Commit 0311c4ad authored by Johannes Pfeifer 's avatar Johannes Pfeifer
Browse files

Add unit test for correlated measurement error

Tests both ML and Bayesian estimation and test calibrated correlation of
those shocks
parent 7518072e
/*
* This file is based on the cash in advance model described
* Frank Schorfheide (2000): "Loss function-based evaluation of DSGE models",
* Journal of Applied Econometrics, 15(6), 645-670.
*
* The equations are taken from J. Nason and T. Cogley (1994): "Testing the
* implications of long-run neutrality for monetary business cycle models",
* Journal of Applied Econometrics, 9, S37-S70.
* Note that there is an initial minus sign missing in equation (A1), p. S63.
*
* This implementation was written by Michel Juillard. Please note that the
* following copyright notice only applies to this Dynare implementation of the
* model.
*/
/*
* Copyright (C) 2004-2013 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
var m P c e W R k d n l gy_obs gp_obs y dA;
varexo e_a e_m;
parameters alp bet gam mst rho psi del theta;
alp = 0.33;
bet = 0.99;
gam = 0.003;
mst = 1.011;
rho = 0.7;
psi = 0.787;
del = 0.02;
theta=0;
model;
dA = exp(gam+e_a);
log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e_m;
-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0;
W = l/n;
-(psi/(1-psi))*(c*P/(1-n))+l/n = 0;
R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W;
1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0;
c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1);
P*c = m;
m-1+d = l;
e = exp(e_a);
y = k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a));
gy_obs = dA*y/y(-1);
gp_obs = (P/P(-1))*m(-1)/dA;
end;
initval;
k = 6;
m = mst;
P = 2.25;
c = 0.45;
e = 1;
W = 4;
R = 1.02;
d = 0.85;
n = 0.19;
l = 0.86;
y = 0.6;
gy_obs = exp(gam);
gp_obs = exp(-gam);
dA = exp(gam);
end;
varobs gp_obs gy_obs;
shocks;
var e_a; stderr 0.014;
var e_m; stderr 0.005;
corr gy_obs,gp_obs = 0.5;
end;
steady;
estimated_params;
alp, 0.356;
gam, 0.0085;
del, 0.01;
stderr e_a, 0.035449;
stderr e_m, 0.008862;
corr e_m, e_a, 0;
stderr gp_obs, 1;
stderr gy_obs, 1;
corr gp_obs, gy_obs,0;
end;
options_.TeX=1;
estimation(mode_compute=9,order=1,datafile=fsdat_simul,mode_check,smoother,filter_decomposition,forecast = 8,filtered_vars,filter_step_ahead=[1,3],irf=20) m P c e W R k d y gy_obs;
estimated_params;
//alp, beta_pdf, 0.356, 0.02;
gam, normal_pdf, 0.0085, 0.003;
//del, beta_pdf, 0.01, 0.005;
stderr e_a, inv_gamma_pdf, 0.035449, inf;
stderr e_m, inv_gamma_pdf, 0.008862, inf;
corr e_m, e_a, normal_pdf, 0, 0.2;
stderr gp_obs, inv_gamma_pdf, 0.001, inf;
//stderr gy_obs, inv_gamma_pdf, 0.001, inf;
//corr gp_obs, gy_obs,normal_pdf, 0, 0.2;
end;
estimation(mode_compute=0,mode_file=fs2000_corr_ME_mh_mode,order=1,datafile=fsdat_simul,mode_check,smoother,filter_decomposition,mh_replic=2000, mh_nblocks=2, mh_jscale=0.8,forecast = 8,bayesian_irf,filtered_vars,filter_step_ahead=[1,3],irf=20) m P c e W R k d y;
shock_decomposition y W R;
//identification(advanced=1,max_dim_cova_group=3,prior_mc=250);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment