StaticModel.cc 61.5 KB
Newer Older
sebastien's avatar
sebastien committed
1
/*
2
 * Copyright (C) 2003-2010 Dynare Team
sebastien's avatar
sebastien committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
21
#include <iostream>
#include <cmath>
22
#include <cstdlib>
23
#include <cassert>
24
25
#include <cstdio>
#include <cerrno>
sebastien's avatar
sebastien committed
26
#include <algorithm>
27
28
29
30
31
32
33
34
35
#include "StaticModel.hh"

// For mkdir() and chdir()
#ifdef _WIN32
# include <direct.h>
#else
# include <unistd.h>
# include <sys/stat.h>
# include <sys/types.h>
36
#endif
sebastien's avatar
sebastien committed
37

38
StaticModel::StaticModel(SymbolTable &symbol_table_arg,
39
40
41
                         NumericalConstants &num_constants_arg,
                         ExternalFunctionsTable &external_functions_table_arg) :
  ModelTree(symbol_table_arg, num_constants_arg, external_functions_table_arg),
42
43
44
  global_temporary_terms(true),
  cutoff(1e-15),
  mfs(0)
45
46
{
}
47

48
void
49
StaticModel::compileDerivative(ofstream &code_file, unsigned int &instruction_number, int eq, int symb_id, map_idx_t &map_idx, temporary_terms_t temporary_terms) const
50
{
51
  first_derivatives_t::const_iterator it = first_derivatives.find(make_pair(eq, symbol_table.getID(eEndogenous, symb_id)));
52
  if (it != first_derivatives.end())
53
    (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
54
55
56
  else
    {
      FLDZ_ fldz;
57
      fldz.write(code_file, instruction_number);
58
59
    }
}
sebastien's avatar
sebastien committed
60

61
void
62
StaticModel::compileChainRuleDerivative(ofstream &code_file, unsigned int &instruction_number, int eqr, int varr, int lag, map_idx_t &map_idx, temporary_terms_t temporary_terms) const
63
{
64
  map<pair<int, pair<int, int> >, expr_t>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
65
  if (it != first_chain_rule_derivatives.end())
66
    (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
67
68
69
  else
    {
      FLDZ_ fldz;
70
      fldz.write(code_file, instruction_number);
71
72
73
    }
}

74
75
76
77
78
79
80
81
82
83
void
StaticModel::initializeVariablesAndEquations()
{
  for(int j = 0; j < equation_number(); j++)
    {
      equation_reordered.push_back(j);
      variable_reordered.push_back(j);
    }
}

84
85
86
void
StaticModel::computeTemporaryTermsOrdered()
{
87
88
  map<expr_t, pair<int, int> > first_occurence;
  map<expr_t, int> reference_count;
89
  BinaryOpNode *eq_node;
90
91
  first_derivatives_t::const_iterator it;
  first_chain_rule_derivatives_t::const_iterator it_chr;
92
93
94
95
96
  ostringstream tmp_s;
  v_temporary_terms.clear();
  map_idx.clear();

  unsigned int nb_blocks = getNbBlocks();
97
  v_temporary_terms = vector< vector<temporary_terms_t> >(nb_blocks);
98
  v_temporary_terms_local = vector< vector<temporary_terms_t> >(nb_blocks);
99

100
  v_temporary_terms_inuse = vector<temporary_terms_inuse_t>(nb_blocks);
101

102
103
  map_idx2 = vector<map_idx_t>(nb_blocks);

104
  temporary_terms.clear();
105
106
107

  //local temporay terms
  for (unsigned int block = 0; block < nb_blocks; block++)
108
    {
109
110
111
112
113
114
      map<expr_t, int> reference_count_local;
      reference_count_local.clear();
      map<expr_t, pair<int, int> > first_occurence_local;
      first_occurence_local.clear();
      temporary_terms_t temporary_terms_l;
      temporary_terms_l.clear();
115

116
117
118
119
120
121
122
123
124
125
      unsigned int block_size = getBlockSize(block);
      unsigned int block_nb_mfs = getBlockMfs(block);
      unsigned int block_nb_recursives = block_size - block_nb_mfs;
      v_temporary_terms_local[block] = vector<temporary_terms_t>(block_size);

      for (unsigned int i = 0; i < block_size; i++)
        {
          if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
            getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count_local, temporary_terms_l, first_occurence_local, block, v_temporary_terms_local,  i);
          else
126
            {
127
128
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              eq_node->computeTemporaryTerms(reference_count_local, temporary_terms_l, first_occurence_local, block, v_temporary_terms_local,  i);
129
130
            }
        }
131
132
133
134
135
136
137
138
139
140
141
142
143
144
      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
        {
          expr_t id = it->second.second;
          id->computeTemporaryTerms(reference_count_local, temporary_terms_l, first_occurence_local, block, v_temporary_terms_local,  block_size-1);
        }
      //temporary_terms_g.insert(temporary_terms_l.begin(), temporary_terms_l.end());
      set<int> temporary_terms_in_use;
      temporary_terms_in_use.clear();
      v_temporary_terms_inuse[block] = temporary_terms_in_use;
      /*for (int i = 0; i < (int) block_size; i++)
        for (temporary_terms_t::const_iterator it = v_temporary_terms_local[block][i].begin();
             it != v_temporary_terms_local[block][i].end(); it++)
          (*it)->collectTemporary_terms(temporary_terms_g, temporary_terms_in_use, block);*/
      computeTemporaryTermsMapping(temporary_terms_l, map_idx2[block]);
145
    }
146
147
148

  // global temporay terms
  for (unsigned int block = 0; block < nb_blocks; block++)
149
    {
150
151
152
153
154
155
      // Compute the temporary terms reordered
      unsigned int block_size = getBlockSize(block);
      unsigned int block_nb_mfs = getBlockMfs(block);
      unsigned int block_nb_recursives = block_size - block_nb_mfs;
      v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
      for (unsigned int i = 0; i < block_size; i++)
156
        {
157
158
159
          if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
            getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
          else
160
            {
161
162
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, i);
163
164
            }
        }
165
      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
166
        {
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
          expr_t id = it->second.second;
          id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
        }
    }

  for (unsigned int block = 0; block < nb_blocks; block++)
    {
      // Collecte the temporary terms reordered
      unsigned int block_size = getBlockSize(block);
      unsigned int block_nb_mfs = getBlockMfs(block);
      unsigned int block_nb_recursives = block_size - block_nb_mfs;
      set<int> temporary_terms_in_use;
      for (unsigned int i = 0; i < block_size; i++)
        {
          if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
            getBlockEquationRenormalizedExpr(block, i)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
          else
184
            {
185
186
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              eq_node->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
187
188
            }
        }
189
190
191
192
193
194
195
196
197
198
      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
        {
          expr_t id = it->second.second;
          id->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
        }
      for (int i = 0; i < (int) getBlockSize(block); i++)
        for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
             it != v_temporary_terms[block][i].end(); it++)
          (*it)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
      v_temporary_terms_inuse[block] = temporary_terms_in_use;
199
    }
200
  computeTemporaryTermsMapping(temporary_terms, map_idx);
201
202
203
}

void
204
StaticModel::computeTemporaryTermsMapping(temporary_terms_t &temporary_terms, map_idx_t &map_idx)
205
{
206
  // Add a mapping form node ID to temporary terms order
207
  int j = 0;
208
  for (temporary_terms_t::const_iterator it = temporary_terms.begin();
209
      it != temporary_terms.end(); it++)
210
    map_idx[(*it)->idx] = j++;
211
212
213
214
}

void
StaticModel::writeModelEquationsOrdered_M(const string &static_basename) const
215
216
217
{
  string tmp_s, sps;
  ostringstream tmp_output, tmp1_output, global_output;
218
  expr_t lhs = NULL, rhs = NULL;
219
  BinaryOpNode *eq_node;
220
  map<expr_t, int> reference_count;
221
  temporary_terms_t local_temporary_terms;
222
223
224
225
  ofstream  output;
  int nze;
  vector<int> feedback_variables;
  ExprNodeOutputType local_output_type;
226

Sébastien Villemot's avatar
Sébastien Villemot committed
227
  local_output_type = oMatlabStaticModelSparse;
228
  if (global_temporary_terms)
Sébastien Villemot's avatar
Sébastien Villemot committed
229
    local_temporary_terms = temporary_terms;
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

  //----------------------------------------------------------------------
  //For each block
  for (unsigned int block = 0; block < getNbBlocks(); block++)
    {
      //recursive_variables.clear();
      feedback_variables.clear();
      //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
      nze = derivative_endo[block].size();
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      unsigned int block_size = getBlockSize(block);
      unsigned int block_mfs = getBlockMfs(block);
      unsigned int block_recursive = block_size - block_mfs;

      tmp1_output.str("");
      tmp1_output << static_basename << "_" << block+1 << ".m";
      output.open(tmp1_output.str().c_str(), ios::out | ios::binary);
      output << "%\n";
      output << "% " << tmp1_output.str() << " : Computes static model for Dynare\n";
      output << "%\n";
      output << "% Warning : this file is generated automatically by Dynare\n";
      output << "%           from model file (.mod)\n\n";
      output << "%/\n";
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        output << "function y = " << static_basename << "_" << block+1 << "(y, x, params)\n";
      else
        output << "function [residual, y, g1] = " << static_basename << "_" << block+1 << "(y, x, params)\n";

      BlockType block_type;
      if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
        block_type = SIMULTANS;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) < prologue)
        block_type = PROLOGUE;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) >= equations.size() - epilogue)
        block_type = EPILOGUE;
      else
        block_type = SIMULTANS;
      output << "  % ////////////////////////////////////////////////////////////////////////" << endl
             << "  % //" << string("                     Block ").substr(int (log10(block + 1))) << block + 1 << " " << BlockType0(block_type)
             << "          //" << endl
             << "  % //                     Simulation type "
             << BlockSim(simulation_type) << "  //" << endl
             << "  % ////////////////////////////////////////////////////////////////////////" << endl;
      output << "  global options_;" << endl;
      //The Temporary terms
      if (simulation_type != EVALUATE_BACKWARD  && simulation_type != EVALUATE_FORWARD)
        output << "  g1 = zeros(" << block_mfs << ", " << block_mfs << ");" << endl;

      if (v_temporary_terms_inuse[block].size())
        {
          tmp_output.str("");
285
          for (temporary_terms_inuse_t::const_iterator it = v_temporary_terms_inuse[block].begin();
286
287
288
289
290
291
292
293
294
295
296
297
298
               it != v_temporary_terms_inuse[block].end(); it++)
            tmp_output << " T" << *it;
          output << "  global" << tmp_output.str() << ";\n";
        }

      if (simulation_type != EVALUATE_BACKWARD && simulation_type != EVALUATE_FORWARD)
        output << "  residual=zeros(" << block_mfs << ",1);\n";

      // The equations
      for (unsigned int i = 0; i < block_size; i++)
        {
          if (!global_temporary_terms)
            local_temporary_terms = v_temporary_terms[block][i];
299
          temporary_terms_t tt2;
300
301
302
303
          tt2.clear();
          if (v_temporary_terms[block].size())
            {
              output << "  " << "% //Temporary variables" << endl;
304
              for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
                   it != v_temporary_terms[block][i].end(); it++)
                {
                  output << "  " <<  sps;
                  (*it)->writeOutput(output, local_output_type, local_temporary_terms);
                  output << " = ";
                  (*it)->writeOutput(output, local_output_type, tt2);
                  // Insert current node into tt2
                  tt2.insert(*it);
                  output << ";" << endl;
                }
            }

          int variable_ID = getBlockVariableID(block, i);
          int equation_ID = getBlockEquationID(block, i);
          EquationType equ_type = getBlockEquationType(block, i);
          string sModel = symbol_table.getName(symbol_table.getID(eEndogenous, variable_ID));
321
          eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
          lhs = eq_node->get_arg1();
          rhs = eq_node->get_arg2();
          tmp_output.str("");
          lhs->writeOutput(tmp_output, local_output_type, local_temporary_terms);
          switch (simulation_type)
            {
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
            evaluation:
              output << "  % equation " << getBlockEquationID(block, i)+1 << " variable : " << sModel
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
              output << "  ";
              if (equ_type == E_EVALUATE)
                {
                  output << tmp_output.str();
                  output << " = ";
                  rhs->writeOutput(output, local_output_type, local_temporary_terms);
                }
              else if (equ_type == E_EVALUATE_S)
                {
                  output << "%" << tmp_output.str();
                  output << " = ";
                  if (isBlockEquationRenormalized(block, i))
                    {
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << "\n  ";
                      tmp_output.str("");
349
                      eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
                      lhs = eq_node->get_arg1();
                      rhs = eq_node->get_arg2();
                      lhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << " = ";
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                    }
                }
              else
                {
                  cerr << "Type missmatch for equation " << equation_ID+1  << "\n";
                  exit(EXIT_FAILURE);
                }
              output << ";\n";
              break;
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < block_recursive)
                goto evaluation;
              feedback_variables.push_back(variable_ID);
              output << "  % equation " << equation_ID+1 << " variable : " << sModel
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
              output << "  " << "residual(" << i+1-block_recursive << ") = (";
              goto end;
            default:
            end:
              output << tmp_output.str();
              output << ") - (";
              rhs->writeOutput(output, local_output_type, local_temporary_terms);
              output << ");\n";
            }
        }
      // The Jacobian if we have to solve the block
      if (simulation_type == SOLVE_BACKWARD_SIMPLE   || simulation_type == SOLVE_FORWARD_SIMPLE
          || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
        output << "  " << sps << "% Jacobian  " << endl;
      switch (simulation_type)
        {
        case SOLVE_BACKWARD_SIMPLE:
        case SOLVE_FORWARD_SIMPLE:
        case SOLVE_BACKWARD_COMPLETE:
        case SOLVE_FORWARD_COMPLETE:
393
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
394
395
396
397
398
            {
              unsigned int eq = it->first.first;
              unsigned int var = it->first.second;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
399
              expr_t id = it->second.second;
400
401
402
403
404
405
406
407
408
409
410
411
412
413
              output << "    g1(" << eq+1-block_recursive << ", " << var+1-block_recursive << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms);
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                     << "(" << 0
                     << ") " << varr+1
                     << ", equation=" << eqr+1 << endl;
            }
          break;
        default:
          break;
        }
      output.close();
    }
}
414
415

void
416
StaticModel::writeModelEquationsCode(const string file_name, const string bin_basename, map_idx_t map_idx) const
417
418
419
420
{

  ostringstream tmp_output;
  ofstream code_file;
421
  unsigned int instruction_number = 0;
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
  bool file_open = false;

  string main_name = file_name;
  main_name += ".cod";
  code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
  if (!code_file.is_open())
    {
      cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
      exit(EXIT_FAILURE);
    }
  int count_u;
  int u_count_int = 0;

  Write_Inf_To_Bin_File(file_name, u_count_int, file_open, false, symbol_table.endo_nbr());
  file_open = true;

  //Temporary variables declaration
439
440
  FDIMST_ fdimst(temporary_terms.size());
  fdimst.write(code_file, instruction_number);
441
442
443
444
445
446
447
448
449
450
  FBEGINBLOCK_ fbeginblock(symbol_table.endo_nbr(),
                           SOLVE_FORWARD_COMPLETE,
                           0,
                           symbol_table.endo_nbr(),
                           variable_reordered,
                           equation_reordered,
                           false,
                           symbol_table.endo_nbr(),
                           0,
                           0,
451
452
                           u_count_int,
                           symbol_table.endo_nbr()
453
                           );
454
  fbeginblock.write(code_file, instruction_number);
455
456
457

  // Add a mapping form node ID to temporary terms order
  int j = 0;
458
  for (temporary_terms_t::const_iterator it = temporary_terms.begin();
459
460
       it != temporary_terms.end(); it++)
    map_idx[(*it)->idx] = j++;
461
  compileTemporaryTerms(code_file, instruction_number, temporary_terms, map_idx, false, false);
462

463
  compileModelEquations(code_file, instruction_number, temporary_terms, map_idx, false, false);
464
465

  FENDEQU_ fendequ;
466
  fendequ.write(code_file, instruction_number);
467
468
469
470

  vector<vector<pair<int, int> > > derivatives;
  derivatives.resize(symbol_table.endo_nbr());
  count_u = symbol_table.endo_nbr();
471
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
472
473
474
475
476
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
477
          expr_t d1 = it->second;
478
479
480
          unsigned int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          unsigned int var = symbol_table.getTypeSpecificID(symb);
481
          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var);
482
          fnumexpr.write(code_file, instruction_number);
483
484
485
486
          if (!derivatives[eq].size())
            derivatives[eq].clear();
          derivatives[eq].push_back(make_pair(var, count_u));

487
          d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
488
489

          FSTPSU_ fstpsu(count_u);
490
          fstpsu.write(code_file, instruction_number);
491
492
493
494
495
496
          count_u++;
        }
    }
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
    {
      FLDR_ fldr(i);
497
      fldr.write(code_file, instruction_number);
498
499
500
501
      for(vector<pair<int, int> >::const_iterator it = derivatives[i].begin();
          it != derivatives[i].end(); it++)
        {
          FLDSU_ fldsu(it->second);
502
          fldsu.write(code_file, instruction_number);
503
          FLDSV_ fldsv(eEndogenous, it->first);
504
          fldsv.write(code_file, instruction_number);
505
          FBINARY_ fbinary(oTimes);
506
          fbinary.write(code_file, instruction_number);
507
508
509
          if (it != derivatives[i].begin())
            {
              FBINARY_ fbinary(oPlus);
510
              fbinary.write(code_file, instruction_number);
511
512
513
            }
        }
      FBINARY_ fbinary(oMinus);
514
      fbinary.write(code_file, instruction_number);
515
      FSTPSU_ fstpsu(i);
516
      fstpsu.write(code_file, instruction_number);
517
518
    }
  FENDBLOCK_ fendblock;
519
  fendblock.write(code_file, instruction_number);
520
  FEND_ fend;
521
  fend.write(code_file, instruction_number);
522
523
524
525
  code_file.close();
}

void
526
StaticModel::writeModelEquationsCode_Block(const string file_name, const string bin_basename, map_idx_t map_idx, vector<map_idx_t> map_idx2) const
527
528
{
  struct Uff_l
529
  {
530
531
532
    int u, var, lag;
    Uff_l *pNext;
  };
533

534
535
536
537
538
539
540
541
542
  struct Uff
  {
    Uff_l *Ufl, *Ufl_First;
  };

  int i, v;
  string tmp_s;
  ostringstream tmp_output;
  ofstream code_file;
543
  unsigned int instruction_number = 0;
544
  expr_t lhs = NULL, rhs = NULL;
545
546
  BinaryOpNode *eq_node;
  Uff Uf[symbol_table.endo_nbr()];
547
  map<expr_t, int> reference_count;
548
549
550
551
552
553
554
555
556
557
558
559
560
  vector<int> feedback_variables;
  bool file_open = false;

  string main_name = file_name;
  main_name += ".cod";
  code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
  if (!code_file.is_open())
    {
      cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
      exit(EXIT_FAILURE);
    }
  //Temporary variables declaration

561
562
  FDIMST_ fdimst(temporary_terms.size());
  fdimst.write(code_file, instruction_number);
563
564
565
566
567
568
569

  for (unsigned int block = 0; block < getNbBlocks(); block++)
    {
      feedback_variables.clear();
      if (block > 0)
        {
          FENDBLOCK_ fendblock;
570
          fendblock.write(code_file, instruction_number);
571
572
573
574
575
576
577
578
579
580
581
        }
      int count_u;
      int u_count_int = 0;
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      unsigned int block_size = getBlockSize(block);
      unsigned int block_mfs = getBlockMfs(block);
      unsigned int block_recursive = block_size - block_mfs;

      if (simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE
          || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
        {
582
          Write_Inf_To_Bin_File_Block(file_name, bin_basename, block, u_count_int, file_open);
583
584
585
586
587
588
589
590
591
592
593
594
595
          file_open = true;
        }

      FBEGINBLOCK_ fbeginblock(block_mfs,
                               simulation_type,
                               getBlockFirstEquation(block),
                               block_size,
                               variable_reordered,
                               equation_reordered,
                               blocks_linear[block],
                               symbol_table.endo_nbr(),
                               0,
                               0,
596
                               u_count_int,
597
                               /*symbol_table.endo_nbr()*/block_size
598
                               );
599

600
      fbeginblock.write(code_file, instruction_number);
601

602
603
604
605
606
      // Get the current code_file position and jump if eval = true
      streampos pos1 = code_file.tellp();
      FJMPIFEVAL_ fjmp_if_eval(0);
      fjmp_if_eval.write(code_file, instruction_number);
      int prev_instruction_number = instruction_number;
607
608
609
      for (i = 0; i < (int) block_size; i++)
        {
          //The Temporary terms
610
          temporary_terms_t tt2;
611
612
613
          tt2.clear();
          if (v_temporary_terms[block].size())
            {
614
              for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
615
616
                   it != v_temporary_terms[block][i].end(); it++)
                {
617
                  FNUMEXPR_ fnumexpr(TemporaryTerm, (int)(map_idx.find((*it)->idx)->second));
618
619
                  fnumexpr.write(code_file, instruction_number);
                  (*it)->compile(code_file, instruction_number, false, tt2, map_idx, false, false);
620
                  FSTPST_ fstpst((int)(map_idx.find((*it)->idx)->second));
621
                  fstpst.write(code_file, instruction_number);
622
623
624
625
626
                  // Insert current node into tt2
                  tt2.insert(*it);
                }
            }

627
          // The equations
628
629
630
631
632
633
634
635
          int variable_ID, equation_ID;
          EquationType equ_type;
          switch (simulation_type)
            {
            evaluation:
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
              equ_type = getBlockEquationType(block, i);
636
637
              {
                FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
638
                fnumexpr.write(code_file, instruction_number);
639
              }
640
641
              if (equ_type == E_EVALUATE)
                {
642
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
643
644
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
645
646
                  rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
                  lhs->compile(code_file, instruction_number, true, temporary_terms, map_idx, false, false);
647
648
649
                }
              else if (equ_type == E_EVALUATE_S)
                {
650
                  eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
651
652
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
653
654
                  rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
                  lhs->compile(code_file, instruction_number, true, temporary_terms, map_idx, false, false);
655
656
657
658
659
660
661
662
663
664
665
666
667
                }
              break;
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < (int) block_recursive)
                goto evaluation;
              variable_ID = getBlockVariableID(block, i);
              equation_ID = getBlockEquationID(block, i);
              feedback_variables.push_back(variable_ID);
              Uf[equation_ID].Ufl = NULL;
              goto end;
            default:
            end:
668
              FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
669
              fnumexpr.write(code_file, instruction_number);
670
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
671
672
              lhs = eq_node->get_arg1();
              rhs = eq_node->get_arg2();
673
674
              lhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
              rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
675
676

              FBINARY_ fbinary(oMinus);
677
              fbinary.write(code_file, instruction_number);
678
679

              FSTPR_ fstpr(i - block_recursive);
680
              fstpr.write(code_file, instruction_number);
681
682
683
            }
        }
      FENDEQU_ fendequ;
684
      fendequ.write(code_file, instruction_number);
685
686
687
688
689
690
691
692
      // The Jacobian if we have to solve the block
      if    (simulation_type != EVALUATE_BACKWARD
             && simulation_type != EVALUATE_FORWARD)
        {
          switch (simulation_type)
            {
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
693
694
              {
                FNUMEXPR_ fnumexpr(FirstEndoDerivative, 0, 0);
695
                fnumexpr.write(code_file, instruction_number);
696
              }
697
              compileDerivative(code_file, instruction_number, getBlockEquationID(block, 0), getBlockVariableID(block, 0), map_idx, temporary_terms);
698
              {
699
                FSTPG_ fstpg(0);
700
                fstpg.write(code_file, instruction_number);
701
              }
702
              break;
703

704
705
706
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              count_u = feedback_variables.size();
707
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
708
709
710
711
712
                {
                  unsigned int eq = it->first.first;
                  unsigned int var = it->first.second;
                  unsigned int eqr = getBlockEquationID(block, eq);
                  unsigned int varr = getBlockVariableID(block, var);
713
                  if (eq >= block_recursive && var >= block_recursive)
714
715
716
717
718
719
720
721
722
723
724
725
726
727
                    {
                      if (!Uf[eqr].Ufl)
                        {
                          Uf[eqr].Ufl = (Uff_l *) malloc(sizeof(Uff_l));
                          Uf[eqr].Ufl_First = Uf[eqr].Ufl;
                        }
                      else
                        {
                          Uf[eqr].Ufl->pNext = (Uff_l *) malloc(sizeof(Uff_l));
                          Uf[eqr].Ufl = Uf[eqr].Ufl->pNext;
                        }
                      Uf[eqr].Ufl->pNext = NULL;
                      Uf[eqr].Ufl->u = count_u;
                      Uf[eqr].Ufl->var = varr;
728
                      FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr);
729
                      fnumexpr.write(code_file, instruction_number);
730
                      compileChainRuleDerivative(code_file, instruction_number, eqr, varr, 0, map_idx, temporary_terms);
731
                      FSTPSU_ fstpsu(count_u);
732
                      fstpsu.write(code_file, instruction_number);
733
734
735
736
737
738
739
740
                      count_u++;
                    }
                }
              for (i = 0; i < (int) block_size; i++)
                {
                  if (i >= (int) block_recursive)
                    {
                      FLDR_ fldr(i-block_recursive);
741
                      fldr.write(code_file, instruction_number);
742
743

                      FLDZ_ fldz;
744
                      fldz.write(code_file, instruction_number);
745
746
747
748
749

                      v = getBlockEquationID(block, i);
                      for (Uf[v].Ufl = Uf[v].Ufl_First; Uf[v].Ufl; Uf[v].Ufl = Uf[v].Ufl->pNext)
                        {
                          FLDSU_ fldsu(Uf[v].Ufl->u);
750
                          fldsu.write(code_file, instruction_number);
751
                          FLDSV_ fldsv(eEndogenous, Uf[v].Ufl->var);
752
                          fldsv.write(code_file, instruction_number);
753
754

                          FBINARY_ fbinary(oTimes);
755
                          fbinary.write(code_file, instruction_number);
756
757

                          FCUML_ fcuml;
758
                          fcuml.write(code_file, instruction_number);
759
760
761
762
763
764
765
766
767
                        }
                      Uf[v].Ufl = Uf[v].Ufl_First;
                      while (Uf[v].Ufl)
                        {
                          Uf[v].Ufl_First = Uf[v].Ufl->pNext;
                          free(Uf[v].Ufl);
                          Uf[v].Ufl = Uf[v].Ufl_First;
                        }
                      FBINARY_ fbinary(oMinus);
768
                      fbinary.write(code_file, instruction_number);
769
770

                      FSTPSU_ fstpsu(i - block_recursive);
771
                      fstpsu.write(code_file, instruction_number);
772
773
774
775
776
777
778
779

                    }
                }
              break;
            default:
              break;
            }
        }
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

      // Get the current code_file position and jump = true
      streampos pos2 = code_file.tellp();
      FJMP_ fjmp(0);
      fjmp.write(code_file, instruction_number);
      // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
      streampos pos3 = code_file.tellp();
      code_file.seekp(pos1);
      FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
      fjmp_if_eval1.write(code_file, instruction_number);
      code_file.seekp(pos3);
      prev_instruction_number = instruction_number ;

      temporary_terms_t tt2;
      tt2.clear();
      temporary_terms_t tt3;
      tt3.clear();

      for (i = 0; i < (int) block_size; i++)
        {
          if (v_temporary_terms_local[block].size())
            {
              for (temporary_terms_t::const_iterator it = v_temporary_terms_local[block][i].begin();
                   it != v_temporary_terms_local[block][i].end(); it++)
                {
                  FNUMEXPR_ fnumexpr(TemporaryTerm, (int)(map_idx2[block].find((*it)->idx)->second));
                  fnumexpr.write(code_file, instruction_number);
                  (*it)->compile(code_file, instruction_number, false, tt3, map_idx2[block], false, false);
                  FSTPST_ fstpst((int)(map_idx2[block].find((*it)->idx)->second));
                  fstpst.write(code_file, instruction_number);
                  // Insert current node into tt2
                  tt3.insert(*it);
                  tt2.insert(*it);
                }
            }

          // The equations
          int variable_ID, equation_ID;
          EquationType equ_type;
          switch (simulation_type)
            {
            evaluation_l:
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
              equ_type = getBlockEquationType(block, i);
              {
                FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
                fnumexpr.write(code_file, instruction_number);
              }
              if (equ_type == E_EVALUATE)
                {
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
                  rhs->compile(code_file, instruction_number, false, tt2/*temporary_terms*/, map_idx2[block], false, false);
                  lhs->compile(code_file, instruction_number, true, tt2/*temporary_terms*/, map_idx2[block], false, false);
                }
              else if (equ_type == E_EVALUATE_S)
                {
                  eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
                  rhs->compile(code_file, instruction_number, false, tt2/*temporary_terms*/, map_idx2[block], false, false);
                  lhs->compile(code_file, instruction_number, true, tt2/*temporary_terms*/, map_idx2[block], false, false);
                }
              break;
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < (int) block_recursive)
                goto evaluation_l;
              variable_ID = getBlockVariableID(block, i);
              equation_ID = getBlockEquationID(block, i);
              feedback_variables.push_back(variable_ID);
              Uf[equation_ID].Ufl = NULL;
              goto end_l;
            default:
            end_l:
              FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
              fnumexpr.write(code_file, instruction_number);
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              lhs = eq_node->get_arg1();
              rhs = eq_node->get_arg2();
              lhs->compile(code_file, instruction_number, false, tt2/*temporary_terms*/, map_idx2[block], false, false);
              rhs->compile(code_file, instruction_number, false, tt2/*temporary_terms*/, map_idx2[block], false, false);

              FBINARY_ fbinary(oMinus);
              fbinary.write(code_file, instruction_number);

              FSTPR_ fstpr(i - block_recursive);
              fstpr.write(code_file, instruction_number);
            }
        }
      FENDEQU_ fendequ_l;
      fendequ_l.write(code_file, instruction_number);

      // The Jacobian if we have to solve the block determinsitic bloc
      switch (simulation_type)
        {
        case SOLVE_BACKWARD_SIMPLE:
        case SOLVE_FORWARD_SIMPLE:
          {
            FNUMEXPR_ fnumexpr(FirstEndoDerivative, 0, 0);
            fnumexpr.write(code_file, instruction_number);
          }
          compileDerivative(code_file, instruction_number, getBlockEquationID(block, 0), getBlockVariableID(block, 0), map_idx2[block], tt2);
          {
            FSTPG2_ fstpg2(0,0);
            fstpg2.write(code_file, instruction_number);
          }
          break;
        case EVALUATE_BACKWARD:
        case EVALUATE_FORWARD:
        case SOLVE_BACKWARD_COMPLETE:
        case SOLVE_FORWARD_COMPLETE:
          count_u = feedback_variables.size();
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
            {
              unsigned int eq = it->first.first;
              unsigned int var = it->first.second;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
              FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr, 0);
              fnumexpr.write(code_file, instruction_number);

              compileChainRuleDerivative(code_file, instruction_number, eqr, varr, 0, map_idx2[block], tt2);

              FSTPG2_ fstpg2(eq,var);
              fstpg2.write(code_file, instruction_number);
            }
          break;
        default:
          break;
        }
      // Set codefile position to previous JMP_ and set the number of instructions to jump
      pos1 = code_file.tellp();
      code_file.seekp(pos2);
      FJMP_ fjmp1(instruction_number - prev_instruction_number);
      fjmp1.write(code_file, instruction_number);
      code_file.seekp(pos1);
919
920
    }
  FENDBLOCK_ fendblock;
921
  fendblock.write(code_file, instruction_number);
922
  FEND_ fend;
923
  fend.write(code_file, instruction_number);
924
925
  code_file.close();
}
926
927

void
928
StaticModel::Write_Inf_To_Bin_File_Block(const string &static_basename, const string &bin_basename, const int &num,
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
                                   int &u_count_int, bool &file_open) const
{
  int j;
  std::ofstream SaveCode;
  if (file_open)
    SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::in | ios::binary | ios::ate);
  else
    SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::binary);
  if (!SaveCode.is_open())
    {
      cout << "Error : Can't open file \"" << bin_basename << "_static.bin\" for writing\n";
      exit(EXIT_FAILURE);
    }
  u_count_int = 0;
  unsigned int block_size = getBlockSize(num);
  unsigned int block_mfs = getBlockMfs(num);
  unsigned int block_recursive = block_size - block_mfs;
946
  for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[num].begin(); it != (blocks_derivatives[num]).end(); it++)
947
948
949
950
    {
      unsigned int eq = it->first.first;
      unsigned int var = it->first.second;
      int lag = 0;
951
      if (eq >= block_recursive && var >= block_recursive)
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
        {
          int v = eq - block_recursive;
          SaveCode.write(reinterpret_cast<char *>(&v), sizeof(v));
          int varr = var - block_recursive;
          SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
          SaveCode.write(reinterpret_cast<char *>(&lag), sizeof(lag));
          int u = u_count_int + block_mfs;
          SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
          u_count_int++;
        }
    }

  for (j = block_recursive; j < (int) block_size; j++)
    {
      unsigned int varr = getBlockVariableID(num, j);
      SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
    }
  for (j = block_recursive; j < (int) block_size; j++)
    {
      unsigned int eqr = getBlockEquationID(num, j);
      SaveCode.write(reinterpret_cast<char *>(&eqr), sizeof(eqr));
    }
  SaveCode.close();
}
976

977
map<pair<int, pair<int, int > >, expr_t>
978
StaticModel::collect_first_order_derivatives_endogenous()
sebastien's avatar
sebastien committed
979
{
980
  map<pair<int, pair<int, int > >, expr_t> endo_derivatives;
981
  for (first_derivatives_t::iterator it2 = first_derivatives.begin();
982
983
       it2 != first_derivatives.end(); it2++)
    {
984
      if (getTypeByDerivID(it2->first.second) == eEndogenous)
985
986
        {
          int eq = it2->first.first;
987
          int var = symbol_table.getTypeSpecificID(it2->first.second);
988
989
990
991
          int lag = 0;
          endo_derivatives[make_pair(eq, make_pair(var, lag))] = it2->second;
        }
    }
992
  return endo_derivatives;
993
994
995
}

void
996
StaticModel::computingPass(const eval_context_t &eval_context, bool no_tmp_terms, bool hessian, bool block, bool bytecode)
997
{
998
  // Compute derivatives w.r. to all endogenous, and possibly exogenous and exogenous deterministic
999
1000
  set<int> vars;

1001
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
1002
1003
1004
1005
    vars.insert(symbol_table.getID(eEndogenous, i));

  // Launch computations
  cout << "Computing static model derivatives:" << endl
1006
       << " - order 1" << endl;
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
  first_derivatives.clear();

  computeJacobian(vars);

  if (hessian)
    {
      cout << " - order 2" << endl;
      computeHessian(vars);
    }

  if (block)
    {
1019
      jacob_map_t contemporaneous_jacobian, static_jacobian;
1020
      vector<unsigned int> n_static, n_forward, n_backward, n_mixed;
1021
1022
1023
1024
1025
1026

      // for each block contains pair<Size, Feddback_variable>
      vector<pair<int, int> > blocks;

      evaluateAndReduceJacobian(eval_context, contemporaneous_jacobian, static_jacobian, dynamic_jacobian, cutoff, false);

sebastien's avatar
sebastien committed
1027
      computeNonSingularNormalization(contemporaneous_jacobian, cutoff, static_jacobian, dynamic_jacobian);
1028

1029
      computePrologueAndEpilogue(static_jacobian, equation_reordered, variable_reordered);
1030

1031
      map<pair<int, pair<int, int> >, expr_t> first_order_endo_derivatives = collect_first_order_derivatives_endogenous();
1032

1033
      equation_type_and_normalized_equation = equationTypeDetermination(first_order_endo_derivatives, variable_reordered, equation_reordered, mfs);
1034
1035
1036

      cout << "Finding the optimal block decomposition of the model ...\n";

1037
1038
1039
      lag_lead_vector_t equation_lag_lead, variable_lag_lead;

      computeBlockDecompositionAndFeedbackVariablesForEachBlock(static_jacobian, dynamic_jacobian, equation_reordered, variable_reordered, blocks, equation_type_and_normalized_equation, false, false, mfs, inv_equation_reordered, inv_variable_reordered, equation_lag_lead, variable_lag_lead, n_static, n_forward, n_backward, n_mixed);
1040

1041
      block_type_firstequation_size_mfs = reduceBlocksAndTypeDetermination(dynamic_jacobian, blocks, equation_type_and_normalized_equation, variable_reordered, equation_reordered, n_static, n_forward, n_backward, n_mixed, block_col_type);
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

      printBlockDecomposition(blocks);

      computeChainRuleJacobian(blocks_derivatives);

      blocks_linear = BlockLinear(blocks_derivatives, variable_reordered);

      collect_block_first_order_derivatives();

      global_temporary_terms = true;
      if (!no_tmp_terms)
        computeTemporaryTermsOrdered();
    }
  else
1056
1057
1058
1059
1060
    {
      if (!no_tmp_terms)
        {
          computeTemporaryTerms(true);
          if (bytecode)
1061
            computeTemporaryTermsMapping(temporary_terms, map_idx);
1062
1063
        }
    }
sebastien's avatar
sebastien committed
1064
1065
1066
}

void
1067
StaticModel::writeStaticMFile(const string &func_name) const
sebastien's avatar
sebastien committed
1068
1069
{
  // Writing comments and function definition command
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
  string filename = func_name + "_static.m";

  ofstream output;
  output.open(filename.c_str(), ios::out | ios::binary);
  if (!output.is_open())
    {
      cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
      exit(EXIT_FAILURE);
    }

  output << "function [residual, g1, g2] = " << func_name + "_static(y, x, params)" << endl
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
         << "%" << endl
         << "% Status : Computes static model for Dynare" << endl
         << "%" << endl
         << "% Warning : this file is generated automatically by Dynare" << endl
         << "%           from model file (.mod)" << endl
         << endl
         << "residual = zeros( " << equations.size() << ", 1);" << endl
         << endl
         << "%" << endl
         << "% Model equations" << endl
         << "%" << endl
         << endl;

  writeModelLocalVariables(output, oMatlabStaticModel);

  writeTemporaryTerms(temporary_terms, output, oMatlabStaticModel);

  writeModelEquations(output, oMatlabStaticModel);

  output << "if ~isreal(residual)" << endl
         << "  residual = real(residual)+imag(residual).^2;" << endl
         << "end" << endl
         << "if nargout >= 2," << endl
         << "  g1 = zeros(" << equations.size() << ", " << symbol_table.endo_nbr() << ");" << endl
         << endl
         << "%" << endl
         << "% Jacobian matrix" << endl
         << "%" << endl
         << endl;
sebastien's avatar
sebastien committed
1110
1111

  // Write Jacobian w.r. to endogenous only
1112
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
sebastien's avatar
sebastien committed
1113
1114
1115
       it != first_derivatives.end(); it++)
    {
      int eq = it->first.first;
1116
      int symb_id = it->first.second;
1117
      expr_t d1 = it->second;
sebastien's avatar
sebastien committed
1118

1119
      output << "  g1(" << eq+1 << "," << symbol_table.getTypeSpecificID(symb_id)+1 << ")=";
1120
1121
      d1->writeOutput(output, oMatlabStaticModel, temporary_terms);
      output << ";" << endl;
sebastien's avatar
sebastien committed
1122
1123
    }

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
  output << "  if ~isreal(g1)" << endl
         << "    g1 = real(g1)+2*imag(g1);" << endl
         << "  end" << endl
         << "end" << endl
         << "if nargout >= 3," << endl
         << "%" << endl
         << "% Hessian matrix" << endl
         << "%" << endl
         << endl;

  int g2ncols = symbol_table.endo_nbr() * symbol_table.endo_nbr();
  if (second_derivatives.size())
1136
    {
1137
      output << "  v2 = zeros(" << NNZDerivatives[1] << ",3);" << endl;
1138

1139
1140
      // Write Hessian w.r. to endogenous only (only if 2nd order derivatives have been computed)
      int k = 0; // Keep the line of a 2nd derivative in v2
1141
      for (second_derivatives_t::const_iterator it = second_derivatives.begin();
1142
           it != second_derivatives.end(); it++)
1143
        {
1144
1145
1146
          int eq = it->first.first;
          int symb_id1 = it->first.second.first;
          int symb_id2 = it->first.second.second;
1147
          expr_t d2 = it->second;
1148
1149
1150

          int tsid1 = symbol_table.getTypeSpecificID(symb_id1);
          int tsid2 = symbol_table.getTypeSpecificID(symb_id2);
sebastien's avatar
sebastien committed
1151

1152
1153
          int col_nb = tsid1*symbol_table.endo_nbr()+tsid2;
          int col_nb_sym = tsid2*symbol_table.endo_nbr()+tsid1;
sebastien's avatar
sebastien committed
1154

1155
1156
1157
1158
1159
          output << "v2(" << k+1 << ",1)=" << eq + 1 << ";" << endl
                 << "v2(" << k+1 << ",2)=" << col_nb + 1 << ";" << endl
                 << "v2(" << k+1 << ",3)=";
          d2->writeOutput(output, oMatlabStaticModel, temporary_terms);
          output << ";"