StaticModel.cc 63.7 KB
Newer Older
sebastien's avatar
sebastien committed
1
/*
2
 * Copyright (C) 2003-2010 Dynare Team
sebastien's avatar
sebastien committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
21
#include <iostream>
#include <cmath>
22
#include <cstdlib>
23
#include <cassert>
24
25
#include <cstdio>
#include <cerrno>
sebastien's avatar
sebastien committed
26
#include <algorithm>
27
28
29
30
31
32
33
34
35
#include "StaticModel.hh"

// For mkdir() and chdir()
#ifdef _WIN32
# include <direct.h>
#else
# include <unistd.h>
# include <sys/stat.h>
# include <sys/types.h>
36
#endif
sebastien's avatar
sebastien committed
37

38
StaticModel::StaticModel(SymbolTable &symbol_table_arg,
39
40
41
                         NumericalConstants &num_constants_arg,
                         ExternalFunctionsTable &external_functions_table_arg) :
  ModelTree(symbol_table_arg, num_constants_arg, external_functions_table_arg),
42
43
44
  global_temporary_terms(true),
  cutoff(1e-15),
  mfs(0)
45
46
{
}
47

48
void
49
StaticModel::compileDerivative(ofstream &code_file, unsigned int &instruction_number, int eq, int symb_id, map_idx_t &map_idx, temporary_terms_t temporary_terms) const
50
{
51
  first_derivatives_t::const_iterator it = first_derivatives.find(make_pair(eq, symbol_table.getID(eEndogenous, symb_id)));
52
  if (it != first_derivatives.end())
53
    (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
54
55
56
  else
    {
      FLDZ_ fldz;
57
      fldz.write(code_file, instruction_number);
58
59
    }
}
sebastien's avatar
sebastien committed
60

61
void
62
StaticModel::compileChainRuleDerivative(ofstream &code_file, unsigned int &instruction_number, int eqr, int varr, int lag, map_idx_t &map_idx, temporary_terms_t temporary_terms) const
63
{
64
  map<pair<int, pair<int, int> >, expr_t>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
65
  if (it != first_chain_rule_derivatives.end())
66
    (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
67
68
69
  else
    {
      FLDZ_ fldz;
70
      fldz.write(code_file, instruction_number);
71
72
73
    }
}

74
75
76
77
78
79
80
81
82
83
void
StaticModel::initializeVariablesAndEquations()
{
  for(int j = 0; j < equation_number(); j++)
    {
      equation_reordered.push_back(j);
      variable_reordered.push_back(j);
    }
}

84
85
86
void
StaticModel::computeTemporaryTermsOrdered()
{
87
88
  map<expr_t, pair<int, int> > first_occurence;
  map<expr_t, int> reference_count;
89
  BinaryOpNode *eq_node;
90
91
  first_derivatives_t::const_iterator it;
  first_chain_rule_derivatives_t::const_iterator it_chr;
92
93
94
95
96
  ostringstream tmp_s;
  v_temporary_terms.clear();
  map_idx.clear();

  unsigned int nb_blocks = getNbBlocks();
97
  v_temporary_terms = vector< vector<temporary_terms_t> >(nb_blocks);
98
  v_temporary_terms_local = vector< vector<temporary_terms_t> >(nb_blocks);
99

100
  v_temporary_terms_inuse = vector<temporary_terms_inuse_t>(nb_blocks);
101

102
103
  map_idx2 = vector<map_idx_t>(nb_blocks);

104
  temporary_terms.clear();
105
106
107

  //local temporay terms
  for (unsigned int block = 0; block < nb_blocks; block++)
108
    {
109
110
111
112
113
114
      map<expr_t, int> reference_count_local;
      reference_count_local.clear();
      map<expr_t, pair<int, int> > first_occurence_local;
      first_occurence_local.clear();
      temporary_terms_t temporary_terms_l;
      temporary_terms_l.clear();
115

116
117
118
119
120
121
122
123
124
125
      unsigned int block_size = getBlockSize(block);
      unsigned int block_nb_mfs = getBlockMfs(block);
      unsigned int block_nb_recursives = block_size - block_nb_mfs;
      v_temporary_terms_local[block] = vector<temporary_terms_t>(block_size);

      for (unsigned int i = 0; i < block_size; i++)
        {
          if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
            getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count_local, temporary_terms_l, first_occurence_local, block, v_temporary_terms_local,  i);
          else
126
            {
127
128
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              eq_node->computeTemporaryTerms(reference_count_local, temporary_terms_l, first_occurence_local, block, v_temporary_terms_local,  i);
129
130
            }
        }
131
132
133
134
135
136
137
138
139
140
141
142
143
144
      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
        {
          expr_t id = it->second.second;
          id->computeTemporaryTerms(reference_count_local, temporary_terms_l, first_occurence_local, block, v_temporary_terms_local,  block_size-1);
        }
      //temporary_terms_g.insert(temporary_terms_l.begin(), temporary_terms_l.end());
      set<int> temporary_terms_in_use;
      temporary_terms_in_use.clear();
      v_temporary_terms_inuse[block] = temporary_terms_in_use;
      /*for (int i = 0; i < (int) block_size; i++)
        for (temporary_terms_t::const_iterator it = v_temporary_terms_local[block][i].begin();
             it != v_temporary_terms_local[block][i].end(); it++)
          (*it)->collectTemporary_terms(temporary_terms_g, temporary_terms_in_use, block);*/
      computeTemporaryTermsMapping(temporary_terms_l, map_idx2[block]);
145
    }
146
147
148

  // global temporay terms
  for (unsigned int block = 0; block < nb_blocks; block++)
149
    {
150
151
152
153
154
155
      // Compute the temporary terms reordered
      unsigned int block_size = getBlockSize(block);
      unsigned int block_nb_mfs = getBlockMfs(block);
      unsigned int block_nb_recursives = block_size - block_nb_mfs;
      v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
      for (unsigned int i = 0; i < block_size; i++)
156
        {
157
158
159
          if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
            getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
          else
160
            {
161
162
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, i);
163
164
            }
        }
165
      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
166
        {
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
          expr_t id = it->second.second;
          id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
        }
    }

  for (unsigned int block = 0; block < nb_blocks; block++)
    {
      // Collecte the temporary terms reordered
      unsigned int block_size = getBlockSize(block);
      unsigned int block_nb_mfs = getBlockMfs(block);
      unsigned int block_nb_recursives = block_size - block_nb_mfs;
      set<int> temporary_terms_in_use;
      for (unsigned int i = 0; i < block_size; i++)
        {
          if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
            getBlockEquationRenormalizedExpr(block, i)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
          else
184
            {
185
186
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              eq_node->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
187
188
            }
        }
189
190
191
192
193
194
195
196
197
198
      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
        {
          expr_t id = it->second.second;
          id->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
        }
      for (int i = 0; i < (int) getBlockSize(block); i++)
        for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
             it != v_temporary_terms[block][i].end(); it++)
          (*it)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
      v_temporary_terms_inuse[block] = temporary_terms_in_use;
199
    }
200
  computeTemporaryTermsMapping(temporary_terms, map_idx);
201
202
203
}

void
204
StaticModel::computeTemporaryTermsMapping(temporary_terms_t &temporary_terms, map_idx_t &map_idx)
205
{
206
  // Add a mapping form node ID to temporary terms order
207
  int j = 0;
208
  for (temporary_terms_t::const_iterator it = temporary_terms.begin();
209
      it != temporary_terms.end(); it++)
210
    map_idx[(*it)->idx] = j++;
211
212
213
214
}

void
StaticModel::writeModelEquationsOrdered_M(const string &static_basename) const
215
216
217
{
  string tmp_s, sps;
  ostringstream tmp_output, tmp1_output, global_output;
218
  expr_t lhs = NULL, rhs = NULL;
219
  BinaryOpNode *eq_node;
220
  map<expr_t, int> reference_count;
221
  temporary_terms_t local_temporary_terms;
222
223
224
225
  ofstream  output;
  int nze;
  vector<int> feedback_variables;
  ExprNodeOutputType local_output_type;
226

Sébastien Villemot's avatar
Sébastien Villemot committed
227
  local_output_type = oMatlabStaticModelSparse;
228
  if (global_temporary_terms)
Sébastien Villemot's avatar
Sébastien Villemot committed
229
    local_temporary_terms = temporary_terms;
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

  //----------------------------------------------------------------------
  //For each block
  for (unsigned int block = 0; block < getNbBlocks(); block++)
    {
      //recursive_variables.clear();
      feedback_variables.clear();
      //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
      nze = derivative_endo[block].size();
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      unsigned int block_size = getBlockSize(block);
      unsigned int block_mfs = getBlockMfs(block);
      unsigned int block_recursive = block_size - block_mfs;

      tmp1_output.str("");
      tmp1_output << static_basename << "_" << block+1 << ".m";
      output.open(tmp1_output.str().c_str(), ios::out | ios::binary);
      output << "%\n";
      output << "% " << tmp1_output.str() << " : Computes static model for Dynare\n";
      output << "%\n";
      output << "% Warning : this file is generated automatically by Dynare\n";
      output << "%           from model file (.mod)\n\n";
      output << "%/\n";
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        output << "function y = " << static_basename << "_" << block+1 << "(y, x, params)\n";
      else
        output << "function [residual, y, g1] = " << static_basename << "_" << block+1 << "(y, x, params)\n";

      BlockType block_type;
      if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
        block_type = SIMULTANS;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) < prologue)
        block_type = PROLOGUE;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) >= equations.size() - epilogue)
        block_type = EPILOGUE;
      else
        block_type = SIMULTANS;
      output << "  % ////////////////////////////////////////////////////////////////////////" << endl
             << "  % //" << string("                     Block ").substr(int (log10(block + 1))) << block + 1 << " " << BlockType0(block_type)
             << "          //" << endl
             << "  % //                     Simulation type "
             << BlockSim(simulation_type) << "  //" << endl
             << "  % ////////////////////////////////////////////////////////////////////////" << endl;
      output << "  global options_;" << endl;
      //The Temporary terms
      if (simulation_type != EVALUATE_BACKWARD  && simulation_type != EVALUATE_FORWARD)
280
        output << " g1 = spalloc("  << block_mfs << ", " << block_mfs << ", " << derivative_endo[block].size() << ");" << endl;
281
282
283
284

      if (v_temporary_terms_inuse[block].size())
        {
          tmp_output.str("");
285
          for (temporary_terms_inuse_t::const_iterator it = v_temporary_terms_inuse[block].begin();
286
287
288
289
290
291
292
293
294
295
296
297
298
               it != v_temporary_terms_inuse[block].end(); it++)
            tmp_output << " T" << *it;
          output << "  global" << tmp_output.str() << ";\n";
        }

      if (simulation_type != EVALUATE_BACKWARD && simulation_type != EVALUATE_FORWARD)
        output << "  residual=zeros(" << block_mfs << ",1);\n";

      // The equations
      for (unsigned int i = 0; i < block_size; i++)
        {
          if (!global_temporary_terms)
            local_temporary_terms = v_temporary_terms[block][i];
299
          temporary_terms_t tt2;
300
301
302
303
          tt2.clear();
          if (v_temporary_terms[block].size())
            {
              output << "  " << "% //Temporary variables" << endl;
304
              for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
                   it != v_temporary_terms[block][i].end(); it++)
                {
                  output << "  " <<  sps;
                  (*it)->writeOutput(output, local_output_type, local_temporary_terms);
                  output << " = ";
                  (*it)->writeOutput(output, local_output_type, tt2);
                  // Insert current node into tt2
                  tt2.insert(*it);
                  output << ";" << endl;
                }
            }

          int variable_ID = getBlockVariableID(block, i);
          int equation_ID = getBlockEquationID(block, i);
          EquationType equ_type = getBlockEquationType(block, i);
          string sModel = symbol_table.getName(symbol_table.getID(eEndogenous, variable_ID));
321
          eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
          lhs = eq_node->get_arg1();
          rhs = eq_node->get_arg2();
          tmp_output.str("");
          lhs->writeOutput(tmp_output, local_output_type, local_temporary_terms);
          switch (simulation_type)
            {
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
            evaluation:
              output << "  % equation " << getBlockEquationID(block, i)+1 << " variable : " << sModel
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
              output << "  ";
              if (equ_type == E_EVALUATE)
                {
                  output << tmp_output.str();
                  output << " = ";
                  rhs->writeOutput(output, local_output_type, local_temporary_terms);
                }
              else if (equ_type == E_EVALUATE_S)
                {
                  output << "%" << tmp_output.str();
                  output << " = ";
                  if (isBlockEquationRenormalized(block, i))
                    {
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << "\n  ";
                      tmp_output.str("");
349
                      eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
                      lhs = eq_node->get_arg1();
                      rhs = eq_node->get_arg2();
                      lhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << " = ";
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                    }
                }
              else
                {
                  cerr << "Type missmatch for equation " << equation_ID+1  << "\n";
                  exit(EXIT_FAILURE);
                }
              output << ";\n";
              break;
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < block_recursive)
                goto evaluation;
              feedback_variables.push_back(variable_ID);
              output << "  % equation " << equation_ID+1 << " variable : " << sModel
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
              output << "  " << "residual(" << i+1-block_recursive << ") = (";
              goto end;
            default:
            end:
              output << tmp_output.str();
              output << ") - (";
              rhs->writeOutput(output, local_output_type, local_temporary_terms);
              output << ");\n";
            }
        }
      // The Jacobian if we have to solve the block
      if (simulation_type == SOLVE_BACKWARD_SIMPLE   || simulation_type == SOLVE_FORWARD_SIMPLE
          || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
        output << "  " << sps << "% Jacobian  " << endl;
      switch (simulation_type)
        {
        case SOLVE_BACKWARD_SIMPLE:
        case SOLVE_FORWARD_SIMPLE:
        case SOLVE_BACKWARD_COMPLETE:
        case SOLVE_FORWARD_COMPLETE:
393
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
394
395
396
397
398
            {
              unsigned int eq = it->first.first;
              unsigned int var = it->first.second;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
399
              expr_t id = it->second.second;
400
401
402
403
404
405
406
407
408
409
410
411
412
413
              output << "    g1(" << eq+1-block_recursive << ", " << var+1-block_recursive << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms);
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                     << "(" << 0
                     << ") " << varr+1
                     << ", equation=" << eqr+1 << endl;
            }
          break;
        default:
          break;
        }
      output.close();
    }
}
414
415

void
416
StaticModel::writeModelEquationsCode(const string file_name, const string bin_basename, map_idx_t map_idx) const
417
418
419
420
{

  ostringstream tmp_output;
  ofstream code_file;
421
  unsigned int instruction_number = 0;
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
  bool file_open = false;

  string main_name = file_name;
  main_name += ".cod";
  code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
  if (!code_file.is_open())
    {
      cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
      exit(EXIT_FAILURE);
    }
  int count_u;
  int u_count_int = 0;

  Write_Inf_To_Bin_File(file_name, u_count_int, file_open, false, symbol_table.endo_nbr());
  file_open = true;

  //Temporary variables declaration
439
440
  FDIMST_ fdimst(temporary_terms.size());
  fdimst.write(code_file, instruction_number);
441
442
443
444
445
446
447
448
449
450
  FBEGINBLOCK_ fbeginblock(symbol_table.endo_nbr(),
                           SOLVE_FORWARD_COMPLETE,
                           0,
                           symbol_table.endo_nbr(),
                           variable_reordered,
                           equation_reordered,
                           false,
                           symbol_table.endo_nbr(),
                           0,
                           0,
451
452
                           u_count_int,
                           symbol_table.endo_nbr()
453
                           );
454
  fbeginblock.write(code_file, instruction_number);
455
456
457

  // Add a mapping form node ID to temporary terms order
  int j = 0;
458
  for (temporary_terms_t::const_iterator it = temporary_terms.begin();
459
460
       it != temporary_terms.end(); it++)
    map_idx[(*it)->idx] = j++;
461
  compileTemporaryTerms(code_file, instruction_number, temporary_terms, map_idx, false, false);
462

463
  compileModelEquations(code_file, instruction_number, temporary_terms, map_idx, false, false);
464
465

  FENDEQU_ fendequ;
466
  fendequ.write(code_file, instruction_number);
467

468
469
470
471
472
473
  // Get the current code_file position and jump if eval = true
  streampos pos1 = code_file.tellp();
  FJMPIFEVAL_ fjmp_if_eval(0);
  fjmp_if_eval.write(code_file, instruction_number);
  int prev_instruction_number = instruction_number;

474
475
476
  vector<vector<pair<int, int> > > derivatives;
  derivatives.resize(symbol_table.endo_nbr());
  count_u = symbol_table.endo_nbr();
477
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
478
479
480
481
482
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
483
          expr_t d1 = it->second;
484
485
486
          unsigned int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          unsigned int var = symbol_table.getTypeSpecificID(symb);
487
          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var);
488
          fnumexpr.write(code_file, instruction_number);
489
490
491
492
          if (!derivatives[eq].size())
            derivatives[eq].clear();
          derivatives[eq].push_back(make_pair(var, count_u));

493
          d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
494
495

          FSTPSU_ fstpsu(count_u);
496
          fstpsu.write(code_file, instruction_number);
497
498
499
500
501
502
          count_u++;
        }
    }
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
    {
      FLDR_ fldr(i);
503
      fldr.write(code_file, instruction_number);
504
      if (derivatives[i].size())
505
        {
506
507
          for(vector<pair<int, int> >::const_iterator it = derivatives[i].begin();
              it != derivatives[i].end(); it++)
508
            {
509
510
511
512
513
              FLDSU_ fldsu(it->second);
              fldsu.write(code_file, instruction_number);
              FLDSV_ fldsv(eEndogenous, it->first);
              fldsv.write(code_file, instruction_number);
              FBINARY_ fbinary(oTimes);
514
              fbinary.write(code_file, instruction_number);
515
516
517
518
519
              if (it != derivatives[i].begin())
                {
                  FBINARY_ fbinary(oPlus);
                  fbinary.write(code_file, instruction_number);
                }
520
            }
521
522
          FBINARY_ fbinary(oMinus);
          fbinary.write(code_file, instruction_number);
523
524
        }
      FSTPSU_ fstpsu(i);
525
      fstpsu.write(code_file, instruction_number);
526
    }
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
  // Get the current code_file position and jump = true
  streampos pos2 = code_file.tellp();
  FJMP_ fjmp(0);
  fjmp.write(code_file, instruction_number);
  // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
  streampos pos3 = code_file.tellp();
  code_file.seekp(pos1);
  FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
  fjmp_if_eval1.write(code_file, instruction_number);
  code_file.seekp(pos3);
  prev_instruction_number = instruction_number ;

  temporary_terms_t tt2;
  tt2.clear();
  temporary_terms_t tt3;
  tt3.clear();

  // The Jacobian if we have to solve the block determinsitic bloc
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
          expr_t d1 = it->second;
          unsigned int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          unsigned int var = symbol_table.getTypeSpecificID(symb);
          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var);
          fnumexpr.write(code_file, instruction_number);
          if (!derivatives[eq].size())
            derivatives[eq].clear();
          derivatives[eq].push_back(make_pair(var, count_u));

          d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
          FSTPG2_ fstpg2(eq,var);
          fstpg2.write(code_file, instruction_number);
        }
    }

  // Set codefile position to previous JMP_ and set the number of instructions to jump
  pos1 = code_file.tellp();
  code_file.seekp(pos2);
  FJMP_ fjmp1(instruction_number - prev_instruction_number);
  fjmp1.write(code_file, instruction_number);
  code_file.seekp(pos1);

574
  FENDBLOCK_ fendblock;
575
  fendblock.write(code_file, instruction_number);
576
  FEND_ fend;
577
  fend.write(code_file, instruction_number);
578
579
580
581
  code_file.close();
}

void
582
StaticModel::writeModelEquationsCode_Block(const string file_name, const string bin_basename, map_idx_t map_idx, vector<map_idx_t> map_idx2) const
583
584
{
  struct Uff_l
585
  {
586
587
588
    int u, var, lag;
    Uff_l *pNext;
  };
589

590
591
592
593
594
595
596
597
598
  struct Uff
  {
    Uff_l *Ufl, *Ufl_First;
  };

  int i, v;
  string tmp_s;
  ostringstream tmp_output;
  ofstream code_file;
599
  unsigned int instruction_number = 0;
600
  expr_t lhs = NULL, rhs = NULL;
601
602
  BinaryOpNode *eq_node;
  Uff Uf[symbol_table.endo_nbr()];
603
  map<expr_t, int> reference_count;
604
605
606
607
608
609
610
611
612
613
614
615
616
  vector<int> feedback_variables;
  bool file_open = false;

  string main_name = file_name;
  main_name += ".cod";
  code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
  if (!code_file.is_open())
    {
      cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
      exit(EXIT_FAILURE);
    }
  //Temporary variables declaration

617
618
  FDIMST_ fdimst(temporary_terms.size());
  fdimst.write(code_file, instruction_number);
619
620
621
622
623
624
625

  for (unsigned int block = 0; block < getNbBlocks(); block++)
    {
      feedback_variables.clear();
      if (block > 0)
        {
          FENDBLOCK_ fendblock;
626
          fendblock.write(code_file, instruction_number);
627
628
629
630
631
632
633
634
635
636
637
        }
      int count_u;
      int u_count_int = 0;
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      unsigned int block_size = getBlockSize(block);
      unsigned int block_mfs = getBlockMfs(block);
      unsigned int block_recursive = block_size - block_mfs;

      if (simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE
          || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
        {
638
          Write_Inf_To_Bin_File_Block(file_name, bin_basename, block, u_count_int, file_open);
639
640
641
642
643
644
645
646
647
648
649
650
651
          file_open = true;
        }

      FBEGINBLOCK_ fbeginblock(block_mfs,
                               simulation_type,
                               getBlockFirstEquation(block),
                               block_size,
                               variable_reordered,
                               equation_reordered,
                               blocks_linear[block],
                               symbol_table.endo_nbr(),
                               0,
                               0,
652
                               u_count_int,
653
                               /*symbol_table.endo_nbr()*/block_size
654
                               );
655

656
      fbeginblock.write(code_file, instruction_number);
657

658
659
660
661
662
      // Get the current code_file position and jump if eval = true
      streampos pos1 = code_file.tellp();
      FJMPIFEVAL_ fjmp_if_eval(0);
      fjmp_if_eval.write(code_file, instruction_number);
      int prev_instruction_number = instruction_number;
663
664
665
      for (i = 0; i < (int) block_size; i++)
        {
          //The Temporary terms
666
          temporary_terms_t tt2;
667
668
669
          tt2.clear();
          if (v_temporary_terms[block].size())
            {
670
              for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
671
672
                   it != v_temporary_terms[block][i].end(); it++)
                {
673
                  FNUMEXPR_ fnumexpr(TemporaryTerm, (int)(map_idx.find((*it)->idx)->second));
674
675
                  fnumexpr.write(code_file, instruction_number);
                  (*it)->compile(code_file, instruction_number, false, tt2, map_idx, false, false);
676
                  FSTPST_ fstpst((int)(map_idx.find((*it)->idx)->second));
677
                  fstpst.write(code_file, instruction_number);
678
679
680
681
682
                  // Insert current node into tt2
                  tt2.insert(*it);
                }
            }

683
          // The equations
684
685
686
687
688
689
690
691
          int variable_ID, equation_ID;
          EquationType equ_type;
          switch (simulation_type)
            {
            evaluation:
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
              equ_type = getBlockEquationType(block, i);
692
693
              {
                FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
694
                fnumexpr.write(code_file, instruction_number);
695
              }
696
697
              if (equ_type == E_EVALUATE)
                {
698
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
699
700
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
701
702
                  rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
                  lhs->compile(code_file, instruction_number, true, temporary_terms, map_idx, false, false);
703
704
705
                }
              else if (equ_type == E_EVALUATE_S)
                {
706
                  eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
707
708
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
709
710
                  rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
                  lhs->compile(code_file, instruction_number, true, temporary_terms, map_idx, false, false);
711
712
713
714
715
716
717
718
719
720
721
722
723
                }
              break;
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < (int) block_recursive)
                goto evaluation;
              variable_ID = getBlockVariableID(block, i);
              equation_ID = getBlockEquationID(block, i);
              feedback_variables.push_back(variable_ID);
              Uf[equation_ID].Ufl = NULL;
              goto end;
            default:
            end:
724
              FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
725
              fnumexpr.write(code_file, instruction_number);
726
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
727
728
              lhs = eq_node->get_arg1();
              rhs = eq_node->get_arg2();
729
730
              lhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
              rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
731
732

              FBINARY_ fbinary(oMinus);
733
              fbinary.write(code_file, instruction_number);
734
735

              FSTPR_ fstpr(i - block_recursive);
736
              fstpr.write(code_file, instruction_number);
737
738
739
            }
        }
      FENDEQU_ fendequ;
740
      fendequ.write(code_file, instruction_number);
741
742
743
744
745
746
747
748
      // The Jacobian if we have to solve the block
      if    (simulation_type != EVALUATE_BACKWARD
             && simulation_type != EVALUATE_FORWARD)
        {
          switch (simulation_type)
            {
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
749
750
              {
                FNUMEXPR_ fnumexpr(FirstEndoDerivative, 0, 0);
751
                fnumexpr.write(code_file, instruction_number);
752
              }
753
              compileDerivative(code_file, instruction_number, getBlockEquationID(block, 0), getBlockVariableID(block, 0), map_idx, temporary_terms);
754
              {
755
                FSTPG_ fstpg(0);
756
                fstpg.write(code_file, instruction_number);
757
              }
758
              break;
759

760
761
762
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              count_u = feedback_variables.size();
763
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
764
765
766
767
768
                {
                  unsigned int eq = it->first.first;
                  unsigned int var = it->first.second;
                  unsigned int eqr = getBlockEquationID(block, eq);
                  unsigned int varr = getBlockVariableID(block, var);
769
                  if (eq >= block_recursive && var >= block_recursive)
770
771
772
773
774
775
776
777
778
779
780
781
782
783
                    {
                      if (!Uf[eqr].Ufl)
                        {
                          Uf[eqr].Ufl = (Uff_l *) malloc(sizeof(Uff_l));
                          Uf[eqr].Ufl_First = Uf[eqr].Ufl;
                        }
                      else
                        {
                          Uf[eqr].Ufl->pNext = (Uff_l *) malloc(sizeof(Uff_l));
                          Uf[eqr].Ufl = Uf[eqr].Ufl->pNext;
                        }
                      Uf[eqr].Ufl->pNext = NULL;
                      Uf[eqr].Ufl->u = count_u;
                      Uf[eqr].Ufl->var = varr;
784
                      FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr);
785
                      fnumexpr.write(code_file, instruction_number);
786
                      compileChainRuleDerivative(code_file, instruction_number, eqr, varr, 0, map_idx, temporary_terms);
787
                      FSTPSU_ fstpsu(count_u);
788
                      fstpsu.write(code_file, instruction_number);
789
790
791
792
793
794
795
796
                      count_u++;
                    }
                }
              for (i = 0; i < (int) block_size; i++)
                {
                  if (i >= (int) block_recursive)
                    {
                      FLDR_ fldr(i-block_recursive);
797
                      fldr.write(code_file, instruction_number);
798
799

                      FLDZ_ fldz;
800
                      fldz.write(code_file, instruction_number);
801
802
803
804
805

                      v = getBlockEquationID(block, i);
                      for (Uf[v].Ufl = Uf[v].Ufl_First; Uf[v].Ufl; Uf[v].Ufl = Uf[v].Ufl->pNext)
                        {
                          FLDSU_ fldsu(Uf[v].Ufl->u);
806
                          fldsu.write(code_file, instruction_number);
807
                          FLDSV_ fldsv(eEndogenous, Uf[v].Ufl->var);
808
                          fldsv.write(code_file, instruction_number);
809
810

                          FBINARY_ fbinary(oTimes);
811
                          fbinary.write(code_file, instruction_number);
812
813

                          FCUML_ fcuml;
814
                          fcuml.write(code_file, instruction_number);
815
816
817
818
819
820
821
822
823
                        }
                      Uf[v].Ufl = Uf[v].Ufl_First;
                      while (Uf[v].Ufl)
                        {
                          Uf[v].Ufl_First = Uf[v].Ufl->pNext;
                          free(Uf[v].Ufl);
                          Uf[v].Ufl = Uf[v].Ufl_First;
                        }
                      FBINARY_ fbinary(oMinus);
824
                      fbinary.write(code_file, instruction_number);
825
826

                      FSTPSU_ fstpsu(i - block_recursive);
827
                      fstpsu.write(code_file, instruction_number);
828
829
830
831
832
833
834
835

                    }
                }
              break;
            default:
              break;
            }
        }
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974

      // Get the current code_file position and jump = true
      streampos pos2 = code_file.tellp();
      FJMP_ fjmp(0);
      fjmp.write(code_file, instruction_number);
      // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
      streampos pos3 = code_file.tellp();
      code_file.seekp(pos1);
      FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
      fjmp_if_eval1.write(code_file, instruction_number);
      code_file.seekp(pos3);
      prev_instruction_number = instruction_number ;

      temporary_terms_t tt2;
      tt2.clear();
      temporary_terms_t tt3;
      tt3.clear();

      for (i = 0; i < (int) block_size; i++)
        {
          if (v_temporary_terms_local[block].size())
            {
              for (temporary_terms_t::const_iterator it = v_temporary_terms_local[block][i].begin();
                   it != v_temporary_terms_local[block][i].end(); it++)
                {
                  FNUMEXPR_ fnumexpr(TemporaryTerm, (int)(map_idx2[block].find((*it)->idx)->second));
                  fnumexpr.write(code_file, instruction_number);
                  (*it)->compile(code_file, instruction_number, false, tt3, map_idx2[block], false, false);
                  FSTPST_ fstpst((int)(map_idx2[block].find((*it)->idx)->second));
                  fstpst.write(code_file, instruction_number);
                  // Insert current node into tt2
                  tt3.insert(*it);
                  tt2.insert(*it);
                }
            }

          // The equations
          int variable_ID, equation_ID;
          EquationType equ_type;
          switch (simulation_type)
            {
            evaluation_l:
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
              equ_type = getBlockEquationType(block, i);
              {
                FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
                fnumexpr.write(code_file, instruction_number);
              }
              if (equ_type == E_EVALUATE)
                {
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
                  rhs->compile(code_file, instruction_number, false, tt2/*temporary_terms*/, map_idx2[block], false, false);
                  lhs->compile(code_file, instruction_number, true, tt2/*temporary_terms*/, map_idx2[block], false, false);
                }
              else if (equ_type == E_EVALUATE_S)
                {
                  eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
                  rhs->compile(code_file, instruction_number, false, tt2/*temporary_terms*/, map_idx2[block], false, false);
                  lhs->compile(code_file, instruction_number, true, tt2/*temporary_terms*/, map_idx2[block], false, false);
                }
              break;
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < (int) block_recursive)
                goto evaluation_l;
              variable_ID = getBlockVariableID(block, i);
              equation_ID = getBlockEquationID(block, i);
              feedback_variables.push_back(variable_ID);
              Uf[equation_ID].Ufl = NULL;
              goto end_l;
            default:
            end_l:
              FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
              fnumexpr.write(code_file, instruction_number);
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              lhs = eq_node->get_arg1();
              rhs = eq_node->get_arg2();
              lhs->compile(code_file, instruction_number, false, tt2/*temporary_terms*/, map_idx2[block], false, false);
              rhs->compile(code_file, instruction_number, false, tt2/*temporary_terms*/, map_idx2[block], false, false);

              FBINARY_ fbinary(oMinus);
              fbinary.write(code_file, instruction_number);

              FSTPR_ fstpr(i - block_recursive);
              fstpr.write(code_file, instruction_number);
            }
        }
      FENDEQU_ fendequ_l;
      fendequ_l.write(code_file, instruction_number);

      // The Jacobian if we have to solve the block determinsitic bloc
      switch (simulation_type)
        {
        case SOLVE_BACKWARD_SIMPLE:
        case SOLVE_FORWARD_SIMPLE:
          {
            FNUMEXPR_ fnumexpr(FirstEndoDerivative, 0, 0);
            fnumexpr.write(code_file, instruction_number);
          }
          compileDerivative(code_file, instruction_number, getBlockEquationID(block, 0), getBlockVariableID(block, 0), map_idx2[block], tt2);
          {
            FSTPG2_ fstpg2(0,0);
            fstpg2.write(code_file, instruction_number);
          }
          break;
        case EVALUATE_BACKWARD:
        case EVALUATE_FORWARD:
        case SOLVE_BACKWARD_COMPLETE:
        case SOLVE_FORWARD_COMPLETE:
          count_u = feedback_variables.size();
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
            {
              unsigned int eq = it->first.first;
              unsigned int var = it->first.second;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
              FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr, 0);
              fnumexpr.write(code_file, instruction_number);

              compileChainRuleDerivative(code_file, instruction_number, eqr, varr, 0, map_idx2[block], tt2);

              FSTPG2_ fstpg2(eq,var);
              fstpg2.write(code_file, instruction_number);
            }
          break;
        default:
          break;
        }
      // Set codefile position to previous JMP_ and set the number of instructions to jump
      pos1 = code_file.tellp();
      code_file.seekp(pos2);
      FJMP_ fjmp1(instruction_number - prev_instruction_number);
      fjmp1.write(code_file, instruction_number);
      code_file.seekp(pos1);
975
976
    }
  FENDBLOCK_ fendblock;
977
  fendblock.write(code_file, instruction_number);
978
  FEND_ fend;
979
  fend.write(code_file, instruction_number);
980
981
  code_file.close();
}
982
983

void
984
StaticModel::Write_Inf_To_Bin_File_Block(const string &static_basename, const string &bin_basename, const int &num,
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
                                   int &u_count_int, bool &file_open) const
{
  int j;
  std::ofstream SaveCode;
  if (file_open)
    SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::in | ios::binary | ios::ate);
  else
    SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::binary);
  if (!SaveCode.is_open())
    {
      cout << "Error : Can't open file \"" << bin_basename << "_static.bin\" for writing\n";
      exit(EXIT_FAILURE);
    }
  u_count_int = 0;
  unsigned int block_size = getBlockSize(num);
  unsigned int block_mfs = getBlockMfs(num);