sequential_importance_particle_filter.m 5.24 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
function [LIK,lik] = sequential_importance_particle_filter(ReducedForm,Y,start,DynareOptions)
% Evaluates the likelihood of a nonlinear model with a particle filter (optionally with resampling).

%@info:
%! @deftypefn {Function File} {@var{y}, @var{y_} =} sequential_importance_particle_filter (@var{ReducedForm},@var{Y}, @var{start}, @var{DynareOptions})
%! @anchor{particle/sequential_importance_particle_filter}
%! @sp 1
%! Evaluates the likelihood of a nonlinear model with a particle filter (optionally with resampling). 
%!
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item ReducedForm
%! Structure describing the state space model (built in @ref{non_linear_dsge_likelihood}).
%! @item Y
%! p*smpl matrix of doubles (p is the number of observed variables), the (detrended) data.  
%! @item start
%! Integer scalar, likelihood evaluation starts at observation 'start'.
%! @item DynareOptions
%! Structure specifying Dynare's options.
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item LIK
%! double scalar, value of (minus) the logged likelihood.
%! @item lik
%! smpl*1 vector of doubles, density of the observations at each period.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @ref{non_linear_dsge_likelihood}
%! @sp 2
%! @strong{This function calls:}
%!
%! @end deftypefn
%@eod:

% Copyright (C) 2011 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR(S) frederic DOT karame AT univ DASH evry DOT fr
%           stephane DOT adjemian AT univ DASH lemans DOT fr    

persistent init_flag 
persistent mf0 mf1 
persistent number_of_particles
persistent sample_size number_of_observed_variables number_of_structural_innovations

% Set default value for start
if isempty(start)
    start = 1;
end

% Get steady state and mean.
steadystate = ReducedForm.steadystate;
constant = ReducedForm.constant;
state_variables_steady_state = ReducedForm.state_variables_steady_state;

% Set persistent variables.
if isempty(init_flag)
    mf0 = ReducedForm.mf0;
    mf1 = ReducedForm.mf1;
    sample_size = size(Y,2);
    number_of_observed_variables = length(mf1);
    number_of_structural_innovations = length(ReducedForm.Q); 
    number_of_particles = DynareOptions.particle.number_of_particles;
    init_flag = 1;
end

% Set local state space model (first order approximation).
ghx  = ReducedForm.ghx;
ghu  = ReducedForm.ghu;

% Set local state space model (second order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;

% Get covariance matrices
Q = ReducedForm.Q;
H = ReducedForm.H;
if isempty(H)
    H = 0;
end

% Get initial condition for the state vector.
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = reduced_rank_cholesky(ReducedForm.StateVectorVariance)';
state_variance_rank = size(StateVectorVarianceSquareRoot,2);
Q_lower_triangular_cholesky = chol(Q)';

% Set seed for randn().
stream=RandStream('mt19937ar','Seed',1);
RandStream.setDefaultStream(stream);

% Initialization of the likelihood.
const_lik = log(2*pi)*number_of_observed_variables; 
lik  = NaN(sample_size,1);

% Initialization of the weights across particles.
nb_obs_resamp = 0 ;
weights = ones(1,number_of_particles) ;
StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean);
for t=1:sample_size
    yhat = bsxfun(@minus,StateVectors,state_variables_steady_state);
    epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,number_of_particles);
    tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu);
    PredictedObservedMean = mean(tmp(mf1,:),2);
    PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
    dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean);
    PredictedObservedVariance = (dPredictedObservedMean*dPredictedObservedMean')/number_of_particles+H;
    lnw = -.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1));
    dfac = max(lnw);
    wtilde = weights.*exp(lnw-dfac);
    lik(t) = log(mean(wtilde))+dfac;
    weights = wtilde/sum(wtilde);
    Neff = 1/(weights*weights');
    if (Neff<.5*sample_size && ~isempty(strmatch(DynareOptions.particle.resampling,'generic','exact'))) || ~isempty(strmatch(DynareOptions.particle.resampling,'systematic','exact'))
        nb_obs_resamp = nb_obs_resamp+1 ;
        StateVectors = tmp(mf0,resample(weights));
        weights = ones(1,number_of_particles) ;
    elseif ~isempty(strmatch(DynareOptions.particle_filter.resampling,'none','exact'))
        StateVectors = tmp(mf0,:);
        weights = number_of_particles*weights ;
    end
end

LIK = -sum(lik(start:end));