vector<pair<int, int> >::const_iterator it = derivatives[i].begin();
              it != derivatives[i].end(); it++)
508
            {
509
510
511
512
513
              FLDSU_ fldsu(it->second);
              fldsu.write(code_file, instruction_number);
              FLDSV_ fldsv(eEndogenous, it->first);
              fldsv.write(code_file, instruction_number);
              FBINARY_ fbinary(oTimes);
514
              fbinary.write(code_file, instruction_number);
515
516
517
518
519
              if (it != derivatives[i].begin())
                {
                  FBINARY_ fbinary(oPlus);
                  fbinary.write(code_file, instruction_number);
                }
520
            }
521
522
          FBINARY_ fbinary(oMinus);
          fbinary.write(code_file, instruction_number);
523
524
        }
      FSTPSU_ fstpsu(i);
525
      fstpsu.write(code_file, instruction_number);
526
    }
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
  // Get the current code_file position and jump = true
  streampos pos2 = code_file.tellp();
  FJMP_ fjmp(0);
  fjmp.write(code_file, instruction_number);
  // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
  streampos pos3 = code_file.tellp();
  code_file.seekp(pos1);
  FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
  fjmp_if_eval1.write(code_file, instruction_number);
  code_file.seekp(pos3);
  prev_instruction_number = instruction_number ;

  temporary_terms_t tt2;
  tt2.clear();
  temporary_terms_t tt3;
  tt3.clear();

  // The Jacobian if we have to solve the block determinsitic bloc
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
          expr_t d1 = it->second;
          unsigned int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          unsigned int var = symbol_table.getTypeSpecificID(symb);
          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var);
          fnumexpr.write(code_file, instruction_number);
          if (!derivatives[eq].size())
            derivatives[eq].clear();
          derivatives[eq].push_back(make_pair(var, count_u));

          d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
          FSTPG2_ fstpg2(eq,var);
          fstpg2.write(code_file, instruction_number);
        }
    }

  // Set codefile position to previous JMP_ and set the number of instructions to jump
  pos1 = code_file.tellp();
  code_file.seekp(pos2);
  FJMP_ fjmp1(instruction_number - prev_instruction_number);
  fjmp1.write(code_file, instruction_number);
  code_file.seekp(pos1);

574
  FENDBLOCK_ fendblock;
575
  fendblock.write(code_file, instruction_number);
576
  FEND_ fend;
577
  fend.write(code_file, instruction_number);
578
  writePowerDeriv(code_file, false);
579
580
581
582
  code_file.close();
}

void
583
StaticModel::writeModelEquationsCode_Block(const string file_name, const string bin_basename, map_idx_t map_idx, vector<map_idx_t> map_idx2) const
584
585
{
  struct Uff_l
586
  {
587
588
589
    int u, var, lag;
    Uff_l *pNext;
  };
590

591
592
593
594
595
596
597
598
599
  struct Uff
  {
    Uff_l *Ufl, *Ufl_First;
  };

  int i, v;
  string tmp_s;
  ostringstream tmp_output;
  ofstream code_file;
600
  unsigned int instruction_number = 0;
601
  expr_t lhs = NULL, rhs = NULL;
602
603
  BinaryOpNode *eq_node;
  Uff Uf[symbol_table.endo_nbr()];
604
  map<expr_t, int> reference_count;
605
  vector<int> feedback_variables;
606
  deriv_node_temp_terms_t tef_terms;
607
608
609
610
611
612
613
614
615
616
617
618
  bool file_open = false;

  string main_name = file_name;
  main_name += ".cod";
  code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
  if (!code_file.is_open())
    {
      cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
      exit(EXIT_FAILURE);
    }
  //Temporary variables declaration

619
620
  FDIMST_ fdimst(temporary_terms.size());
  fdimst.write(code_file, instruction_number);
621
622
623
624
625
626
627

  for (unsigned int block = 0; block < getNbBlocks(); block++)
    {
      feedback_variables.clear();
      if (block > 0)
        {
          FENDBLOCK_ fendblock;
628
          fendblock.write(code_file, instruction_number);
629
630
631
632
633
634
635
636
637
638
639
        }
      int count_u;
      int u_count_int = 0;
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      unsigned int block_size = getBlockSize(block);
      unsigned int block_mfs = getBlockMfs(block);
      unsigned int block_recursive = block_size - block_mfs;

      if (simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE
          || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
        {
640
          Write_Inf_To_Bin_File_Block(file_name, bin_basename, block, u_count_int, file_open);
641
642
643
644
645
646
647
648
649
650
651
652
653
          file_open = true;
        }

      FBEGINBLOCK_ fbeginblock(block_mfs,
                               simulation_type,
                               getBlockFirstEquation(block),
                               block_size,
                               variable_reordered,
                               equation_reordered,
                               blocks_linear[block],
                               symbol_table.endo_nbr(),
                               0,
                               0,
654
                               u_count_int,
655
                               /*symbol_table.endo_nbr()*/block_size
656
                               );
657

658
      fbeginblock.write(code_file, instruction_number);
659
660
661
662

      for (i = 0; i < (int) block_size; i++)
        {
          //The Temporary terms
663
          temporary_terms_t tt2;
664
665
666
          tt2.clear();
          if (v_temporary_terms[block].size())
            {
667
              for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
668
669
                   it != v_temporary_terms[block][i].end(); it++)
                {
670
671
672
                  if (dynamic_cast<ExternalFunctionNode *>(*it) != NULL)
                    (*it)->compileExternalFunctionOutput(code_file, instruction_number, false, tt2, map_idx, false, false, tef_terms);

673
                  FNUMEXPR_ fnumexpr(TemporaryTerm, (int)(map_idx.find((*it)->idx)->second));
674
                  fnumexpr.write(code_file, instruction_number);
675
                  (*it)->compile(code_file, instruction_number, false, tt2, map_idx, false, false, tef_terms);
676
                  FSTPST_ fstpst((int)(map_idx.find((*it)->idx)->second));
677
                  fstpst.write(code_file, instruction_number);
678
679
680
681
682
                  // Insert current node into tt2
                  tt2.insert(*it);
                }
            }

683
          // The equations
684
685
686
687
688
689
690
691
          int variable_ID, equation_ID;
          EquationType equ_type;
          switch (simulation_type)
            {
            evaluation:
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
              equ_type = getBlockEquationType(block, i);
692
693
              {
                FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
694
                fnumexpr.write(code_file, instruction_number);
695
              }
696
697
              if (equ_type == E_EVALUATE)
                {
698
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
699
700
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
701
702
                  rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
                  lhs->compile(code_file, instruction_number, true, temporary_terms, map_idx, false, false);
703
704
705
                }
              else if (equ_type == E_EVALUATE_S)
                {
706
                  eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
707
708
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
709
710
                  rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
                  lhs->compile(code_file, instruction_number, true, temporary_terms, map_idx, false, false);
711
712
713
714
715
716
717
718
719
720
721
722
723
                }
              break;
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < (int) block_recursive)
                goto evaluation;
              variable_ID = getBlockVariableID(block, i);
              equation_ID = getBlockEquationID(block, i);
              feedback_variables.push_back(variable_ID);
              Uf[equation_ID].Ufl = NULL;
              goto end;
            default:
            end:
724
              FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
725
              fnumexpr.write(code_file, instruction_number);
726
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
727
728
              lhs = eq_node->get_arg1();
              rhs = eq_node->get_arg2();
729
730
              lhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
              rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
731
732

              FBINARY_ fbinary(oMinus);
733
              fbinary.write(code_file, instruction_number);
734
735

              FSTPR_ fstpr(i - block_recursive);
736
              fstpr.write(code_file, instruction_number);
737
738
739
            }
        }
      FENDEQU_ fendequ;
740
      fendequ.write(code_file, instruction_number);
741
742
743
744
745
746
747

      // Get the current code_file position and jump if eval = true
      streampos pos1 = code_file.tellp();
      FJMPIFEVAL_ fjmp_if_eval(0);
      fjmp_if_eval.write(code_file, instruction_number);
      int prev_instruction_number = instruction_number;

748
749
750
751
752
753
754
755
      // The Jacobian if we have to solve the block
      if    (simulation_type != EVALUATE_BACKWARD
             && simulation_type != EVALUATE_FORWARD)
        {
          switch (simulation_type)
            {
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
756
757
              {
                FNUMEXPR_ fnumexpr(FirstEndoDerivative, 0, 0);
758
                fnumexpr.write(code_file, instruction_number);
759
              }
760
              compileDerivative(code_file, instruction_number, getBlockEquationID(block, 0), getBlockVariableID(block, 0), map_idx, temporary_terms);
761
              {
762
                FSTPG_ fstpg(0);
763
                fstpg.write(code_file, instruction_number);
764
              }
765
              break;
766

767
768
769
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              count_u = feedback_variables.size();
770
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
771
772
773
774
775
                {
                  unsigned int eq = it->first.first;
                  unsigned int var = it->first.second;
                  unsigned int eqr = getBlockEquationID(block, eq);
                  unsigned int varr = getBlockVariableID(block, var);
776
                  if (eq >= block_recursive && var >= block_recursive)
777
778
779
780
781
782
783
784
785
786
787
788
789
790
                    {
                      if (!Uf[eqr].Ufl)
                        {
                          Uf[eqr].Ufl = (Uff_l *) malloc(sizeof(Uff_l));
                          Uf[eqr].Ufl_First = Uf[eqr].Ufl;
                        }
                      else
                        {
                          Uf[eqr].Ufl->pNext = (Uff_l *) malloc(sizeof(Uff_l));
                          Uf[eqr].Ufl = Uf[eqr].Ufl->pNext;
                        }
                      Uf[eqr].Ufl->pNext = NULL;
                      Uf[eqr].Ufl->u = count_u;
                      Uf[eqr].Ufl->var = varr;
791
                      FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr);
792
                      fnumexpr.write(code_file, instruction_number);
793
                      compileChainRuleDerivative(code_file, instruction_number, eqr, varr, 0, map_idx, temporary_terms);
794
                      FSTPSU_ fstpsu(count_u);
795
                      fstpsu.write(code_file, instruction_number);
796
797
798
799
800
801
802
803
                      count_u++;
                    }
                }
              for (i = 0; i < (int) block_size; i++)
                {
                  if (i >= (int) block_recursive)
                    {
                      FLDR_ fldr(i-block_recursive);
804
                      fldr.write(code_file, instruction_number);
805
806

                      FLDZ_ fldz;
807
                      fldz.write(code_file, instruction_number);
808
809
810
811
812

                      v = getBlockEquationID(block, i);
                      for (Uf[v].Ufl = Uf[v].Ufl_First; Uf[v].Ufl; Uf[v].Ufl = Uf[v].Ufl->pNext)
                        {
                          FLDSU_ fldsu(Uf[v].Ufl->u);
813
                          fldsu.write(code_file, instruction_number);
814
                          FLDSV_ fldsv(eEndogenous, Uf[v].Ufl->var);
815
                          fldsv.write(code_file, instruction_number);
816
817

                          FBINARY_ fbinary(oTimes);
818
                          fbinary.write(code_file, instruction_number);
819
820

                          FCUML_ fcuml;
821
                          fcuml.write(code_file, instruction_number);
822
823
824
825
826
827
828
829
830
                        }
                      Uf[v].Ufl = Uf[v].Ufl_First;
                      while (Uf[v].Ufl)
                        {
                          Uf[v].Ufl_First = Uf[v].Ufl->pNext;
                          free(Uf[v].Ufl);
                          Uf[v].Ufl = Uf[v].Ufl_First;
                        }
                      FBINARY_ fbinary(oMinus);
831
                      fbinary.write(code_file, instruction_number);
832
833

                      FSTPSU_ fstpsu(i - block_recursive);
834
                      fstpsu.write(code_file, instruction_number);
835
836
837
838
839
840
841
842

                    }
                }
              break;
            default:
              break;
            }
        }
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867

      // Get the current code_file position and jump = true
      streampos pos2 = code_file.tellp();
      FJMP_ fjmp(0);
      fjmp.write(code_file, instruction_number);
      // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
      streampos pos3 = code_file.tellp();
      code_file.seekp(pos1);
      FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
      fjmp_if_eval1.write(code_file, instruction_number);
      code_file.seekp(pos3);
      prev_instruction_number = instruction_number ;

      temporary_terms_t tt2;
      tt2.clear();
      temporary_terms_t tt3;
      tt3.clear();

      for (i = 0; i < (int) block_size; i++)
        {
          if (v_temporary_terms_local[block].size())
            {
              for (temporary_terms_t::const_iterator it = v_temporary_terms_local[block][i].begin();
                   it != v_temporary_terms_local[block][i].end(); it++)
                {
868
869
870
                  if (dynamic_cast<ExternalFunctionNode *>(*it) != NULL)
                    (*it)->compileExternalFunctionOutput(code_file, instruction_number, false, tt3, map_idx2[block], false, false, tef_terms);

871
872
                  FNUMEXPR_ fnumexpr(TemporaryTerm, (int)(map_idx2[block].find((*it)->idx)->second));
                  fnumexpr.write(code_file, instruction_number);
873
874
875

                  (*it)->compile(code_file, instruction_number, false, tt3, map_idx2[block], false, false, tef_terms);

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
                  FSTPST_ fstpst((int)(map_idx2[block].find((*it)->idx)->second));
                  fstpst.write(code_file, instruction_number);
                  // Insert current node into tt2
                  tt3.insert(*it);
                  tt2.insert(*it);
                }
            }

          // The equations
          int variable_ID, equation_ID;
          EquationType equ_type;
          switch (simulation_type)
            {
            evaluation_l:
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
              equ_type = getBlockEquationType(block, i);
              {
                FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
                fnumexpr.write(code_file, instruction_number);
              }
              if (equ_type == E_EVALUATE)
                {
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
                  rhs->compile(code_file, instruction_number, false, tt2/*temporary_terms*/, map_idx2[block], false, false);
                  lhs->compile(code_file, instruction_number, true, tt2/*temporary_terms*/, map_idx2[block], false, false);
                }
              else if (equ_type == E_EVALUATE_S)
                {
                  eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
                  rhs->compile(code_file, instruction_number, false, tt2/*temporary_terms*/, map_idx2[block], false, false);
                  lhs->compile(code_file, instruction_number, true, tt2/*temporary_terms*/, map_idx2[block], false, false);
                }
              break;
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < (int) block_recursive)
                goto evaluation_l;
              variable_ID = getBlockVariableID(block, i);
              equation_ID = getBlockEquationID(block, i);
              feedback_variables.push_back(variable_ID);
              Uf[equation_ID].Ufl = NULL;
              goto end_l;
            default:
            end_l:
              FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
              fnumexpr.write(code_file, instruction_number);
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              lhs = eq_node->get_arg1();
              rhs = eq_node->get_arg2();
              lhs->compile(code_file, instruction_number, false, tt2/*temporary_terms*/, map_idx2[block], false, false);
              rhs->compile(code_file, instruction_number, false, tt2/*temporary_terms*/, map_idx2[block], false, false);

              FBINARY_ fbinary(oMinus);
              fbinary.write(code_file, instruction_number);

              FSTPR_ fstpr(i - block_recursive);
              fstpr.write(code_file, instruction_number);
            }
        }
      FENDEQU_ fendequ_l;
      fendequ_l.write(code_file, instruction_number);

      // The Jacobian if we have to solve the block determinsitic bloc
      switch (simulation_type)
        {
        case SOLVE_BACKWARD_SIMPLE:
        case SOLVE_FORWARD_SIMPLE:
          {
            FNUMEXPR_ fnumexpr(FirstEndoDerivative, 0, 0);
            fnumexpr.write(code_file, instruction_number);
          }
952
          compileDerivative(code_file, instruction_number, getBlockEquationID(block, 0), getBlockVariableID(block, 0), map_idx2[block], tt2/*temporary_terms*/);
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
          {
            FSTPG2_ fstpg2(0,0);
            fstpg2.write(code_file, instruction_number);
          }
          break;
        case EVALUATE_BACKWARD:
        case EVALUATE_FORWARD:
        case SOLVE_BACKWARD_COMPLETE:
        case SOLVE_FORWARD_COMPLETE:
          count_u = feedback_variables.size();
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
            {
              unsigned int eq = it->first.first;
              unsigned int var = it->first.second;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
              FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr, 0);
              fnumexpr.write(code_file, instruction_number);

972
              compileChainRuleDerivative(code_file, instruction_number, eqr, varr, 0, map_idx2[block], tt2/*temporary_terms*/);
973
974
975
976
977
978
979
980
981
982
983
984
985
986

              FSTPG2_ fstpg2(eq,var);
              fstpg2.write(code_file, instruction_number);
            }
          break;
        default:
          break;
        }
      // Set codefile position to previous JMP_ and set the number of instructions to jump
      pos1 = code_file.tellp();
      code_file.seekp(pos2);
      FJMP_ fjmp1(instruction_number - prev_instruction_number);
      fjmp1.write(code_file, instruction_number);
      code_file.seekp(pos1);
987
988
    }
  FENDBLOCK_ fendblock;
989
  fendblock.write(code_file, instruction_number);
990
  FEND_ fend;
991
  fend.write(code_file, instruction_number);
992
993
  code_file.close();
}
994
995

void
996
StaticModel::Write_Inf_To_Bin_File_Block(const string &static_basename, const string &bin_basename, const int &num,
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
                                   int &u_count_int, bool &file_open) const
{
  int j;
  std::ofstream SaveCode;
  if (file_open)
    SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::in | ios::binary | ios::ate);
  else
    SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::binary);
  if (!SaveCode.is_open())
    {
      cout << "Error : Can't open file \"" << bin_basename << "_static.bin\" for writing\n";
      exit(EXIT_FAILURE);
    }
  u_count_int = 0;
  unsigned int block_size = getBlockSize(num);
  unsigned int block_mfs = getBlockMfs(num);
  unsigned int block_recursive = block_size - block_mfs;
1014
  for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[num].begin(); it != (blocks_derivatives[num]).end(); it++)
1015
1016
1017
1018
    {
      unsigned int eq = it->first.first;
      unsigned int var = it->first.second;
      int lag = 0;
1019
      if (eq >= block_recursive && var >= block_recursive)
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
        {
          int v = eq - block_recursive;
          SaveCode.write(reinterpret_cast<char *>(&v), sizeof(v));
          int varr = var - block_recursive;
          SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
          SaveCode.write(reinterpret_cast<char *>(&lag), sizeof(lag));
          int u = u_count_int + block_mfs;
          SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
          u_count_int++;
        }
    }

  for (j = block_recursive; j < (int) block_size; j++)
    {
      unsigned int varr = getBlockVariableID(num, j);
      SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
    }
  for (j = block_recursive; j < (int) block_size; j++)
    {
      unsigned int eqr = getBlockEquationID(num, j);
      SaveCode.write(reinterpret_cast<char *>(&eqr), sizeof(eqr));
    }
  SaveCode.close();
}
1044

1045
map<pair<int, pair<int, int > >, expr_t>
1046
StaticModel::collect_first_order_derivatives_endogenous()
sebastien's avatar
sebastien committed
1047
{
1048
  map<pair<int, pair<int, int > >, expr_t> endo_derivatives;
1049
  for (first_derivatives_t::iterator it2 = first_derivatives.begin();
1050
1051
       it2 != first_derivatives.end(); it2++)
    {
1052
      if (getTypeByDerivID(it2->first.second) == eEndogenous)
1053
1054
        {
          int eq = it2->first.first;
1055
          int var = symbol_table.getTypeSpecificID(it2->first.second);
1056
1057
1058
1059
          int lag = 0;
          endo_derivatives[make_pair(eq, make_pair(var, lag))] = it2->second;
        }
    }
1060
  return endo_derivatives;
1061
1062
1063
}

void
1064
StaticModel::computingPass(const eval_context_t &eval_context, bool no_tmp_terms, bool hessian, bool block, bool bytecode)
1065
{
1066
  // Compute derivatives w.r. to all endogenous, and possibly exogenous and exogenous deterministic
1067
1068
  set<int> vars;

1069
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
1070
1071
1072
1073
    vars.insert(symbol_table.getID(eEndogenous, i));

  // Launch computations
  cout << "Computing static model derivatives:" << endl
1074
       << " - order 1" << endl;
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
  first_derivatives.clear();

  computeJacobian(vars);

  if (hessian)
    {
      cout << " - order 2" << endl;
      computeHessian(vars);
    }

  if (block)
    {
1087
      jacob_map_t contemporaneous_jacobian, static_jacobian;
1088
      vector<unsigned int> n_static, n_forward, n_backward, n_mixed;
1089
1090
1091
1092
1093
1094

      // for each block contains pair<Size, Feddback_variable>
      vector<pair<int, int> > blocks;

      evaluateAndReduceJacobian(eval_context, contemporaneous_jacobian, static_jacobian, dynamic_jacobian, cutoff, false);

sebastien's avatar
sebastien committed
1095
      computeNonSingularNormalization(contemporaneous_jacobian, cutoff, static_jacobian, dynamic_jacobian);
1096

1097
      computePrologueAndEpilogue(static_jacobian, equation_reordered, variable_reordered);
1098

1099
      map<pair<int, pair<int, int> >, expr_t> first_order_endo_derivatives = collect_first_order_derivatives_endogenous();
1100

1101
      equation_type_and_normalized_equation = equationTypeDetermination(first_order_endo_derivatives, variable_reordered, equation_reordered, mfs);
1102
1103
1104

      cout << "Finding the optimal block decomposition of the model ...\n";

1105
1106
1107
      lag_lead_vector_t equation_lag_lead, variable_lag_lead;

      computeBlockDecompositionAndFeedbackVariablesForEachBlock(static_jacobian, dynamic_jacobian, equation_reordered, variable_reordered, blocks, equation_type_and_normalized_equation, false, false, mfs, inv_equation_reordered, inv_variable_reordered, equation_lag_lead, variable_lag_lead, n_static, n_forward, n_backward, n_mixed);
1108

1109
      block_type_firstequation_size_mfs = reduceBlocksAndTypeDetermination(dynamic_jacobian, blocks, equation_type_and_normalized_equation, variable_reordered, equation_reordered, n_static, n_forward, n_backward, n_mixed, block_col_type);
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

      printBlockDecomposition(blocks);

      computeChainRuleJacobian(blocks_derivatives);

      blocks_linear = BlockLinear(blocks_derivatives, variable_reordered);

      collect_block_first_order_derivatives();

      global_temporary_terms = true;
      if (!no_tmp_terms)
        computeTemporaryTermsOrdered();
    }
  else
1124
1125
1126
1127
1128
    {
      if (!no_tmp_terms)
        {
          computeTemporaryTerms(true);
          if (bytecode)
1129
            computeTemporaryTermsMapping(temporary_terms, map_idx);
1130
1131
        }
    }
sebastien's avatar
sebastien committed
1132
1133
1134
}

void
1135
StaticModel::writeStaticMFile(const string &func_name) const
sebastien's avatar
sebastien committed
1136
1137
{
  // Writing comments and function definition command
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
  string filename = func_name + "_static.m";

  ofstream