StaticModel.cc 52.9 KB
Newer Older
sebastien's avatar
sebastien committed
1
/*
2
 * Copyright (C) 2003-2010 Dynare Team
sebastien's avatar
sebastien committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
21
#include <iostream>
#include <cmath>
22
#include <cstdlib>
23
#include <cassert>
24
25
#include <cstdio>
#include <cerrno>
sebastien's avatar
sebastien committed
26
#include <algorithm>
27
28
29
30
31
32
33
34
35
#include "StaticModel.hh"

// For mkdir() and chdir()
#ifdef _WIN32
# include <direct.h>
#else
# include <unistd.h>
# include <sys/stat.h>
# include <sys/types.h>
36
#endif
sebastien's avatar
sebastien committed
37

38
StaticModel::StaticModel(SymbolTable &symbol_table_arg,
39
40
41
                         NumericalConstants &num_constants_arg,
                         ExternalFunctionsTable &external_functions_table_arg) :
  ModelTree(symbol_table_arg, num_constants_arg, external_functions_table_arg),
42
43
44
  global_temporary_terms(true),
  cutoff(1e-15),
  mfs(0)
45
46
{
}
47

48
void
sebastien's avatar
sebastien committed
49
StaticModel::compileDerivative(ofstream &code_file, int eq, int symb_id, map_idx_type &map_idx) const
50
51
52
53
54
55
56
57
58
59
{
  first_derivatives_type::const_iterator it = first_derivatives.find(make_pair(eq, symbol_table.getID(eEndogenous, symb_id)));
  if (it != first_derivatives.end())
    (it->second)->compile(code_file, false, temporary_terms, map_idx, false, false);
  else
    {
      FLDZ_ fldz;
      fldz.write(code_file);
    }
}
sebastien's avatar
sebastien committed
60

61
62
63
64
65
66
67
68
69
70
71
72
73
void
StaticModel::compileChainRuleDerivative(ofstream &code_file, int eqr, int varr, int lag, map_idx_type &map_idx) const
{
  map<pair<int, pair<int, int> >, NodeID>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
  if (it != first_chain_rule_derivatives.end())
    (it->second)->compile(code_file, false, temporary_terms, map_idx, false, false);
  else
    {
      FLDZ_ fldz;
      fldz.write(code_file);
    }
}

74
75
76
77
78
79
80
81
82
83
void
StaticModel::initializeVariablesAndEquations()
{
  for(int j = 0; j < equation_number(); j++)
    {
      equation_reordered.push_back(j);
      variable_reordered.push_back(j);
    }
}

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
void
StaticModel::computeTemporaryTermsOrdered()
{
  map<NodeID, pair<int, int> > first_occurence;
  map<NodeID, int> reference_count;
  BinaryOpNode *eq_node;
  first_derivatives_type::const_iterator it;
  first_chain_rule_derivatives_type::const_iterator it_chr;
  ostringstream tmp_s;
  v_temporary_terms.clear();
  map_idx.clear();

  unsigned int nb_blocks = getNbBlocks();
  v_temporary_terms = vector< vector<temporary_terms_type> >(nb_blocks);

99
  v_temporary_terms_inuse = vector<temporary_terms_inuse_type>(nb_blocks);
100
101

  temporary_terms.clear();
102
  if (!global_temporary_terms)
103
104
105
106
107
108
109
110
111
112
113
114
    {
      for (unsigned int block = 0; block < nb_blocks; block++)
        {

          reference_count.clear();
          temporary_terms.clear();
          unsigned int block_size = getBlockSize(block);
          unsigned int block_nb_mfs = getBlockMfs(block);
          unsigned int block_nb_recursives = block_size - block_nb_mfs;
          v_temporary_terms[block] = vector<temporary_terms_type>(block_size);
          for (unsigned int i = 0; i < block_size; i++)
            {
115
116
              if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
                getBlockEquationRenormalizedNodeID(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
117
118
              else
                {
119
                  eq_node = (BinaryOpNode *) getBlockEquationNodeID(block, i);
120
121
122
123
124
                  eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
                }
            }
          for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
            {
125
              NodeID id = it->second.second;
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
              id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
            }
          set<int> temporary_terms_in_use;
          temporary_terms_in_use.clear();
          v_temporary_terms_inuse[block] = temporary_terms_in_use;
        }
    }
  else
    {
      for (unsigned int block = 0; block < nb_blocks; block++)
        {
          // Compute the temporary terms reordered
          unsigned int block_size = getBlockSize(block);
          unsigned int block_nb_mfs = getBlockMfs(block);
          unsigned int block_nb_recursives = block_size - block_nb_mfs;
          v_temporary_terms[block] = vector<temporary_terms_type>(block_size);
          for (unsigned int i = 0; i < block_size; i++)
            {
144
145
              if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
                getBlockEquationRenormalizedNodeID(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
146
147
              else
                {
148
                  eq_node = (BinaryOpNode *) getBlockEquationNodeID(block, i);
149
150
151
152
153
                  eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, i);
                }
            }
          for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
            {
154
              NodeID id = it->second.second;
155
156
157
158
159
160
161
162
163
164
165
166
167
              id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
            }

        }
      for (unsigned int block = 0; block < nb_blocks; block++)
        {
          // Collecte the temporary terms reordered
          unsigned int block_size = getBlockSize(block);
          unsigned int block_nb_mfs = getBlockMfs(block);
          unsigned int block_nb_recursives = block_size - block_nb_mfs;
          set<int> temporary_terms_in_use;
          for (unsigned int i = 0; i < block_size; i++)
            {
168
169
              if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
                getBlockEquationRenormalizedNodeID(block, i)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
170
171
              else
                {
172
                  eq_node = (BinaryOpNode *) getBlockEquationNodeID(block, i);
173
174
175
176
177
                  eq_node->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
                }
            }
          for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
            {
178
              NodeID id = it->second.second;
179
180
              id->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
            }
181
          for (int i = 0; i < (int) getBlockSize(block); i++)
182
            for (temporary_terms_type::const_iterator it = v_temporary_terms[block][i].begin();
183
184
                 it != v_temporary_terms[block][i].end(); it++)
              (*it)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
185
186
          v_temporary_terms_inuse[block] = temporary_terms_in_use;
        }
187
      computeTemporaryTermsMapping();
188
    }
189
190
191
192
193
}

void
StaticModel::computeTemporaryTermsMapping()
{
194
  // Add a mapping form node ID to temporary terms order
195
  int j = 0;
196
  for (temporary_terms_type::const_iterator it = temporary_terms.begin();
197
      it != temporary_terms.end(); it++)
198
    map_idx[(*it)->idx] = j++;
199
200
201
202
}

void
StaticModel::writeModelEquationsOrdered_M(const string &static_basename) const
203
204
205
206
207
208
209
210
211
212
213
{
  string tmp_s, sps;
  ostringstream tmp_output, tmp1_output, global_output;
  NodeID lhs = NULL, rhs = NULL;
  BinaryOpNode *eq_node;
  map<NodeID, int> reference_count;
  temporary_terms_type local_temporary_terms;
  ofstream  output;
  int nze;
  vector<int> feedback_variables;
  ExprNodeOutputType local_output_type;
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
  if (global_temporary_terms)
    {
      local_output_type = oMatlabStaticModelSparse;
      local_temporary_terms = temporary_terms;
    }
  else
    local_output_type = oMatlabDynamicModelSparseLocalTemporaryTerms;

  //----------------------------------------------------------------------
  //For each block
  for (unsigned int block = 0; block < getNbBlocks(); block++)
    {
      //recursive_variables.clear();
      feedback_variables.clear();
      //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
      nze = derivative_endo[block].size();
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      unsigned int block_size = getBlockSize(block);
      unsigned int block_mfs = getBlockMfs(block);
      unsigned int block_recursive = block_size - block_mfs;

      tmp1_output.str("");
      tmp1_output << static_basename << "_" << block+1 << ".m";
      output.open(tmp1_output.str().c_str(), ios::out | ios::binary);
      output << "%\n";
      output << "% " << tmp1_output.str() << " : Computes static model for Dynare\n";
      output << "%\n";
      output << "% Warning : this file is generated automatically by Dynare\n";
      output << "%           from model file (.mod)\n\n";
      output << "%/\n";
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        output << "function y = " << static_basename << "_" << block+1 << "(y, x, params)\n";
      else
        output << "function [residual, y, g1] = " << static_basename << "_" << block+1 << "(y, x, params)\n";

      BlockType block_type;
      if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
        block_type = SIMULTANS;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) < prologue)
        block_type = PROLOGUE;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) >= equations.size() - epilogue)
        block_type = EPILOGUE;
      else
        block_type = SIMULTANS;
      output << "  % ////////////////////////////////////////////////////////////////////////" << endl
             << "  % //" << string("                     Block ").substr(int (log10(block + 1))) << block + 1 << " " << BlockType0(block_type)
             << "          //" << endl
             << "  % //                     Simulation type "
             << BlockSim(simulation_type) << "  //" << endl
             << "  % ////////////////////////////////////////////////////////////////////////" << endl;
      output << "  global options_;" << endl;
      //The Temporary terms
      if (simulation_type != EVALUATE_BACKWARD  && simulation_type != EVALUATE_FORWARD)
        output << "  g1 = zeros(" << block_mfs << ", " << block_mfs << ");" << endl;

      if (v_temporary_terms_inuse[block].size())
        {
          tmp_output.str("");
          for (temporary_terms_inuse_type::const_iterator it = v_temporary_terms_inuse[block].begin();
               it != v_temporary_terms_inuse[block].end(); it++)
            tmp_output << " T" << *it;
          output << "  global" << tmp_output.str() << ";\n";
        }

      if (simulation_type != EVALUATE_BACKWARD && simulation_type != EVALUATE_FORWARD)
        output << "  residual=zeros(" << block_mfs << ",1);\n";

      // The equations
      for (unsigned int i = 0; i < block_size; i++)
        {
          if (!global_temporary_terms)
            local_temporary_terms = v_temporary_terms[block][i];
          temporary_terms_type tt2;
          tt2.clear();
          if (v_temporary_terms[block].size())
            {
              output << "  " << "% //Temporary variables" << endl;
              for (temporary_terms_type::const_iterator it = v_temporary_terms[block][i].begin();
                   it != v_temporary_terms[block][i].end(); it++)
                {
                  output << "  " <<  sps;
                  (*it)->writeOutput(output, local_output_type, local_temporary_terms);
                  output << " = ";
                  (*it)->writeOutput(output, local_output_type, tt2);
                  // Insert current node into tt2
                  tt2.insert(*it);
                  output << ";" << endl;
                }
            }

          int variable_ID = getBlockVariableID(block, i);
          int equation_ID = getBlockEquationID(block, i);
          EquationType equ_type = getBlockEquationType(block, i);
          string sModel = symbol_table.getName(symbol_table.getID(eEndogenous, variable_ID));
          eq_node = (BinaryOpNode *) getBlockEquationNodeID(block, i);
          lhs = eq_node->get_arg1();
          rhs = eq_node->get_arg2();
          tmp_output.str("");
          lhs->writeOutput(tmp_output, local_output_type, local_temporary_terms);
          switch (simulation_type)
            {
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
            evaluation:
              output << "  % equation " << getBlockEquationID(block, i)+1 << " variable : " << sModel
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
              output << "  ";
              if (equ_type == E_EVALUATE)
                {
                  output << tmp_output.str();
                  output << " = ";
                  rhs->writeOutput(output, local_output_type, local_temporary_terms);
                }
              else if (equ_type == E_EVALUATE_S)
                {
                  output << "%" << tmp_output.str();
                  output << " = ";
                  if (isBlockEquationRenormalized(block, i))
                    {
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << "\n  ";
                      tmp_output.str("");
                      eq_node = (BinaryOpNode *) getBlockEquationRenormalizedNodeID(block, i);
                      lhs = eq_node->get_arg1();
                      rhs = eq_node->get_arg2();
                      lhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << " = ";
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                    }
                }
              else
                {
                  cerr << "Type missmatch for equation " << equation_ID+1  << "\n";
                  exit(EXIT_FAILURE);
                }
              output << ";\n";
              break;
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < block_recursive)
                goto evaluation;
              feedback_variables.push_back(variable_ID);
              output << "  % equation " << equation_ID+1 << " variable : " << sModel
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
              output << "  " << "residual(" << i+1-block_recursive << ") = (";
              goto end;
            default:
            end:
              output << tmp_output.str();
              output << ") - (";
              rhs->writeOutput(output, local_output_type, local_temporary_terms);
              output << ");\n";
            }
        }
      // The Jacobian if we have to solve the block
      if (simulation_type == SOLVE_BACKWARD_SIMPLE   || simulation_type == SOLVE_FORWARD_SIMPLE
          || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
        output << "  " << sps << "% Jacobian  " << endl;
      switch (simulation_type)
        {
        case SOLVE_BACKWARD_SIMPLE:
        case SOLVE_FORWARD_SIMPLE:
        case SOLVE_BACKWARD_COMPLETE:
        case SOLVE_FORWARD_COMPLETE:
          for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
            {
              unsigned int eq = it->first.first;
              unsigned int var = it->first.second;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
              NodeID id = it->second.second;
              output << "    g1(" << eq+1-block_recursive << ", " << var+1-block_recursive << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms);
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                     << "(" << 0
                     << ") " << varr+1
                     << ", equation=" << eqr+1 << endl;
            }
          break;
        default:
          break;
        }
      output.close();
    }
}
406
407

void
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
StaticModel::writeModelEquationsCode(const string file_name, const string bin_basename, map_idx_type map_idx) const
{

  ostringstream tmp_output;
  ofstream code_file;
  bool file_open = false;

  string main_name = file_name;
  main_name += ".cod";
  code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
  if (!code_file.is_open())
    {
      cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
      exit(EXIT_FAILURE);
    }
  int count_u;
  int u_count_int = 0;

  Write_Inf_To_Bin_File(file_name, u_count_int, file_open, false, symbol_table.endo_nbr());
  file_open = true;

  //Temporary variables declaration
  FDIMT_ fdimt(temporary_terms.size());
  fdimt.write(code_file);

  FBEGINBLOCK_ fbeginblock(symbol_table.endo_nbr(),
                           SOLVE_FORWARD_COMPLETE,
                           0,
                           symbol_table.endo_nbr(),
                           variable_reordered,
                           equation_reordered,
                           false,
                           symbol_table.endo_nbr(),
                           0,
                           0,
                           u_count_int
                           );
  fbeginblock.write(code_file);


  // Add a mapping form node ID to temporary terms order
  int j = 0;
  for (temporary_terms_type::const_iterator it = temporary_terms.begin();
       it != temporary_terms.end(); it++)
    map_idx[(*it)->idx] = j++;
  compileTemporaryTerms(code_file, temporary_terms, map_idx, false, false);

  compileModelEquations(code_file, temporary_terms, map_idx, false, false);

  FENDEQU_ fendequ;
  fendequ.write(code_file);

  vector<vector<pair<int, int> > > derivatives;
  derivatives.resize(symbol_table.endo_nbr());
  count_u = symbol_table.endo_nbr();
  for (first_derivatives_type::const_iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
          NodeID d1 = it->second;
          unsigned int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          unsigned int var = symbol_table.getTypeSpecificID(symb);
473
474
          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var);
          fnumexpr.write(code_file);
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
          if (!derivatives[eq].size())
            derivatives[eq].clear();
          derivatives[eq].push_back(make_pair(var, count_u));

          d1->compile(code_file, false, temporary_terms, map_idx, false, false);

          FSTPSU_ fstpsu(count_u);
          fstpsu.write(code_file);
          count_u++;
        }
    }
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
    {
      FLDR_ fldr(i);
      fldr.write(code_file);
      for(vector<pair<int, int> >::const_iterator it = derivatives[i].begin();
          it != derivatives[i].end(); it++)
        {
          FLDSU_ fldsu(it->second);
          fldsu.write(code_file);
          FLDSV_ fldsv(eEndogenous, it->first);
          fldsv.write(code_file);
          FBINARY_ fbinary(oTimes);
          fbinary.write(code_file);
          if (it != derivatives[i].begin())
            {
              FBINARY_ fbinary(oPlus);
              fbinary.write(code_file);
            }
        }
      FBINARY_ fbinary(oMinus);
      fbinary.write(code_file);
      FSTPSU_ fstpsu(i);
      fstpsu.write(code_file);
    }
  FENDBLOCK_ fendblock;
  fendblock.write(code_file);
  FEND_ fend;
  fend.write(code_file);
  code_file.close();
}

void
StaticModel::writeModelEquationsCode_Block(const string file_name, const string bin_basename, map_idx_type map_idx) const
519
520
{
  struct Uff_l
521
  {
522
523
524
    int u, var, lag;
    Uff_l *pNext;
  };
525

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
  struct Uff
  {
    Uff_l *Ufl, *Ufl_First;
  };

  int i, v;
  string tmp_s;
  ostringstream tmp_output;
  ofstream code_file;
  NodeID lhs = NULL, rhs = NULL;
  BinaryOpNode *eq_node;
  Uff Uf[symbol_table.endo_nbr()];
  map<NodeID, int> reference_count;
  vector<int> feedback_variables;
  bool file_open = false;

  string main_name = file_name;
  main_name += ".cod";
  code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
  if (!code_file.is_open())
    {
      cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
      exit(EXIT_FAILURE);
    }
  //Temporary variables declaration

  FDIMT_ fdimt(temporary_terms.size());
  fdimt.write(code_file);

  for (unsigned int block = 0; block < getNbBlocks(); block++)
    {
      feedback_variables.clear();
      if (block > 0)
        {
          FENDBLOCK_ fendblock;
          fendblock.write(code_file);
        }
      int count_u;
      int u_count_int = 0;
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      unsigned int block_size = getBlockSize(block);
      unsigned int block_mfs = getBlockMfs(block);
      unsigned int block_recursive = block_size - block_mfs;

      if (simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE
          || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
        {
573
          Write_Inf_To_Bin_File_Block(file_name, bin_basename, block, u_count_int, file_open);
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
          file_open = true;
        }

      FBEGINBLOCK_ fbeginblock(block_mfs,
                               simulation_type,
                               getBlockFirstEquation(block),
                               block_size,
                               variable_reordered,
                               equation_reordered,
                               blocks_linear[block],
                               symbol_table.endo_nbr(),
                               0,
                               0,
                               u_count_int
                               );
      fbeginblock.write(code_file);

      // The equations
      for (i = 0; i < (int) block_size; i++)
        {
          //The Temporary terms
          temporary_terms_type tt2;
          tt2.clear();
          if (v_temporary_terms[block].size())
            {
              for (temporary_terms_type::const_iterator it = v_temporary_terms[block][i].begin();
                   it != v_temporary_terms[block][i].end(); it++)
                {
602
603
                  FNUMEXPR_ fnumexpr(TemporaryTerm, (int)(map_idx.find((*it)->idx)->second));
                  fnumexpr.write(code_file);
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
                  (*it)->compile(code_file, false, tt2, map_idx, false, false);
                  FSTPST_ fstpst((int)(map_idx.find((*it)->idx)->second));
                  fstpst.write(code_file);
                  // Insert current node into tt2
                  tt2.insert(*it);
                }
            }

          int variable_ID, equation_ID;
          EquationType equ_type;
          switch (simulation_type)
            {
            evaluation:
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
              equ_type = getBlockEquationType(block, i);
620
621
622
623
              {
                FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
                fnumexpr.write(code_file);
              }
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
              if (equ_type == E_EVALUATE)
                {
                  eq_node = (BinaryOpNode *) getBlockEquationNodeID(block, i);
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
                  rhs->compile(code_file, false, temporary_terms, map_idx, false, false);
                  lhs->compile(code_file, true, temporary_terms, map_idx, false, false);
                }
              else if (equ_type == E_EVALUATE_S)
                {
                  eq_node = (BinaryOpNode *) getBlockEquationRenormalizedNodeID(block, i);
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
                  rhs->compile(code_file, false, temporary_terms, map_idx, false, false);
                  lhs->compile(code_file, true, temporary_terms, map_idx, false, false);
                }
              break;
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < (int) block_recursive)
                goto evaluation;
              variable_ID = getBlockVariableID(block, i);
              equation_ID = getBlockEquationID(block, i);
              feedback_variables.push_back(variable_ID);
              Uf[equation_ID].Ufl = NULL;
              goto end;
            default:
            end:
652
653
              FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
              fnumexpr.write(code_file);
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
              eq_node = (BinaryOpNode *) getBlockEquationNodeID(block, i);
              lhs = eq_node->get_arg1();
              rhs = eq_node->get_arg2();
              lhs->compile(code_file, false, temporary_terms, map_idx, false, false);
              rhs->compile(code_file, false, temporary_terms, map_idx, false, false);

              FBINARY_ fbinary(oMinus);
              fbinary.write(code_file);

              FSTPR_ fstpr(i - block_recursive);
              fstpr.write(code_file);
            }
        }
      FENDEQU_ fendequ;
      fendequ.write(code_file);
      // The Jacobian if we have to solve the block
      if    (simulation_type != EVALUATE_BACKWARD
             && simulation_type != EVALUATE_FORWARD)
        {
          switch (simulation_type)
            {
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
677
678
679
680
              {
                FNUMEXPR_ fnumexpr(FirstEndoDerivative, 0, 0);
                fnumexpr.write(code_file);
              }
sebastien's avatar
sebastien committed
681
              compileDerivative(code_file, getBlockEquationID(block, 0), getBlockVariableID(block, 0), map_idx);
682
              {
683
684
                FSTPG_ fstpg(0);
                fstpg.write(code_file);
685
              }
686
              break;
687

688
689
690
691
692
693
694
695
696
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              count_u = feedback_variables.size();
              for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                {
                  unsigned int eq = it->first.first;
                  unsigned int var = it->first.second;
                  unsigned int eqr = getBlockEquationID(block, eq);
                  unsigned int varr = getBlockVariableID(block, var);
697
                  if (eq >= block_recursive && var >= block_recursive)
698
699
700
701
702
703
704
705
706
707
708
709
710
711
                    {
                      if (!Uf[eqr].Ufl)
                        {
                          Uf[eqr].Ufl = (Uff_l *) malloc(sizeof(Uff_l));
                          Uf[eqr].Ufl_First = Uf[eqr].Ufl;
                        }
                      else
                        {
                          Uf[eqr].Ufl->pNext = (Uff_l *) malloc(sizeof(Uff_l));
                          Uf[eqr].Ufl = Uf[eqr].Ufl->pNext;
                        }
                      Uf[eqr].Ufl->pNext = NULL;
                      Uf[eqr].Ufl->u = count_u;
                      Uf[eqr].Ufl->var = varr;
712
713
                      FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr);
                      fnumexpr.write(code_file);
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
                      compileChainRuleDerivative(code_file, eqr, varr, 0, map_idx);
                      FSTPSU_ fstpsu(count_u);
                      fstpsu.write(code_file);
                      count_u++;
                    }
                }
              for (i = 0; i < (int) block_size; i++)
                {
                  if (i >= (int) block_recursive)
                    {
                      FLDR_ fldr(i-block_recursive);
                      fldr.write(code_file);

                      FLDZ_ fldz;
                      fldz.write(code_file);

                      v = getBlockEquationID(block, i);
                      for (Uf[v].Ufl = Uf[v].Ufl_First; Uf[v].Ufl; Uf[v].Ufl = Uf[v].Ufl->pNext)
                        {
                          FLDSU_ fldsu(Uf[v].Ufl->u);
                          fldsu.write(code_file);
                          FLDSV_ fldsv(eEndogenous, Uf[v].Ufl->var);
                          fldsv.write(code_file);

                          FBINARY_ fbinary(oTimes);
                          fbinary.write(code_file);

                          FCUML_ fcuml;
                          fcuml.write(code_file);
                        }
                      Uf[v].Ufl = Uf[v].Ufl_First;
                      while (Uf[v].Ufl)
                        {
                          Uf[v].Ufl_First = Uf[v].Ufl->pNext;
                          free(Uf[v].Ufl);
                          Uf[v].Ufl = Uf[v].Ufl_First;
                        }
                      FBINARY_ fbinary(oMinus);
                      fbinary.write(code_file);

                      FSTPSU_ fstpsu(i - block_recursive);
                      fstpsu.write(code_file);

                    }
                }
              break;
            default:
              break;
            }
        }
    }
  FENDBLOCK_ fendblock;
  fendblock.write(code_file);
  FEND_ fend;
  fend.write(code_file);
  code_file.close();
}
771
772

void
773
StaticModel::Write_Inf_To_Bin_File_Block(const string &static_basename, const string &bin_basename, const int &num,
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
                                   int &u_count_int, bool &file_open) const
{
  int j;
  std::ofstream SaveCode;
  if (file_open)
    SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::in | ios::binary | ios::ate);
  else
    SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::binary);
  if (!SaveCode.is_open())
    {
      cout << "Error : Can't open file \"" << bin_basename << "_static.bin\" for writing\n";
      exit(EXIT_FAILURE);
    }
  u_count_int = 0;
  unsigned int block_size = getBlockSize(num);
  unsigned int block_mfs = getBlockMfs(num);
  unsigned int block_recursive = block_size - block_mfs;
  for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = blocks_derivatives[num].begin(); it != (blocks_derivatives[num]).end(); it++)
    {
      unsigned int eq = it->first.first;
      unsigned int var = it->first.second;
      int lag = 0;
796
      if (eq >= block_recursive && var >= block_recursive)
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
        {
          int v = eq - block_recursive;
          SaveCode.write(reinterpret_cast<char *>(&v), sizeof(v));
          int varr = var - block_recursive;
          SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
          SaveCode.write(reinterpret_cast<char *>(&lag), sizeof(lag));
          int u = u_count_int + block_mfs;
          SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
          u_count_int++;
        }
    }

  for (j = block_recursive; j < (int) block_size; j++)
    {
      unsigned int varr = getBlockVariableID(num, j);
      SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
    }
  for (j = block_recursive; j < (int) block_size; j++)
    {
      unsigned int eqr = getBlockEquationID(num, j);
      SaveCode.write(reinterpret_cast<char *>(&eqr), sizeof(eqr));
    }
  SaveCode.close();
}
821
822
823

map<pair<int, pair<int, int > >, NodeID>
StaticModel::collect_first_order_derivatives_endogenous()
sebastien's avatar
sebastien committed
824
{
825
826
827
828
  map<pair<int, pair<int, int > >, NodeID> endo_derivatives;
  for (first_derivatives_type::iterator it2 = first_derivatives.begin();
       it2 != first_derivatives.end(); it2++)
    {
829
      if (getTypeByDerivID(it2->first.second) == eEndogenous)
830
831
        {
          int eq = it2->first.first;
832
          int var = symbol_table.getTypeSpecificID(it2->first.second);
833
834
835
836
          int lag = 0;
          endo_derivatives[make_pair(eq, make_pair(var, lag))] = it2->second;
        }
    }
837
  return endo_derivatives;
838
839
840
}

void
841
StaticModel::computingPass(const eval_context_type &eval_context, bool no_tmp_terms, bool hessian, bool block, bool bytecode)
842
{
843
  // Compute derivatives w.r. to all endogenous, and possibly exogenous and exogenous deterministic
844
845
  set<int> vars;

846
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
847
848
849
850
    vars.insert(symbol_table.getID(eEndogenous, i));

  // Launch computations
  cout << "Computing static model derivatives:" << endl
851
       << " - order 1" << endl;
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
  first_derivatives.clear();

  computeJacobian(vars);

  if (hessian)
    {
      cout << " - order 2" << endl;
      computeHessian(vars);
    }

  if (block)
    {
      jacob_map contemporaneous_jacobian, static_jacobian;

      // for each block contains pair<Size, Feddback_variable>
      vector<pair<int, int> > blocks;

      evaluateAndReduceJacobian(eval_context, contemporaneous_jacobian, static_jacobian, dynamic_jacobian, cutoff, false);

sebastien's avatar
sebastien committed
871
      computeNonSingularNormalization(contemporaneous_jacobian, cutoff, static_jacobian, dynamic_jacobian);
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898

      computePrologueAndEpilogue(static_jacobian, equation_reordered, variable_reordered, prologue, epilogue);

      map<pair<int, pair<int, int> >, NodeID> first_order_endo_derivatives = collect_first_order_derivatives_endogenous();

      equation_type_and_normalized_equation = equationTypeDetermination(equations, first_order_endo_derivatives, variable_reordered, equation_reordered, mfs);

      cout << "Finding the optimal block decomposition of the model ...\n";

      if (prologue+epilogue < (unsigned int) equation_number())
        computeBlockDecompositionAndFeedbackVariablesForEachBlock(static_jacobian, dynamic_jacobian, prologue, epilogue, equation_reordered, variable_reordered, blocks, equation_type_and_normalized_equation, false, false, mfs, inv_equation_reordered, inv_variable_reordered);

      block_type_firstequation_size_mfs = reduceBlocksAndTypeDetermination(dynamic_jacobian, prologue, epilogue, blocks, equations, equation_type_and_normalized_equation, variable_reordered, equation_reordered);

      printBlockDecomposition(blocks);

      computeChainRuleJacobian(blocks_derivatives);

      blocks_linear = BlockLinear(blocks_derivatives, variable_reordered);

      collect_block_first_order_derivatives();

      global_temporary_terms = true;
      if (!no_tmp_terms)
        computeTemporaryTermsOrdered();
    }
  else
899
900
901
902
903
904
905
906
    {
      if (!no_tmp_terms)
        {
          computeTemporaryTerms(true);
          if (bytecode)
            computeTemporaryTermsMapping();
        }
    }
sebastien's avatar
sebastien committed
907
908
909
}

void
910
StaticModel::writeStaticMFile(const string &func_name) const
sebastien's avatar
sebastien committed
911
912
{
  // Writing comments and function definition command
913
914
915
916
917
918
919
920
921
922
923
  string filename = func_name + "_static.m";

  ofstream output;
  output.open(filename.c_str(), ios::out | ios::binary);
  if (!output.is_open())
    {
      cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
      exit(EXIT_FAILURE);
    }

  output << "function [residual, g1, g2] = " << func_name + "_static(y, x, params)" << endl
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
         << "%" << endl
         << "% Status : Computes static model for Dynare" << endl
         << "%" << endl
         << "% Warning : this file is generated automatically by Dynare" << endl
         << "%           from model file (.mod)" << endl
         << endl
         << "residual = zeros( " << equations.size() << ", 1);" << endl
         << endl
         << "%" << endl
         << "% Model equations" << endl
         << "%" << endl
         << endl;

  writeModelLocalVariables(output, oMatlabStaticModel);

  writeTemporaryTerms(temporary_terms, output, oMatlabStaticModel);

  writeModelEquations(output, oMatlabStaticModel);

  output << "if ~isreal(residual)" << endl
         << "  residual = real(residual)+imag(residual).^2;" << endl
         << "end" << endl
         << "if nargout >= 2," << endl
         << "  g1 = zeros(" << equations.size() << ", " << symbol_table.endo_nbr() << ");" << endl
         << endl
         << "%" << endl
         << "% Jacobian matrix" << endl
         << "%" << endl
         << endl;
sebastien's avatar
sebastien committed
953
954
955
956
957
958

  // Write Jacobian w.r. to endogenous only
  for (first_derivatives_type::const_iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
    {
      int eq = it->first.first;
959
      int symb_id = it->first.second;
sebastien's avatar
sebastien committed
960
961
      NodeID d1 = it->second;

962
      output << "  g1(" << eq+1 << "," << symbol_table.getTypeSpecificID(symb_id)+1 << ")=";
963
964
      d1->writeOutput(output, oMatlabStaticModel, temporary_terms);
      output << ";" << endl;
sebastien's avatar
sebastien committed
965
966
    }

967
968
969
970
971
972
973
974
975
976
977
978
  output << "  if ~isreal(g1)" << endl
         << "    g1 = real(g1)+2*imag(g1);" << endl
         << "  end" << endl
         << "end" << endl
         << "if nargout >= 3," << endl
         << "%" << endl
         << "% Hessian matrix" << endl
         << "%" << endl
         << endl;

  int g2ncols = symbol_table.endo_nbr() * symbol_table.endo_nbr();
  if (second_derivatives.size())
979
    {
980
      output << "  v2 = zeros(" << NNZDerivatives[1] << ",3);" << endl;
981

982
983
984
985
      // Write Hessian w.r. to endogenous only (only if 2nd order derivatives have been computed)
      int k = 0; // Keep the line of a 2nd derivative in v2
      for (second_derivatives_type::const_iterator it = second_derivatives.begin();
           it != second_derivatives.end(); it++)
986
        {
987
988
989
990
991
992
993
          int eq = it->first.first;
          int symb_id1 = it->first.second.first;
          int symb_id2 = it->first.second.second;
          NodeID d2 = it->second;

          int tsid1 = symbol_table.getTypeSpecificID(symb_id1);
          int tsid2 = symbol_table.getTypeSpecificID(symb_id2);
sebastien's avatar
sebastien committed
994

995
996
          int col_nb = tsid1*symbol_table.endo_nbr()+tsid2;
          int col_nb_sym = tsid2*symbol_table.endo_nbr()+tsid1;
sebastien's avatar
sebastien committed
997

998
999
1000
1001
1002
          output << "v2(" << k+1 << ",1)=" << eq + 1 << ";" << endl
                 << "v2(" << k+1 << ",2)=" << col_nb + 1 << ";" << endl
                 << "v2(" << k+1 << ",3)=";
          d2->writeOutput(output, oMatlabStaticModel, temporary_terms);
          output << ";" << endl;
sebastien's avatar
sebastien committed
1003
1004

          k++;
1005
1006
1007
1008
1009
1010
1011
1012
1013

          // Treating symetric elements
          if (symb_id1 != symb_id2)
            {
              output << "v2(" << k+1 << ",1)=" << eq + 1 << ";" << endl
                     << "v2(" << k+1 << ",2)=" << col_nb_sym + 1 << ";" << endl
                     << "v2(" << k+1 << ",3)=v2(" << k << ",3);" << endl;
              k++;
            }
1014
        }
sebastien's avatar
sebastien committed
1015

1016
      output << "  g2 = sparse(v2(:,1),v2(:,2),v2(:,3)," << equations.size() << "," << g2ncols << ");" << endl;
sebastien's avatar
sebastien committed
1017
    }
1018
1019
1020
1021
1022
  else // Either hessian is all zero, or we didn't compute it
    output << "  g2 = sparse([],[],[]," << equations.size() << "," << g2ncols << ");" << endl;

  output << "end;" << endl; // Close the if nargout >= 3 statement
  output.close();
sebastien's avatar
sebastien committed
1023
1024
}

1025
1026
void
StaticModel::writeStaticFile(const string &basename, bool block, bool bytecode) const
1027
1028
{
  int r;
sebastien's avatar
sebastien committed
1029

1030
  //assert(block);
1031

1032
#ifdef _WIN32
1033
  r = mkdir(basename.c_str());
1034
#else
1035
  r = mkdir(basename.c_str(), 0777);
1036
#endif
1037
1038
1039
1040
1041
1042
  if (r < 0 && errno != EEXIST)
    {
      perror("ERROR");
      exit(EXIT_FAILURE);
    }
  if (block && bytecode)
1043
1044
1045
    writeModelEquationsCode_Block(basename + "_static", basename, map_idx);
  else if (!block && bytecode)
    writeModelEquationsCode(basename + "_static", basename, map_idx);
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
  else if (block && !bytecode)
    {
      chdir(basename.c_str());
      writeModelEquationsOrdered_M(basename + "_static");
      chdir("..");
      writeStaticBlockMFSFile(basename);
    }
  else
    writeStaticMFile(basename);
}
1056
1057

void
1058
StaticModel::writeStaticBlockMFSFile(const string &basename) const
1059
{
1060
  string filename = basename + "_static.m";
1061

1062
1063
1064
  ofstream output;
  output.open(filename.c_str(), ios::out | ios::binary);
  if (!output.is_open())
1065
    {
1066
1067
      cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
      exit(EXIT_FAILURE);
1068
1069
    }

1070
  string func_name = basename + "_static";
1071

1072
1073
1074
1075
  output << "function [residual, g1, y] = " << func_name << "(nblock, y, x, params)" << endl
         << "  residual = [];" << endl
         << "  g1 = [];" << endl
         << "  switch nblock" << endl;
1076

1077
  unsigned int nb_blocks = getNbBlocks();
1078

1079
  for (int b = 0; b < (int) nb_blocks; b++)
1080
1081
    {

1082
      set<int> local_var;
1083

1084
      output << "    case " << b+1 << endl;
1085

1086
1087
      BlockSimulationType simulation_type = getBlockSimulationType(b);

1088
1089
1090
1091
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        output << "      y = " << func_name << "_" << b+1 << "(y, x, params);\n";
      else
        output << "      [residual, y, g1] = " << func_name << "_" << b+1 << "(y, x, params);\n";
sebastien's avatar
sebastien committed
1092
    }
1093
1094
1095
  output << "  end" << endl
         << "end" << endl;
  output.close();
sebastien's avatar
sebastien committed
1096

1097
}
sebastien's avatar
sebastien committed
1098

1099
1100
1101
1102
1103
void
StaticModel::writeOutput(ostream &output, bool block) const
{
  if (!block)
    return;
1104

1105
1106
  unsigned int nb_blocks = getNbBlocks();
  output << "M_.blocksMFS = cell(" << nb_blocks << ", 1);" << endl;
1107
  for (int b = 0; b < (int) nb_blocks; b++)
1108
    {
1109
1110
1111
1112
1113
      output << "M_.blocksMFS{" << b+1 << "} = [ ";
      unsigned int block_size = getBlockSize(b);
      unsigned int block_mfs = getBlockMfs(b);
      unsigned int block_recursive = block_size - block_mfs;
      BlockSimulationType simulation_type = getBlockSimulationType(b);
1114

1115
      if (simulation_type != EVALUATE_BACKWARD && simulation_type != EVALUATE_FORWARD)
1116
        for (int i = block_recursive; i < (int) block_size; i++)
1117
          output << getBlockVariableID(b, i)+1 << "; ";
1118

1119
      output << "];" << endl;
1120
    }
sebastien's avatar
sebastien committed
1121
1122
}

1123
1124
1125
1126
SymbolType
StaticModel::getTypeByDerivID(int deriv_id) const throw (UnknownDerivIDException)
{
  return symbol_table.getType(getSymbIDByDerivID(deriv_id));
1127
}
1128

1129
1130
int
StaticModel::getLagByDerivID(int deriv_id) const throw (UnknownDerivIDException)
1131
{
1132
  return 0;
1133
}
1134

1135
1136
int
StaticModel::getSymbIDByDerivID(int deriv_id) const throw (UnknownDerivIDException)
1137
{
1138
  return deriv_id;
1139
1140
}

1141
1142
int
StaticModel::getDerivID(int symb_id, int lag) const throw (UnknownDerivIDException)
1143
{
1144
1145
1146
1147
1148
  if (symbol_table.getType(symb_id) == eEndogenous)
    return symb_id;
  else
    return -1;
}
1149

1150
1151
1152
1153
1154
1155
1156
1157
map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>
StaticModel::get_Derivatives(int block)
{
  map<pair<pair<int, pair<int, int> >, pair<int, int> >, int> Derivatives;
  Derivatives.clear();
  int block_size = getBlockSize(block);
  int block_nb_recursive = block_size - getBlockMfs(block);
  int lag = 0;
1158
  for (int eq = 0; eq < block_size; eq++)
1159
    {
1160
      int eqr = getBlockEquationID(block, eq);
1161
      for (int var = 0; var < block_size; var++)
1162
        {
1163
          int varr = getBlockVariableID(block, var);
1164
          if (dynamic_jacobian.find(make_pair(lag, make_pair(eqr, varr))) != dynamic_jacobian.end())
1165
1166
1167
            {
              bool OK = true;
              map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>::const_iterator its = Derivatives.find(make_pair(make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr)));
1168
              if (its != Derivatives.end())
1169
                {
1170
1171
                  if (its->second == 2)
                    OK = false;
1172
                }
1173

1174
              if (OK)
1175
                {
1176
                  if (getBlockEquationType(block, eq) == E_EVALUATE_S && eq < block_nb_recursive)
1177
1178
1179
1180
1181
1182
                    //It's a normalized equation, we have to recompute the derivative using chain rule derivative function
                    Derivatives[make_pair(make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr))] = 1;
                  else
                    //It's a feedback equation we can use the derivatives
                    Derivatives[make_pair(make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr))] = 0;
                }
1183
              if (var < block_nb_recursive)
1184
1185
                {
                  int eqs = getBlockEquationID(block, var);
1186
                  for (int vars = block_nb_recursive; vars < block_size; vars++)
1187
1188
1189
                    {
                      int varrs = getBlockVariableID(block, vars);
                      //A new derivative needs to be computed using the chain rule derivative function (a feedback variable appears in a recursive equation)
1190
                      if (Derivatives.find(make_pair(make_pair(lag, make_pair(var, vars)), make_pair(eqs, varrs))) != Derivatives.end())
1191
1192
1193
1194
                        Derivatives[make_pair(make_pair(lag, make_pair(eq, vars)), make_pair(eqr, varrs))] = 2;
                    }
                }
            }
1195
1196
        }
    }
1197

1198
  return (Derivatives);
1199
}
1200
1201

void
1202
StaticModel::computeChainRuleJacobian(t_blocks_derivatives &blocks_derivatives)
1203
{
1204
1205
1206
  map<int, NodeID> recursive_variables;
  unsigned int nb_blocks = getNbBlocks();
  blocks_derivatives = t_blocks_derivatives(nb_blocks);
1207
  for (unsigned int block = 0; block < nb_blocks; block++)
1208
    {
1209
1210
1211
1212
1213
1214
      t_block_derivatives_equation_variable_laglead_nodeid tmp_derivatives;
      recursive_variables.clear();
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      int block_size = getBlockSize(block);
      int block_nb_mfs = getBlockMfs(block);
      int block_nb_recursives = block_size - block_nb_mfs;
1215
      if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
1216
        {
1217
          blocks_derivatives.push_back(t_block_derivatives_equation_variable_laglead_nodeid(0));
1218
          for (int i = 0; i < block_nb_recursives; i++)
1219
1220
1221
1222
1223
1224
1225
1226
            {
              if (getBlockEquationType(block, i) == E_EVALUATE_S)
                recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationRenormalizedNodeID(block, i);
              else
                recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationNodeID(block, i);
            }
          map<pair<pair<int, pair<int, int> >, pair<int, int> >, int> Derivatives = get_Derivatives(block);
          map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>::const_iterator it = Derivatives.begin();
1227
          for (int i = 0; i < (int) Derivatives.size(); i++)
1228
            {
1229
1230
1231
1232
1233
1234
1235
1236
              int Deriv_type = it->second;
              pair<pair<int, pair<int, int> >, pair<int, int> > it_l(it->first);
              it++;
              int lag = it_l.first.first;
              int eq = it_l.first.second.first;
              int var = it_l.first.second.second;
              int eqr = it_l.second.first;
              int varr = it_l.second.second;
1237
              if (Deriv_type == 0)
1238
1239
1240
1241
                first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = first_derivatives[make_pair(eqr, getDerivID(symbol_table.getID(eEndogenous, varr), lag))];
              else if (Deriv_type == 1)
                first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = (equation_type_and_normalized_equation[eqr].second)->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
              else if (Deriv_type == 2)
1242
                {
1243
                  if (getBlockEquationType(block, eq) == E_EVALUATE_S && eq < block_nb_recursives)
1244
1245
1246
                    first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = (equation_type_and_normalized_equation[eqr].second)->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
                  else
                    first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = equations[eqr]->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
1247
                }
1248
              tmp_derivatives.push_back(make_pair(make_pair(eq, var), make_pair(lag, first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))])));
1249
1250
            }
        }
1251
1252
      else if (simulation_type == SOLVE_BACKWARD_SIMPLE || simulation_type == SOLVE_FORWARD_SIMPLE
               || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
1253
        {
1254
          blocks_derivatives.push_back(t_block_derivatives_equation_variable_laglead_nodeid(0));
1255
          for (int i = 0; i < block_nb_recursives; i++)
1256
            {
1257
              if (getBlockEquationType(block, i) == E_EVALUATE_S)
1258
                recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationRenormalizedNodeID(block, i);
1259
              else
1260
                recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationNodeID(block, i);
1261
            }
1262
          for (int eq = block_nb_recursives; eq < block_size; eq++)
1263
1264
            {
              int eqr = getBlockEquationID(block, eq);
1265
              for (int var = block_nb_recursives; var < block_size; var++)
1266
1267
1268
1269
1270
1271
1272
                {
                  int varr = getBlockVariableID(block, var);
                  NodeID d1 = equations[eqr]->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), 0), recursive_variables);
                  if (d1 == Zero)
                    continue;
                  first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, 0))] = d1;
                  tmp_derivatives.push_back(
1273
                                            make_pair(make_pair(eq, var), make_pair(0, first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, 0))])));
1274
                }
1275
            }
1276
        }
1277
      blocks_derivatives[block] = tmp_derivatives;
1278
1279
1280
1281
    }
}

void
1282
StaticModel::collect_block_first_order_derivatives()
1283
{
1284
1285
1286
1287
1288
  //! vector for an equation or a variable indicates the block number
  vector<int> equation_2_block, variable_2_block;
  unsigned int nb_blocks = getNbBlocks();
  equation_2_block = vector<int>(equation_reordered.size());
  variable_2_block = vector<int>(variable_reordered.size());
1289
  for (unsigned int block = 0; block < nb_blocks; block++)
1290
    {
1291
      unsigned int block_size = getBlockSize(block);
1292
      for (unsigned int i = 0; i < block_size; i++)
1293
1294
1295
1296
        {
          equation_2_block[getBlockEquationID(block, i)] = block;
          variable_2_block[getBlockVariableID(block, i)] = block;
        }
1297
    }
1298
  derivative_endo = vector<t_derivative>(nb_blocks);
1299
1300
  endo_max_leadlag_block = vector<pair<int, int> >(nb_blocks, make_pair(0, 0));
  max_leadlag_block = vector<pair<int, int> >(nb_blocks, make_pair(0, 0));
1301
1302
  for (first_derivatives_type::iterator it2 = first_derivatives.begin();
       it2 != first_derivatives.