DynamicModel.cc 160 KB
Newer Older
sebastien's avatar
sebastien committed
1
/*
2
 * Copyright (C) 2003-2010 Dynare Team
sebastien's avatar
sebastien committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
#include <iostream>
sebastien's avatar
sebastien committed
21
#include <cmath>
22
#include <cstdlib>
23
#include <cassert>
24
25
#include <cstdio>
#include <cerrno>
26
#include <algorithm>
sebastien's avatar
sebastien committed
27
28
29
30
31
32
33
34
35
36
37
38
#include "DynamicModel.hh"

// For mkdir() and chdir()
#ifdef _WIN32
# include <direct.h>
#else
# include <unistd.h>
# include <sys/stat.h>
# include <sys/types.h>
#endif

DynamicModel::DynamicModel(SymbolTable &symbol_table_arg,
39
40
41
                           NumericalConstants &num_constants_arg,
                           ExternalFunctionsTable &external_functions_table_arg) :
  ModelTree(symbol_table_arg, num_constants_arg, external_functions_table_arg),
42
43
44
45
46
47
48
49
  max_lag(0), max_lead(0),
  max_endo_lag(0), max_endo_lead(0),
  max_exo_lag(0), max_exo_lead(0),
  max_exo_det_lag(0), max_exo_det_lead(0),
  dynJacobianColsNbr(0),
  global_temporary_terms(true),
  cutoff(1e-15),
  mfs(0)
sebastien's avatar
sebastien committed
50
51
52
{
}

sebastien's avatar
sebastien committed
53
54
VariableNode *
DynamicModel::AddVariable(int symb_id, int lag)
sebastien's avatar
sebastien committed
55
{
sebastien's avatar
sebastien committed
56
  return AddVariableInternal(symb_id, lag);
sebastien's avatar
sebastien committed
57
58
}

sebastien's avatar
sebastien committed
59
void
60
DynamicModel::compileDerivative(ofstream &code_file, unsigned int &instruction_number, int eq, int symb_id, int lag, const map_idx_t &map_idx) const
61
{
62
  first_derivatives_t::const_iterator it = first_derivatives.find(make_pair(eq, getDerivID(symbol_table.getID(eEndogenous, symb_id), lag)));
63
  if (it != first_derivatives.end())
64
    (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
65
66
67
  else
    {
      FLDZ_ fldz;
68
      fldz.write(code_file, instruction_number);
69
70
    }
}
71
72

void
73
DynamicModel::compileChainRuleDerivative(ofstream &code_file, unsigned int &instruction_number, int eqr, int varr, int lag, const map_idx_t &map_idx) const
74
{
75
  map<pair<int, pair<int, int> >, expr_t>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
76
  if (it != first_chain_rule_derivatives.end())
77
    (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
78
  else
79
80
    {
      FLDZ_ fldz;
81
      fldz.write(code_file, instruction_number);
82
    }
83
84
}

85
86
87
88
89
90
91
92
93
94
95
96
void
DynamicModel::initializeVariablesAndEquations()
{
  for(int j=0; j<equation_number(); j++)
    {
      equation_reordered.push_back(j);
      variable_reordered.push_back(j);
    }
}



sebastien's avatar
sebastien committed
97
void
98
DynamicModel::computeTemporaryTermsOrdered()
sebastien's avatar
sebastien committed
99
{
100
101
  map<expr_t, pair<int, int> > first_occurence;
  map<expr_t, int> reference_count;
sebastien's avatar
sebastien committed
102
  BinaryOpNode *eq_node;
103
104
  first_derivatives_t::const_iterator it;
  first_chain_rule_derivatives_t::const_iterator it_chr;
sebastien's avatar
sebastien committed
105
  ostringstream tmp_s;
106
107
  v_temporary_terms.clear();
  map_idx.clear();
sebastien's avatar
sebastien committed
108

109
  unsigned int nb_blocks = getNbBlocks();
110
111
  v_temporary_terms = vector<vector<temporary_terms_t> >(nb_blocks);
  v_temporary_terms_inuse = vector<temporary_terms_inuse_t>(nb_blocks);
sebastien's avatar
sebastien committed
112
  temporary_terms.clear();
113

114
  if (!global_temporary_terms)
115
116
    {
      for (unsigned int block = 0; block < nb_blocks; block++)
sebastien's avatar
sebastien committed
117
        {
118
119
120
121
122
          reference_count.clear();
          temporary_terms.clear();
          unsigned int block_size = getBlockSize(block);
          unsigned int block_nb_mfs = getBlockMfs(block);
          unsigned int block_nb_recursives = block_size - block_nb_mfs;
123
          v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
124
          for (unsigned int i = 0; i < block_size; i++)
sebastien's avatar
sebastien committed
125
            {
126
              if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
127
                getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
128
              else
sebastien's avatar
sebastien committed
129
                {
130
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
131
                  eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
sebastien's avatar
sebastien committed
132
133
                }
            }
134
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
135
            {
136
              expr_t id = it->second.second;
137
138
              id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
            }
139
          for (derivative_t::const_iterator it = derivative_endo[block].begin(); it != derivative_endo[block].end(); it++)
140
            it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
141
          for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != derivative_other_endo[block].end(); it++)
142
143
144
145
            it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
          set<int> temporary_terms_in_use;
          temporary_terms_in_use.clear();
          v_temporary_terms_inuse[block] = temporary_terms_in_use;
sebastien's avatar
sebastien committed
146
147
        }
    }
148
  else
sebastien's avatar
sebastien committed
149
    {
150
      for (unsigned int block = 0; block < nb_blocks; block++)
sebastien's avatar
sebastien committed
151
        {
152
153
154
155
          // Compute the temporary terms reordered
          unsigned int block_size = getBlockSize(block);
          unsigned int block_nb_mfs = getBlockMfs(block);
          unsigned int block_nb_recursives = block_size - block_nb_mfs;
156
          v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
157
          for (unsigned int i = 0; i < block_size; i++)
158
            {
159
              if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
160
                getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
161
162
              else
                {
163
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
164
165
                  eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, i);
                }
166
            }
167
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
sebastien's avatar
sebastien committed
168
            {
169
              expr_t id = it->second.second;
170
              id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
sebastien's avatar
sebastien committed
171
            }
172
          for (derivative_t::const_iterator it = derivative_endo[block].begin(); it != derivative_endo[block].end(); it++)
173
            it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
174
          for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != derivative_other_endo[block].end(); it++)
175
            it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
176
        }
177
      for (unsigned int block = 0; block < nb_blocks; block++)
178
        {
179
180
181
182
183
184
          // Collect the temporary terms reordered
          unsigned int block_size = getBlockSize(block);
          unsigned int block_nb_mfs = getBlockMfs(block);
          unsigned int block_nb_recursives = block_size - block_nb_mfs;
          set<int> temporary_terms_in_use;
          for (unsigned int i = 0; i < block_size; i++)
sebastien's avatar
sebastien committed
185
            {
186
              if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
187
                getBlockEquationRenormalizedExpr(block, i)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
188
              else
sebastien's avatar
sebastien committed
189
                {
190
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
191
                  eq_node->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
sebastien's avatar
sebastien committed
192
193
                }
            }
194
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
195
            {
196
              expr_t id = it->second.second;
197
198
              id->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
            }
199
          for (derivative_t::const_iterator it = derivative_endo[block].begin(); it != derivative_endo[block].end(); it++)
200
            it->second->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
201
          for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != derivative_other_endo[block].end(); it++)
202
203
            it->second->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
          v_temporary_terms_inuse[block] = temporary_terms_in_use;
sebastien's avatar
sebastien committed
204
        }
205
      computeTemporaryTermsMapping();
sebastien's avatar
sebastien committed
206
207
208
    }
}

209
210
211
212
213
void
DynamicModel::computeTemporaryTermsMapping()
{
  // Add a mapping form node ID to temporary terms order
  int j = 0;
214
  for (temporary_terms_t::const_iterator it = temporary_terms.begin();
215
216
217
218
219
      it != temporary_terms.end(); it++)
    map_idx[(*it)->idx] = j++;
}


sebastien's avatar
sebastien committed
220
void
221
DynamicModel::writeModelEquationsOrdered_M(const string &dynamic_basename) const
222
223
224
{
  string tmp_s, sps;
  ostringstream tmp_output, tmp1_output, global_output;
225
  expr_t lhs = NULL, rhs = NULL;
226
227
  BinaryOpNode *eq_node;
  ostringstream Uf[symbol_table.endo_nbr()];
228
  map<expr_t, int> reference_count;
229
  temporary_terms_t local_temporary_terms;
230
  ofstream  output;
231
  int nze, nze_exo, nze_exo_det, nze_other_endo;
232
233
  vector<int> feedback_variables;
  ExprNodeOutputType local_output_type;
sebastien's avatar
sebastien committed
234

Sébastien Villemot's avatar
Sébastien Villemot committed
235
  local_output_type = oMatlabDynamicModelSparse;
236
  if (global_temporary_terms)
Sébastien Villemot's avatar
Sébastien Villemot committed
237
    local_temporary_terms = temporary_terms;
238
239
240
241
242
243
244
245
246
247
248
249

  //----------------------------------------------------------------------
  //For each block
  for (unsigned int block = 0; block < getNbBlocks(); block++)
    {

      //recursive_variables.clear();
      feedback_variables.clear();
      //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
      nze = derivative_endo[block].size();
      nze_other_endo = derivative_other_endo[block].size();
      nze_exo = derivative_exo[block].size();
250
      nze_exo_det = derivative_exo_det[block].size();
251
252
253
254
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      unsigned int block_size = getBlockSize(block);
      unsigned int block_mfs = getBlockMfs(block);
      unsigned int block_recursive = block_size - block_mfs;
255
      deriv_node_temp_terms_t tef_terms;
256
      /*unsigned int block_exo_size = exo_block[block].size();
257
      unsigned int block_exo_det_size = exo_det_block[block].size();
258
      unsigned int block_other_endo_size = other_endo_block[block].size();*/
259
      int block_max_lag = max_leadlag_block[block].first;
Sébastien Villemot's avatar
Sébastien Villemot committed
260
      local_output_type = oMatlabDynamicModelSparse;
261
      if (global_temporary_terms)
Sébastien Villemot's avatar
Sébastien Villemot committed
262
        local_temporary_terms = temporary_terms;
263

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
      int prev_lag;
      unsigned int prev_var, count_col, count_col_endo, count_col_exo, count_col_exo_det, count_col_other_endo;
      map<pair<int, pair<int, int> >, expr_t> tmp_block_endo_derivative;
      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
        tmp_block_endo_derivative[make_pair(it->second.first, make_pair(it->first.second, it->first.first) )] = it->second.second ;
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col_endo = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_endo_derivative.begin(); it != tmp_block_endo_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          //int eqr = getBlockInitialEquationID(block, eq);
          //int varr = getBlockInitialVariableID(block, var);
          if (var != prev_var || lag != prev_lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_endo++;
            }
        }
      map<pair<int, pair<int, int> >, expr_t> tmp_block_exo_derivative;
      for (derivative_t::const_iterator it = derivative_exo[block].begin(); it != (derivative_exo[block]).end(); it++)
        tmp_block_exo_derivative[make_pair(it->first.first, make_pair(it->first.second.second, it->first.second.first) )] = it->second ;
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col_exo = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          //int eqr = getBlockInitialEquationID(block, eq);
          //int varr = getBlockInitialVariableID(block, var);
          if (var != prev_var || lag != prev_lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_exo++;
            }
        }
      map<pair<int, pair<int, int> >, expr_t> tmp_block_exo_det_derivative;
      for (derivative_t::const_iterator it = derivative_exo_det[block].begin(); it != (derivative_exo_det[block]).end(); it++)
        tmp_block_exo_det_derivative[make_pair(it->first.first, make_pair(it->first.second.second, it->first.second.first) )] = it->second;
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col_exo_det = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          //int eqr = getBlockInitialEquationID(block, eq);
          //int varr = getBlockInitialVariableID(block, var);
          if (var != prev_var || lag != prev_lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_exo_det++;
            }
        }
      map<pair<int, pair<int, int> >, expr_t> tmp_block_other_endo_derivative;
      for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != (derivative_other_endo[block]).end(); it++)
        tmp_block_other_endo_derivative[make_pair(it->first.first, make_pair(it->first.second.second, it->first.second.first) )] = it->second;
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col_other_endo = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          //int eqr = getBlockInitialEquationID(block, eq);
          //int varr = getBlockInitialVariableID(block, var);
          if (var != prev_var || lag != prev_lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_other_endo++;
            }
        }

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
      tmp1_output.str("");
      tmp1_output << dynamic_basename << "_" << block+1 << ".m";
      output.open(tmp1_output.str().c_str(), ios::out | ios::binary);
      output << "%\n";
      output << "% " << tmp1_output.str() << " : Computes dynamic model for Dynare\n";
      output << "%\n";
      output << "% Warning : this file is generated automatically by Dynare\n";
      output << "%           from model file (.mod)\n\n";
      output << "%/\n";
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        {
          output << "function [y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, jacobian_eval, y_kmin, periods)\n";
        }
      else if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
        output << "function [residual, y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, it_, jacobian_eval)\n";
      else if (simulation_type == SOLVE_BACKWARD_SIMPLE || simulation_type == SOLVE_FORWARD_SIMPLE)
        output << "function [residual, y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, it_, jacobian_eval)\n";
      else
        output << "function [residual, y, g1, g2, g3, b, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, periods, jacobian_eval, y_kmin, y_size)\n";
      BlockType block_type;
      if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
        block_type = SIMULTAN;
      else if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
        block_type = SIMULTANS;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) < prologue)
        block_type = PROLOGUE;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) >= equations.size() - epilogue)
        block_type = EPILOGUE;
      else
        block_type = SIMULTANS;
      output << "  % ////////////////////////////////////////////////////////////////////////" << endl
             << "  % //" << string("                     Block ").substr(int (log10(block + 1))) << block + 1 << " " << BlockType0(block_type)
             << "          //" << endl
             << "  % //                     Simulation type "
             << BlockSim(simulation_type) << "  //" << endl
             << "  % ////////////////////////////////////////////////////////////////////////" << endl;
383
      output << "  global options_ oo_;" << endl;
384
385
386
387
      //The Temporary terms
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        {
          output << "  if(jacobian_eval)\n";
388
389
          output << "    g1 = spalloc(" << block_mfs  << ", " << count_col_endo << ", " << nze << ");\n";
          output << "    g1_x=spalloc(" << block_size << ", " << count_col_exo  << ", " << nze_exo << ");\n";
390
          output << "    g1_xd=spalloc(" << block_size << ", " << count_col_exo_det  << ", " << nze_exo_det << ");\n";
391
          output << "    g1_o=spalloc(" << block_size << ", " << count_col_other_endo << ", " << nze_other_endo << ");\n";
392
393
394
395
396
          output << "  end;\n";
        }
      else
        {
          output << "  if(jacobian_eval)\n";
397
398
          output << "    g1 = spalloc(" << block_size << ", " << count_col_endo << ", " << nze << ");\n";
          output << "    g1_x=spalloc(" << block_size << ", " << count_col_exo  << ", " << nze_exo << ");\n";
399
          output << "    g1_xd=spalloc(" << block_size << ", " << count_col_exo_det  << ", " << nze_exo_det << ");\n";
400
          output << "    g1_o=spalloc(" << block_size << ", " << count_col_other_endo << ", " << nze_other_endo << ");\n";
401
402
403
404
405
406
407
          output << "  else\n";
          if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
            {
              output << "    g1 = spalloc(" << block_mfs << "*options_.periods, "
                     << block_mfs << "*(options_.periods+" << max_leadlag_block[block].first+max_leadlag_block[block].second+1 << ")"
                     << ", " << nze << "*options_.periods);\n";
            }
ferhat's avatar
ferhat committed
408
          else
409
410
411
412
413
414
            {
              output << "    g1 = spalloc(" << block_mfs
                     << ", " << block_mfs << ", " << nze << ");\n";
            }
          output << "  end;\n";
        }
415

416
417
418
419
      output << "  g2=0;g3=0;\n";
      if (v_temporary_terms_inuse[block].size())
        {
          tmp_output.str("");
420
          for (temporary_terms_inuse_t::const_iterator it = v_temporary_terms_inuse[block].begin();
421
422
423
424
425
426
               it != v_temporary_terms_inuse[block].end(); it++)
            tmp_output << " T" << *it;
          output << "  global" << tmp_output.str() << ";\n";
        }
      if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
        {
427
          temporary_terms_t tt2;
428
429
430
431
432
433
434
          tt2.clear();
          for (int i = 0; i < (int) block_size; i++)
            {
              if (v_temporary_terms[block][i].size() && global_temporary_terms)
                {
                  output << "  " << "% //Temporary variables initialization" << endl
                         << "  " << "T_zeros = zeros(y_kmin+periods, 1);" << endl;
435
                  for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
                       it != v_temporary_terms[block][i].end(); it++)
                    {
                      output << "  ";
                      (*it)->writeOutput(output, oMatlabDynamicModel, local_temporary_terms);
                      output << " = T_zeros;" << endl;
                    }
                }
            }
        }
      if (simulation_type == SOLVE_BACKWARD_SIMPLE || simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
        output << "  residual=zeros(" << block_mfs << ",1);\n";
      else if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
        output << "  residual=zeros(" << block_mfs << ",y_kmin+periods);\n";
      if (simulation_type == EVALUATE_BACKWARD)
        output << "  for it_ = (y_kmin+periods):y_kmin+1\n";
      if (simulation_type == EVALUATE_FORWARD)
        output << "  for it_ = y_kmin+1:(y_kmin+periods)\n";

      if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
        {
          output << "  b = zeros(periods*y_size,1);" << endl
                 << "  for it_ = y_kmin+1:(periods+y_kmin)" << endl
                 << "    Per_y_=it_*y_size;" << endl
                 << "    Per_J_=(it_-y_kmin-1)*y_size;" << endl
                 << "    Per_K_=(it_-1)*y_size;" << endl;
          sps = "  ";
        }
      else
        if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
          sps = "  ";
        else
          sps = "";
      // The equations
      for (unsigned int i = 0; i < block_size; i++)
        {
471
          temporary_terms_t tt2;
472
473
474
475
          tt2.clear();
          if (v_temporary_terms[block].size())
            {
              output << "  " << "% //Temporary variables" << endl;
476
              for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
477
478
                   it != v_temporary_terms[block][i].end(); it++)
                {
479
480
481
                  if (dynamic_cast<ExternalFunctionNode *>(*it) != NULL)
                    (*it)->writeExternalFunctionOutput(output, local_output_type, tt2, tef_terms);

482
                  output << "  " <<  sps;
483
                  (*it)->writeOutput(output, local_output_type, local_temporary_terms, tef_terms);
484
                  output << " = ";
485
                  (*it)->writeOutput(output, local_output_type, tt2, tef_terms);
486
487
488
489
490
491
492
493
494
495
                  // Insert current node into tt2
                  tt2.insert(*it);
                  output << ";" << endl;
                }
            }

          int variable_ID = getBlockVariableID(block, i);
          int equation_ID = getBlockEquationID(block, i);
          EquationType equ_type = getBlockEquationType(block, i);
          string sModel = symbol_table.getName(symbol_table.getID(eEndogenous, variable_ID));
496
          eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
          lhs = eq_node->get_arg1();
          rhs = eq_node->get_arg2();
          tmp_output.str("");
          lhs->writeOutput(tmp_output, local_output_type, local_temporary_terms);
          switch (simulation_type)
            {
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
            evaluation:     if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
                output << "    % equation " << getBlockEquationID(block, i)+1 << " variable : " << sModel
                       << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
              output << "    ";
              if (equ_type == E_EVALUATE)
                {
                  output << tmp_output.str();
                  output << " = ";
                  rhs->writeOutput(output, local_output_type, local_temporary_terms);
                }
              else if (equ_type == E_EVALUATE_S)
                {
                  output << "%" << tmp_output.str();
                  output << " = ";
                  if (isBlockEquationRenormalized(block, i))
                    {
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << "\n    ";
                      tmp_output.str("");
524
                      eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
                      lhs = eq_node->get_arg1();
                      rhs = eq_node->get_arg2();
                      lhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << " = ";
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                    }
                }
              else
                {
                  cerr << "Type missmatch for equation " << equation_ID+1  << "\n";
                  exit(EXIT_FAILURE);
                }
              output << ";\n";
              break;
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < block_recursive)
                goto evaluation;
              feedback_variables.push_back(variable_ID);
              output << "  % equation " << equation_ID+1 << " variable : " << sModel
547
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << " symb_id=" << symbol_table.getID(eEndogenous, variable_ID) << endl;
548
549
550
551
552
553
554
555
              output << "  " << "residual(" << i+1-block_recursive << ") = (";
              goto end;
            case SOLVE_TWO_BOUNDARIES_COMPLETE:
            case SOLVE_TWO_BOUNDARIES_SIMPLE:
              if (i < block_recursive)
                goto evaluation;
              feedback_variables.push_back(variable_ID);
              output << "    % equation " << equation_ID+1 << " variable : " << sModel
556
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << " symb_id=" << symbol_table.getID(eEndogenous, variable_ID) << endl;
557
558
559
560
561
562
563
564
565
              Uf[equation_ID] << "    b(" << i+1-block_recursive << "+Per_J_) = -residual(" << i+1-block_recursive << ", it_)";
              output << "    residual(" << i+1-block_recursive << ", it_) = (";
              goto end;
            default:
            end:
              output << tmp_output.str();
              output << ") - (";
              rhs->writeOutput(output, local_output_type, local_temporary_terms);
              output << ");\n";
sebastien's avatar
sebastien committed
566
#ifdef CONDITION
567
568
              if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
                output << "  condition(" << i+1 << ")=0;\n";
sebastien's avatar
sebastien committed
569
#endif
570
571
572
573
            }
        }
      // The Jacobian if we have to solve the block
      if (simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
574
        output << "  " << sps << "% Jacobian  " << endl << "    if jacobian_eval" << endl;
575
576
577
578
      else
        if (simulation_type == SOLVE_BACKWARD_SIMPLE   || simulation_type == SOLVE_FORWARD_SIMPLE
            || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
          output << "  % Jacobian  " << endl << "  if jacobian_eval" << endl;
sebastien's avatar
sebastien committed
579
        else
580
          output << "    % Jacobian  " << endl << "    if jacobian_eval" << endl;
581
582
583
584
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_endo_derivative.begin(); it != tmp_block_endo_derivative.end(); it++)
585
        {
586
587
588
589
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          unsigned int eq = it->first.second.second;
          if (var != prev_var || lag != prev_lag)
590
            {
591
592
593
594
              prev_var = var;
              prev_lag = lag;
              count_col++;
            }
595

596
          expr_t id = it->second;
597

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
          output << "      g1(" << eq+1 << ", " << count_col << ") = ";
          id->writeOutput(output, local_output_type, local_temporary_terms);
          output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                 << "(" << lag
                 << ") " << var+1
                 << ", equation=" << eq+1 << endl;
        }
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          unsigned int eq = it->first.second.second;
          int eqr = getBlockInitialEquationID(block, eq);
          if (var != prev_var || lag != prev_lag)
615
            {
616
617
618
              prev_var = var;
              prev_lag = lag;
              count_col++;
619
            }
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
          expr_t id = it->second;
          output << "      g1_x(" << eqr+1 << ", " << count_col << ") = ";
          id->writeOutput(output, local_output_type, local_temporary_terms);
          output << "; % variable=" << symbol_table.getName(symbol_table.getID(eExogenous, var))
                 << "(" << lag
                 << ") " << var+1
                 << ", equation=" << eq+1 << endl;
        }
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_det_derivative.begin(); it != tmp_block_exo_det_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          unsigned int eq = it->first.second.second;
          int eqr = getBlockInitialEquationID(block, eq);
          if (var != prev_var || lag != prev_lag)
638
            {
639
640
641
              prev_var = var;
              prev_lag = lag;
              count_col++;
642
            }
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
          expr_t id = it->second;
          output << "      g1_xd(" << eqr+1 << ", " << count_col << ") = ";
          id->writeOutput(output, local_output_type, local_temporary_terms);
          output << "; % variable=" << symbol_table.getName(symbol_table.getID(eExogenous, var))
                 << "(" << lag
                 << ") " << var+1
                 << ", equation=" << eq+1 << endl;
        }
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_other_endo_derivative.begin(); it != tmp_block_other_endo_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          unsigned int eq = it->first.second.second;
          int eqr = getBlockInitialEquationID(block, eq);
          if (var != prev_var || lag != prev_lag)
661
            {
662
663
664
              prev_var = var;
              prev_lag = lag;
              count_col++;
665
            }
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
          expr_t id = it->second;

          output << "      g1_o(" << eqr+1 << ", " << var+1+(lag+block_max_lag)*block_size << ") = ";
          id->writeOutput(output, local_output_type, local_temporary_terms);
          output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                 << "(" << lag
                 << ") " << var+1
                 << ", equation=" << eq+1 << endl;
        }
      output << "      varargout{1}=g1_x;\n";
      output << "      varargout{2}=g1_xd;\n";
      output << "      varargout{3}=g1_o;\n";

      switch (simulation_type)
        {
        case EVALUATE_FORWARD:
        case EVALUATE_BACKWARD:
683
684
685
686
687
688
689
690
          output << "    end;" << endl;
          output << "  end;" << endl;
          break;
        case SOLVE_BACKWARD_SIMPLE:
        case SOLVE_FORWARD_SIMPLE:
        case SOLVE_BACKWARD_COMPLETE:
        case SOLVE_FORWARD_COMPLETE:
          output << "  else" << endl;
691
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
692
693
694
695
696
            {
              unsigned int eq = it->first.first;
              unsigned int var = it->first.second;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
697
              expr_t id = it->second.second;
698
              int lag = it->second.first;
699
700
701
702
703
704
705
706
707
708
              if (lag == 0)
                {
                  output << "    g1(" << eq+1 << ", " << var+1-block_recursive << ") = ";
                  id->writeOutput(output, local_output_type, local_temporary_terms);
                  output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                         << "(" << lag
                         << ") " << varr+1
                         << ", equation=" << eqr+1 << endl;
                }

709
710
711
712
713
            }
          output << "  end;\n";
          break;
        case SOLVE_TWO_BOUNDARIES_SIMPLE:
        case SOLVE_TWO_BOUNDARIES_COMPLETE:
714
          output << "    else" << endl;
715
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
716
717
718
719
720
721
            {
              unsigned int eq = it->first.first;
              unsigned int var = it->first.second;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
              ostringstream tmp_output;
722
              expr_t id = it->second.second;
723
              int lag = it->second.first;
724
              if (eq >= block_recursive && var >= block_recursive)
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
                {
                  if (lag == 0)
                    Uf[eqr] << "+g1(" << eq+1-block_recursive
                            << "+Per_J_, " << var+1-block_recursive
                            << "+Per_K_)*y(it_, " << varr+1 << ")";
                  else if (lag == 1)
                    Uf[eqr] << "+g1(" << eq+1-block_recursive
                            << "+Per_J_, " << var+1-block_recursive
                            << "+Per_y_)*y(it_+1, " << varr+1 << ")";
                  else if (lag > 0)
                    Uf[eqr] << "+g1(" << eq+1-block_recursive
                            << "+Per_J_, " << var+1-block_recursive
                            << "+y_size*(it_+" << lag-1 << "))*y(it_+" << lag << ", " << varr+1 << ")";
                  else if (lag < 0)
                    Uf[eqr] << "+g1(" << eq+1-block_recursive
                            << "+Per_J_, " << var+1-block_recursive
                            << "+y_size*(it_" << lag-1 << "))*y(it_" << lag << ", " << varr+1 << ")";
                  if (lag == 0)
                    tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                               << var+1-block_recursive << "+Per_K_) = ";
                  else if (lag == 1)
                    tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                               << var+1-block_recursive << "+Per_y_) = ";
                  else if (lag > 0)
                    tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                               << var+1-block_recursive << "+y_size*(it_+" << lag-1 << ")) = ";
                  else if (lag < 0)
                    tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                               << var+1-block_recursive << "+y_size*(it_" << lag-1 << ")) = ";
                  output << " " << tmp_output.str();
                  id->writeOutput(output, local_output_type, local_temporary_terms);
                  output << ";";
                  output << " %2 variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                         << "(" << lag << ") " << varr+1
                         << ", equation=" << eqr+1 << " (" << eq+1 << ")" << endl;
                }
761

sebastien's avatar
sebastien committed
762
#ifdef CONDITION
763
764
              output << "  if (fabs(condition[" << eqr << "])<fabs(u[" << u << "+Per_u_]))\n";
              output << "    condition(" << eqr << ")=u(" << u << "+Per_u_);\n";
sebastien's avatar
sebastien committed
765
#endif
766
767
768
769
770
            }
          for (unsigned int i = 0; i < block_size; i++)
            {
              if (i >= block_recursive)
                output << "  " << Uf[getBlockEquationID(block, i)].str() << ";\n";
sebastien's avatar
sebastien committed
771
#ifdef CONDITION
772
773
              output << "  if (fabs(condition(" << i+1 << "))<fabs(u(" << i << "+Per_u_)))\n";
              output << "    condition(" << i+1 << ")=u(" << i+1 << "+Per_u_);\n";
sebastien's avatar
sebastien committed
774
#endif
775
            }
sebastien's avatar
sebastien committed
776
#ifdef CONDITION
777
778
779
780
781
782
783
784
785
786
787
788
789
790
          for (m = 0; m <= ModelBlock->Block_List[block].Max_Lead+ModelBlock->Block_List[block].Max_Lag; m++)
            {
              k = m-ModelBlock->Block_List[block].Max_Lag;
              for (i = 0; i < ModelBlock->Block_List[block].IM_lead_lag[m].size; i++)
                {
                  unsigned int eq = ModelBlock->Block_List[block].IM_lead_lag[m].Equ_Index[i];
                  unsigned int var = ModelBlock->Block_List[block].IM_lead_lag[m].Var_Index[i];
                  unsigned int u = ModelBlock->Block_List[block].IM_lead_lag[m].u[i];
                  unsigned int eqr = ModelBlock->Block_List[block].IM_lead_lag[m].Equ[i];
                  output << "  u(" << u+1 << "+Per_u_) = u(" << u+1 << "+Per_u_) / condition(" << eqr+1 << ");\n";
                }
            }
          for (i = 0; i < ModelBlock->Block_List[block].Size; i++)
            output << "  u(" << i+1 << "+Per_u_) = u(" << i+1 << "+Per_u_) / condition(" << i+1 << ");\n";
sebastien's avatar
sebastien committed
791
#endif
792
793
          output << "    end;" << endl;
          output << "  end;" << endl;
794
795
796
797
          break;
        default:
          break;
        }
798
      output << "end" << endl;
799
      writePowerDeriv(output, false);
800
801
802
      output.close();
    }
}
sebastien's avatar
sebastien committed
803
804

void
805
DynamicModel::writeModelEquationsCode(string &file_name, const string &bin_basename, const map_idx_t &map_idx) const
806
{
807

808
809
  ostringstream tmp_output;
  ofstream code_file;
810
  unsigned int instruction_number = 0;
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
  bool file_open = false;
  string main_name = file_name;

  main_name += ".cod";
  code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
  if (!code_file.is_open())
    {
      cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
      exit(EXIT_FAILURE);
    }

  int count_u;
  int u_count_int = 0;
  BlockSimulationType simulation_type;
  if ((max_endo_lag > 0) && (max_endo_lead > 0))
    simulation_type = SOLVE_TWO_BOUNDARIES_COMPLETE;
  else if ((max_endo_lag >= 0) && (max_endo_lead == 0))
    simulation_type = SOLVE_FORWARD_COMPLETE;
  else
    simulation_type = SOLVE_BACKWARD_COMPLETE;

  Write_Inf_To_Bin_File(file_name, u_count_int, file_open, simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE, symbol_table.endo_nbr() );
  file_open = true;

  //Temporary variables declaration
  FDIMT_ fdimt(temporary_terms.size());
837
838
839
840
  fdimt.write(code_file, instruction_number);
  int other_endo_size = 0;

  vector<unsigned int> exo, exo_det, other_endo;
841

842
843
844
845
  for(int i = 0; i < symbol_table.exo_det_nbr(); i++)
    exo_det.push_back(i);
  for(int i = 0; i < symbol_table.exo_nbr(); i++)
    exo.push_back(i);
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

  map<pair< int, pair<int, int> >, expr_t> first_derivatives_reordered_endo, first_derivatives_reordered_exo;
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      unsigned int eq = it->first.first;
      int symb = getSymbIDByDerivID(deriv_id);
      unsigned int var = symbol_table.getTypeSpecificID(symb);
      int lag = getLagByDerivID(deriv_id);
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        first_derivatives_reordered_endo[make_pair(lag, make_pair(var, eq))] = it->second;
      else if(getTypeByDerivID(deriv_id) == eExogenous || getTypeByDerivID(deriv_id) == eExogenousDet)
        first_derivatives_reordered_exo[make_pair(lag, make_pair(var, eq))] = it->second;
    }
  int prev_var = -1;
  int prev_lag = -999999999;
  int count_col_endo = 0;
  for (map<pair< int, pair<int, int> >, expr_t>::const_iterator it = first_derivatives_reordered_endo.begin();
       it != first_derivatives_reordered_endo.end(); it++)
    {
      int var = it->first.second.first;
      int lag = it->first.first;
      if(prev_var != var || prev_lag != lag)
        {
          prev_var = var;
          prev_lag = lag;
          count_col_endo++;
        }
    }
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
  prev_var = -1;
  prev_lag = -999999999;
  int count_col_exo = 0;

  for (map<pair< int, pair<int, int> >, expr_t>::const_iterator it = first_derivatives_reordered_exo.begin();
       it != first_derivatives_reordered_exo.end(); it++)
    {
      int var = it->first.second.first;
      int lag = it->first.first;
      if(prev_var != var || prev_lag != lag)
        {
          prev_var = var;
          prev_lag = lag;
          count_col_exo++;
        }
    }

893
894
895
896
897
898
899
900
901
902
  FBEGINBLOCK_ fbeginblock(symbol_table.endo_nbr(),
                           simulation_type,
                           0,
                           symbol_table.endo_nbr(),
                           variable_reordered,
                           equation_reordered,
                           false,
                           symbol_table.endo_nbr(),
                           0,
                           0,
903
                           u_count_int,
904
                           count_col_endo,
905
                           symbol_table.exo_det_nbr(),
906
                           count_col_exo,
907
908
909
910
911
                           other_endo_size,
                           0,
                           exo_det,
                           exo,
                           other_endo
912
                           );
913
  fbeginblock.write(code_file, instruction_number);
914

915
  compileTemporaryTerms(code_file, instruction_number, temporary_terms, map_idx, true, false);
916

917
  compileModelEquations(code_file, instruction_number, temporary_terms, map_idx, true, false);
918
919

  FENDEQU_ fendequ;
920
  fendequ.write(code_file, instruction_number);
921
922
923
924
925
926
927

  // Get the current code_file position and jump if eval = true
  streampos pos1 = code_file.tellp();
  FJMPIFEVAL_ fjmp_if_eval(0);
  fjmp_if_eval.write(code_file, instruction_number);
  int prev_instruction_number = instruction_number;

928
929
930
  vector<vector<pair<pair<int, int>, int > > > derivatives;
  derivatives.resize(symbol_table.endo_nbr());
  count_u = symbol_table.endo_nbr();
931
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
932
933
934
935
936
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
937
          expr_t d1 = it->second;
938
939
940
941
          unsigned int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          unsigned int var = symbol_table.getTypeSpecificID(symb);
          int lag = getLagByDerivID(deriv_id);
942
          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var, lag);
943
          fnumexpr.write(code_file, instruction_number);
944
945
946
          if (!derivatives[eq].size())
            derivatives[eq].clear();
          derivatives[eq].push_back(make_pair(make_pair(var, lag), count_u));
947
          d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
948
949

          FSTPU_ fstpu(count_u);
950
          fstpu.write(code_file, instruction_number);
951
952
953
954
955
956
          count_u++;
        }
    }
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
    {
      FLDR_ fldr(i);
957
      fldr.write(code_file, instruction_number);
958
      if (derivatives[i].size())
959
        {
960
961
          for(vector<pair<pair<int, int>, int> >::const_iterator it = derivatives[i].begin();
              it != derivatives[i].end(); it++)
962
            {
963
964
965
966
967
              FLDU_ fldu(it->second);
              fldu.write(code_file, instruction_number);
              FLDV_ fldv(eEndogenous, it->first.first, it->first.second);
              fldv.write(code_file, instruction_number);
              FBINARY_ fbinary(oTimes);
968
              fbinary.write(code_file, instruction_number);
969
970
971
972
973
              if (it != derivatives[i].begin())
                {
                  FBINARY_ fbinary(oPlus);
                  fbinary.write(code_file, instruction_number);
                }
974
            }
975
976
          FBINARY_ fbinary(oMinus);
          fbinary.write(code_file, instruction_number);
977
978
        }
      FSTPU_ fstpu(i);
979
      fstpu.write(code_file, instruction_number);
980
    }
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

  // Get the current code_file position and jump = true
  streampos pos2 = code_file.tellp();
  FJMP_ fjmp(0);
  fjmp.write(code_file, instruction_number);
  // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
  streampos pos3 = code_file.tellp();
  code_file.seekp(pos1);
  FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
  fjmp_if_eval1.write(code_file, instruction_number);
  code_file.seekp(pos3);
  prev_instruction_number = instruction_number ;

  // The Jacobian
  prev_var = -1;
  prev_lag = -999999999;
  count_col_endo = 0;
  for (map<pair< int, pair<int, int> >, expr_t>::const_iterator it = first_derivatives_reordered_endo.begin();
       it != first_derivatives_reordered_endo.end(); it++)
    {