subsref.m 5.84 KB
Newer Older
Stéphane Adjemian's avatar
Stéphane Adjemian committed
1
2
3
function us = subsref(ts, S)
%@info:
%! @deftypefn {Function File} {@var{us} =} subsref (@var{ts},S)
Stéphane Adjemian's avatar
Stéphane Adjemian committed
4
%! @anchor{@dynSeries/subsref}
Stéphane Adjemian's avatar
Stéphane Adjemian committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
%! @sp 1
%! Overloads the subsref method for the Dynare time series class (@ref{dynSeries}).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item ts
%! Dynare time series object instantiated by @ref{dynSeries}.
%! @item S
%! Matlab's structure array S with two fields, type and subs. The type field is string containing '()', '@{@}', or '.', where '()' specifies
%! integer subscripts, '@{@}' specifies cell array subscripts, and '.' specifies subscripted structure fields. The subs field is a cell array
%! or a string containing the actual subscripts (see matlab's documentation).
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item us
%! Dynare time series object. Depending on the calling sequence @var{us} is a transformation of @var{ts} obtained by applying a public method on @var{ts},
%! or a dynSeries object built by extracting a variable from @var{ts}, or a dynSeries object containing a subsample of the all the variable in @var{ts}.
%! @end table
%! @sp 2
%! @strong{Example 1.} Let @var{ts} be a dynSeries object containing three variables named 'A1', 'A2' and 'A3'. Then the following syntax:
%! @example
%!   us = ts.A1;
%! @end example
%!will create a new dynSeries object @var{us} containing the variable 'A1'.
%! @sp 1
%! @strong{Example 2.} Let @var{ts} be a dynSeries object. Then the following syntax:
%! @example
%!   us = ts.log;
%! @end example
%!will create a new dynSeries object @var{us} containing all the variables of @var{ts} transformed by the neperian logarithm.
%! @sp 1
%! @strong{Example 3.} Let @var{ts} be a dynSeries object. The following syntax:
%! @example
%!   us = ts(3:50);
%! @end example
%!will create a new dynSeries object @var{us} by selecting a subsample out of @var{ts}.
%! @sp 2
%! @strong{This function is called by:}
%! @sp 2
%! @strong{This function calls:}
%! @ref{dynSeries}, @ref{log}, @ref{exp}
%!
%! @end deftypefn
%@eod:

if isequal(S.type,'.')
    switch S.subs
Stéphane Adjemian's avatar
Stéphane Adjemian committed
55
      case {'data','nobs','vobs','name','tex','freq','time','init','last','Time'} % Public members.
Stéphane Adjemian's avatar
Stéphane Adjemian committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        us = builtin('subsref', ts, S);
      case {'log','exp'}                                                   % Give "dot access" to public methods.
        us = feval(S.subs,ts);
      otherwise                                                            % Extract a sub-object by selecting one variable.
        ndx = strmatch(S.subs,ts.name);
        if ~isempty(ndx)
            us = dynSeries();
            us.data = ts.data(:,ndx);
            us.name = deblank(ts.name(ndx,:));
            us.tex  = deblank(ts.tex(ndx,:));
            us.nobs = ts.nobs;
            us.vobs = 1;
            us.freq = ts.freq;
            us.time = ts.time;
            us.init = ts.init;
            us.last = ts.last;
            return
        else
            error('dynSeries::subsref: Unknown public method, public member or variable!')
75
76
        end
    end
Stéphane Adjemian's avatar
Stéphane Adjemian committed
77
78
79
80
81
82
    return
end
if isequal(S.type,'()')                                                    % Extract a sub-object by selecting a sub-sample.
    us = dynSeries();
    if size(ts.data,2)>1
        S.subs = [S.subs, ':'];
83
    end
Stéphane Adjemian's avatar
Stéphane Adjemian committed
84
85
86
87
88
89
90
91
92
93
    us.data = builtin('subsref', ts.data, S);
    us.nobs = size(us.data,1);
    us.vobs = ts.vobs;
    us.freq = ts.freq;
    us.time = builtin('subsref', ts.time, S);
    us.init = us.time(1,:);
    us.last = us.time(end,:);
    us.name = ts.name;
    us.tex  = ts.tex;
end
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

%@test:1
%$ addpath ../matlab
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
%$ A_name = char('A1','A2');
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1(2:9);
%$
%$ % Expected results.
%$ e.data = [transpose(2:9),2*transpose(2:9)];
%$ e.nobs = 8;
%$ e.vobs = 2;
%$ e.name = char('A1','A2');
%$ e.freq = 1;
%$ tmp = ts1.time; e.time = tmp(2:9,:);
%$ e.init = e.time(1,:);
%$ e.last = e.time(end,:);
%$
%$ % Check the results.
%$ t(1) = dyn_assert(a.data,e.data);
%$ t(2) = dyn_assert(a.time,e.time);
%$ t(3) = dyn_assert(a.nobs,e.nobs);
%$ t(4) = dyn_assert(a.vobs,e.vobs);
%$ t(5) = dyn_assert(a.freq,e.freq);
%$ t(6) = dyn_assert(a.init,e.init);
%$ t(7) = dyn_assert(a.last,e.last);
%$ T = all(t);
%@eof:1

%@test:2
%$ addpath ../matlab
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
%$ A_name = char('A1','A2');
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1.A1;
%$
%$ % Expected results.
%$ e.data = transpose(1:10);
%$ e.nobs = 10;
%$ e.vobs = 1;
%$ e.name = char('A1');
%$ e.freq = 1;
%$ e.time = [transpose(1:10),ones(10,1)];
%$ e.init = e.time(1,:);
%$ e.last = e.time(end,:);
%$
%$ % Check the results.
%$ t(1) = dyn_assert(a.data,e.data);
%$ t(2) = dyn_assert(a.time,e.time);
%$ t(3) = dyn_assert(a.nobs,e.nobs);
%$ t(4) = dyn_assert(a.vobs,e.vobs);
%$ t(5) = dyn_assert(a.freq,e.freq);
%$ t(6) = dyn_assert(a.init,e.init);
%$ t(7) = dyn_assert(a.last,e.last);
%$ T = all(t);
%@eof:2

%@test:3
%$ addpath ../matlab
%$ % Define a data set.
%$ A = [transpose(1:10),2*transpose(1:10)];
%$
%$ % Define names
%$ A_name = char('A1','A2');
%$
%$ % Instantiate a time series object.
%$ ts1 = dynSeries(A,[],A_name,[]);
%$
%$ % Call the tested method.
%$ a = ts1.log;
%$
%$ % Expected results.
%$ e.data = log(A);
%$ e.nobs = 10;
%$ e.vobs = 2;
%$ e.name = char('A1','A2');
%$ e.freq = 1;
%$ tmp = ts1.time; e.time = tmp(1:10,:);
%$ e.init = e.time(1,:);
%$ e.last = e.time(end,:);
%$
%$ % Check the results.
%$ t(1) = dyn_assert(a.data,e.data);
%$ t(2) = dyn_assert(a.time,e.time);
%$ t(3) = dyn_assert(a.nobs,e.nobs);
%$ t(4) = dyn_assert(a.vobs,e.vobs);
%$ t(5) = dyn_assert(a.freq,e.freq);
%$ t(6) = dyn_assert(a.init,e.init);
%$ t(7) = dyn_assert(a.last,e.last);
%$ T = all(t);
%@eof:3