fs2000_corr_ME.mod 3.43 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/*
 * This file is based on the cash in advance model described
 * Frank Schorfheide (2000): "Loss function-based evaluation of DSGE models",
 * Journal of Applied Econometrics, 15(6), 645-670.
 *
 * The equations are taken from J. Nason and T. Cogley (1994): "Testing the
 * implications of long-run neutrality for monetary business cycle models",
 * Journal of Applied Econometrics, 9, S37-S70.
 * Note that there is an initial minus sign missing in equation (A1), p. S63.
 *
 * This implementation was written by Michel Juillard. Please note that the
 * following copyright notice only applies to this Dynare implementation of the
 * model.
 */

/*
 * Copyright (C) 2004-2013 Dynare Team
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

var m P c e W R k d n l gy_obs gp_obs y dA;
varexo e_a e_m;

parameters alp bet gam mst rho psi del theta;

alp = 0.33;
bet = 0.99;
gam = 0.003;
mst = 1.011;
rho = 0.7;
psi = 0.787;
del = 0.02;
theta=0;

model;
dA = exp(gam+e_a);
log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e_m;
-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0;
W = l/n;
-(psi/(1-psi))*(c*P/(1-n))+l/n = 0;
R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W;
1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0;
c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1);
P*c = m;
m-1+d = l;
e = exp(e_a);
y = k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a));
gy_obs = dA*y/y(-1);
gp_obs = (P/P(-1))*m(-1)/dA;
end;

initval;
k = 6;
m = mst;
P = 2.25;
c = 0.45;
e = 1;
W = 4;
R = 1.02;
d = 0.85;
n = 0.19;
l = 0.86;
y = 0.6;
gy_obs = exp(gam);
gp_obs = exp(-gam);
dA = exp(gam);
end;

varobs gp_obs gy_obs;

shocks;
var e_a; stderr 0.014;
var e_m; stderr 0.005;
corr gy_obs,gp_obs = 0.5;
end;

steady;


estimated_params;
alp, 0.356;
gam,  0.0085;
del, 0.01;
stderr e_a, 0.035449;
stderr e_m, 0.008862;
corr e_m, e_a, 0;
stderr gp_obs, 1;
stderr gy_obs, 1;
corr gp_obs, gy_obs,0;
end;

options_.TeX=1;
107
estimation(order=1,datafile=fsdat_simul,mode_check,smoother,filter_decomposition,forecast = 8,filtered_vars,filter_step_ahead=[1,3],irf=20) m P c e W R k d y gy_obs;
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122



estimated_params;
//alp, beta_pdf, 0.356, 0.02;
gam, normal_pdf, 0.0085, 0.003;
//del, beta_pdf, 0.01, 0.005;
stderr e_a, inv_gamma_pdf, 0.035449, inf;
stderr e_m, inv_gamma_pdf, 0.008862, inf;
corr e_m, e_a, normal_pdf, 0, 0.2;
stderr gp_obs, inv_gamma_pdf, 0.001, inf;
//stderr gy_obs, inv_gamma_pdf, 0.001, inf;
//corr gp_obs, gy_obs,normal_pdf, 0, 0.2;
end;

123
estimation(mode_compute=9,order=1,datafile=fsdat_simul,mode_check,smoother,filter_decomposition,mh_replic=2000, mh_nblocks=2, mh_jscale=0.8,forecast = 8,bayesian_irf,filtered_vars,filter_step_ahead=[1,3],irf=20) m P c e W R k d y;
124
125
shock_decomposition y W R;
//identification(advanced=1,max_dim_cova_group=3,prior_mc=250);