prior_draw_gsa.m 3.8 KB
Newer Older
rattoma's avatar
rattoma committed
1
function pdraw = prior_draw_gsa(init,rdraw)
rattoma's avatar
rattoma committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
% Draws from the prior distributions 
% Adapted by M. Ratto from prior_draw (of DYNARE, copyright M. Juillard), 
% for use with Sensitivity Toolbox for DYNARE
% 
% 
% INPUTS
%   o init           [integer]  scalar equal to 1 (first call) or 0.
%   o rdraw          
%    
% OUTPUTS 
%   o pdraw          [double]   draw from the joint prior density. 
%
% ALGORITHM 
%   ...       
%
% SPECIAL REQUIREMENTS
%   MATLAB Statistics Toolbox
%  
20
% Written by Marco Ratto
rattoma's avatar
rattoma committed
21
22
23
24
25
26
% Joint Research Centre, The European Commission,
% (http://eemc.jrc.ec.europa.eu/),
% marco.ratto@jrc.it 
%
% Reference:
% M. Ratto, Global Sensitivity Analysis for Macroeconomic models, MIMEO, 2006.
27
28
29
30
31
32
33
34
35
36
37
38
39
40

% Copyright (C) 2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
rattoma's avatar
rattoma committed
41
%
42
43
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
rattoma's avatar
rattoma committed
44

rattoma's avatar
rattoma committed
45
46
% global M_ options_ estim_params_  bayestopt_
global bayestopt_
rattoma's avatar
rattoma committed
47
persistent npar pshape p6 p7 p3 p4 lbcum ubcum
rattoma's avatar
rattoma committed
48
49
50
  
if init
    pshape = bayestopt_.pshape;
rattoma's avatar
rattoma committed
51
52
    p6 = bayestopt_.p6;
    p7 = bayestopt_.p7;
rattoma's avatar
rattoma committed
53
54
    p3 = bayestopt_.p3;
    p4 = bayestopt_.p4;
rattoma's avatar
rattoma committed
55
    npar = length(p6);
rattoma's avatar
rattoma committed
56
    pdraw = zeros(npar,1);
rattoma's avatar
rattoma committed
57
58
59
60
61
62
63
64
65
66
67
68
69
    lbcum = zeros(npar,1);
    ubcum = ones(npar,1);
    
    % set bounds for cumulative probabilities
    for i = 1:npar
      switch pshape(i)
        case 5% Uniform prior.
          p4(i) = min(p4(i),bayestopt_.ub(i));
          p3(i) = max(p3(i),bayestopt_.lb(i));
        case 3% Gaussian prior.
          lbcum(i) = 0.5 * erfc(-(bayestopt_.lb(i)-p6(i))/p7(i) ./ sqrt(2));;
          ubcum(i) = 0.5 * erfc(-(bayestopt_.ub(i)-p6(i))/p7(i) ./ sqrt(2));;
        case 2% Gamma prior.
70
71
          lbcum(i) = gamcdf(bayestopt_.lb(i)-p3(i),p6(i),p7(i));
          ubcum(i) = gamcdf(bayestopt_.ub(i)-p3(i),p6(i),p7(i));
rattoma's avatar
rattoma committed
72
73
74
75
76
        case 1% Beta distribution (TODO: generalized beta distribution)
          lbcum(i) = betainc((bayestopt_.lb(i)-p3(i))./(p4(i)-p3(i)),p6(i),p7(i));
          ubcum(i) = betainc((bayestopt_.ub(i)-p3(i))./(p4(i)-p3(i)),p6(i),p7(i));
        case 4% INV-GAMMA1 distribution
          % TO BE CHECKED
77
78
          lbcum(i) = gamcdf(1/(bayestopt_.ub(i)-p3(i))^2,p7(i)/2,2/p6(i));
          ubcum(i) = gamcdf(1/(bayestopt_.lb(i)-p3(i))^2,p7(i)/2,2/p6(i));
rattoma's avatar
rattoma committed
79
80
        case 6% INV-GAMMA2 distribution
          % TO BE CHECKED
81
82
          lbcum(i) = gamcdf(1/(bayestopt_.ub(i)-p3(i)),p7(i)/2,2/p6(i));
          ubcum(i) = gamcdf(1/(bayestopt_.lb(i)-p3(i)),p7(i)/2,2/p6(i));
rattoma's avatar
rattoma committed
83
84
85
86
        otherwise
          % Nothing to do here.
      end
    end
rattoma's avatar
rattoma committed
87
88
89
90
91
    return
end


for i = 1:npar
rattoma's avatar
rattoma committed
92
    rdraw(:,i) = rdraw(:,i).*(ubcum(i)-lbcum(i))+lbcum(i);
rattoma's avatar
rattoma committed
93
94
95
96
    switch pshape(i)
      case 5% Uniform prior.
        pdraw(:,i) = rdraw(:,i)*(p4(i)-p3(i)) + p3(i);
      case 3% Gaussian prior.
97
        pdraw(:,i) = norminv(rdraw(:,i),p6(i),p7(i));
rattoma's avatar
rattoma committed
98
      case 2% Gamma prior.
99
        pdraw(:,i) = gaminv(rdraw(:,i),p6(i),p7(i))+p3(i);
rattoma's avatar
rattoma committed
100
      case 1% Beta distribution (TODO: generalized beta distribution)
101
        pdraw(:,i) = betainv(rdraw(:,i),p6(i),p7(i))*(p4(i)-p3(i))+p3(i);
rattoma's avatar
rattoma committed
102
103
      case 4% INV-GAMMA1 distribution 
        % TO BE CHECKED
104
        pdraw(:,i) =  sqrt(1./gaminv(rdraw(:,i),p7(i)/2,2/p6(i)))+p3(i);
rattoma's avatar
rattoma committed
105
106
      case 6% INV-GAMMA2 distribution  
        % TO BE CHECKED
107
        pdraw(:,i) =  1./gaminv(rdraw(:,i),p7(i)/2,2/p6(i))+p3(i);
rattoma's avatar
rattoma committed
108
109
110
111
112
113
      otherwise
        % Nothing to do here.
    end
end