Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Dóra Kocsis
dynare
Commits
155f6f3b
Commit
155f6f3b
authored
Jan 28, 2013
by
Frédéric Karamé
Browse files
modification in the call of resampling: only one call now
parent
9df38579
Changes
4
Hide whitespace changes
Inline
Side-by-side
matlab/particle/auxiliary_initialization.m
0 → 100644
View file @
155f6f3b
function
initial_distribution
=
auxiliary_initialization
(
ReducedForm
,
Y
,
start
,
DynareOptions
)
% Evaluates the likelihood of a nonlinear model with a particle filter allowing eventually resampling.
%
% INPUTS
% ReducedForm [structure] Matlab's structure describing the reduced form model.
% ReducedForm.measurement.H [double] (pp x pp) variance matrix of measurement errors.
% ReducedForm.state.Q [double] (qq x qq) variance matrix of state errors.
% ReducedForm.state.dr [structure] output of resol.m.
% Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables.
% start [integer] scalar, likelihood evaluation starts at 'start'.
% mf [integer] pp*1 vector of indices.
% number_of_particles [integer] scalar.
%
% OUTPUTS
% LIK [double] scalar, likelihood
% lik [double] vector, density of observations in each period.
%
% REFERENCES
%
% NOTES
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright (C) 2011, 2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent
init_flag
mf0
mf1
number_of_particles
persistent
number_of_observed_variables
number_of_structural_innovations
% Set default
if
isempty
(
start
)
start
=
1
;
end
% Set flag for prunning
%pruning = DynareOptions.particle.pruning;
% Get steady state and mean.
%steadystate = ReducedForm.steadystate;
constant
=
ReducedForm
.
constant
;
state_variables_steady_state
=
ReducedForm
.
state_variables_steady_state
;
% Set persistent variables.
if
isempty
(
init_flag
)
mf0
=
ReducedForm
.
mf0
;
mf1
=
ReducedForm
.
mf1
;
number_of_observed_variables
=
length
(
mf1
);
number_of_structural_innovations
=
length
(
ReducedForm
.
Q
);
number_of_particles
=
DynareOptions
.
particle
.
number_of_particles
;
init_flag
=
1
;
end
% Set local state space model (first order approximation).
ghx
=
ReducedForm
.
ghx
;
ghu
=
ReducedForm
.
ghu
;
% Set local state space model (second order approximation).
ghxx
=
ReducedForm
.
ghxx
;
ghuu
=
ReducedForm
.
ghuu
;
ghxu
=
ReducedForm
.
ghxu
;
% Get covariance matrices
Q
=
ReducedForm
.
Q
;
H
=
ReducedForm
.
H
;
if
isempty
(
H
)
H
=
0
;
end
% Get initial condition for the state vector.
StateVectorMean
=
ReducedForm
.
StateVectorMean
;
StateVectorVarianceSquareRoot
=
reduced_rank_cholesky
(
ReducedForm
.
StateVectorVariance
)
'
;
state_variance_rank
=
size
(
StateVectorVarianceSquareRoot
,
2
);
%Q_lower_triangular_cholesky = chol(Q)';
%if pruning
% StateVectorMean_ = StateVectorMean;
% StateVectorVarianceSquareRoot_ = StateVectorVarianceSquareRoot;
%end
% Set seed for randn().
set_dynare_seed
(
'default'
);
% Initialization of the likelihood.
const_lik
=
log
(
2
*
pi
)
*
number_of_observed_variables
;
% Initialization of the weights across particles.
weights
=
ones
(
1
,
number_of_particles
)/
number_of_particles
;
StateVectors
=
bsxfun
(
@
plus
,
StateVectorVarianceSquareRoot
*
randn
(
state_variance_rank
,
number_of_particles
),
StateVectorMean
);
%if pruning
% StateVectors_ = StateVectors;
%end
yhat
=
bsxfun
(
@
minus
,
StateVectors
,
state_variables_steady_state
);
%if pruning
% yhat_ = bsxfun(@minus,StateVectors_,state_variables_steady_state);
% [tmp, tmp_] = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,DynareOptions.threads.local_state_space_iteration_2);
%else
tmp
=
local_state_space_iteration_2
(
yhat
,
zeros
(
number_of_structural_innovations
,
number_of_particles
),
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
DynareOptions
.
threads
.
local_state_space_iteration_2
);
%end
PredictedObservedMean
=
weights
*
(
tmp
(
mf1
,:)
'
);
PredictionError
=
bsxfun
(
@
minus
,
Y
(:,
t
),
tmp
(
mf1
,:));
dPredictedObservedMean
=
bsxfun
(
@
minus
,
tmp
(
mf1
,:),
PredictedObservedMean
'
);
PredictedObservedVariance
=
bsxfun
(
@
times
,
weights
,
dPredictedObservedMean
)
*
dPredictedObservedMean
'
+
H
;
wtilde
=
exp
(
-.
5
*
(
const_lik
+
log
(
det
(
PredictedObservedVariance
))
+
sum
(
PredictionError
.*
(
PredictedObservedVariance
\
PredictionError
),
1
)))
;
tau_tilde
=
weights
.*
wtilde
;
tau_tilde
=
tau_tilde
/
sum
(
tau_tilde
);
initial_distribution
=
resample
(
StateVectors
',tau_tilde'
,
DynareOptions
)
'
;
\ No newline at end of file
matlab/particle/auxiliary_particle_filter.m
View file @
155f6f3b
...
...
@@ -37,7 +37,7 @@ function [LIK,lik] = auxiliary_particle_filter(ReducedForm,Y,start,DynareOptions
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent
init_flag
mf0
mf1
number_of_particles
persistent
sample_size
number_of_observed_variables
number_of_structural_innovations
persistent
sample_size
number_of_state_variables
number_of_observed_variables
number_of_structural_innovations
% Set default
if
isempty
(
start
)
...
...
@@ -57,6 +57,7 @@ if isempty(init_flag)
mf0
=
ReducedForm
.
mf0
;
mf1
=
ReducedForm
.
mf1
;
sample_size
=
size
(
Y
,
2
);
number_of_state_variables
=
length
(
mf0
);
number_of_observed_variables
=
length
(
mf1
);
number_of_structural_innovations
=
length
(
ReducedForm
.
Q
);
number_of_particles
=
DynareOptions
.
particle
.
number_of_particles
;
...
...
@@ -121,12 +122,25 @@ for t=1:sample_size
%var_wtilde = var_wtilde'*var_wtilde/(number_of_particles-1) ;
lik
(
t
)
=
log
(
sum_tau_tilde
)
;
%+ .5*var_wtilde/(number_of_particles*(sum_tau_tilde*sum_tau_tilde)) ;
tau_tilde
=
tau_tilde
/
sum_tau_tilde
;
indx_resmpl
=
resample
(
tau_tilde
,
DynareOptions
.
particle
.
resampling
.
method1
,
DynareOptions
.
particle
.
resampling
.
method2
);
yhat
=
yhat
(:,
indx_resmpl
);
wtilde
=
wtilde
(
indx_resmpl
);
if
pruning
temp
=
resample
([
yhat
' yhat_'
],
tau_tilde
'
,
DynareOptions
);
yhat
=
temp
(:,
1
:
number_of_state_variables
)
'
;
yhat_
=
temp
(:,
number_of_state_variables
+
1
:
2
*
number_of_state_variables
)
'
;
else
yhat
=
resample
(
yhat
',tau_tilde'
,
DynareOptions
)
'
;
end
if
pruning
[
tmp
,
tmp_
]
=
local_state_space_iteration_2
(
yhat
,
zeros
(
number_of_structural_innovations
,
number_of_particles
),
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
yhat_
,
steadystate
,
DynareOptions
.
threads
.
local_state_space_iteration_2
);
else
tmp
=
local_state_space_iteration_2
(
yhat
,
zeros
(
number_of_structural_innovations
,
number_of_particles
),
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
DynareOptions
.
threads
.
local_state_space_iteration_2
);
end
PredictedObservedMean
=
weights
*
(
tmp
(
mf1
,:)
'
);
PredictionError
=
bsxfun
(
@
minus
,
Y
(:,
t
),
tmp
(
mf1
,:));
dPredictedObservedMean
=
bsxfun
(
@
minus
,
tmp
(
mf1
,:),
PredictedObservedMean
'
);
PredictedObservedVariance
=
bsxfun
(
@
times
,
weights
,
dPredictedObservedMean
)
*
dPredictedObservedMean
'
+
H
;
wtilde
=
exp
(
-.
5
*
(
const_lik
+
log
(
det
(
PredictedObservedVariance
))
+
sum
(
PredictionError
.*
(
PredictedObservedVariance
\
PredictionError
),
1
)))
;
epsilon
=
Q_lower_triangular_cholesky
*
randn
(
number_of_structural_innovations
,
number_of_particles
);
if
pruning
yhat_
=
yhat_
(:,
indx_resmpl
);
[
tmp
,
tmp_
]
=
local_state_space_iteration_2
(
yhat
,
epsilon
,
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
yhat_
,
steadystate
,
DynareOptions
.
threads
.
local_state_space_iteration_2
);
StateVectors_
=
tmp_
(
mf0
,:);
else
...
...
matlab/particle/gaussian_filter.m
View file @
155f6f3b
...
...
@@ -149,12 +149,7 @@ for t=1:sample_size
if
(
Neff
<.
5
*
sample_size
&&
strcmpi
(
DynareOptions
.
particle
.
resampling
.
status
,
'generic'
))
||
...
strcmpi
(
DynareOptions
.
particle
.
resampling
.
status
,
'systematic'
)
ks
=
ks
+
1
;
StateParticles
=
StateParticles
(:,
resample
(
SampleWeights
'
,
DynareOptions
.
particle
.
resampling
.
method1
,
DynareOptions
.
particle
.
resampling
.
method2
))
;
StateVectorMean
=
mean
(
StateParticles
,
2
)
;
StateVectorVarianceSquareRoot
=
reduced_rank_cholesky
(
(
StateParticles
*
StateParticles
')/(number_of_particles-1) - StateVectorMean*(StateVectorMean'
)
)
'
;
SampleWeights
=
1
/
number_of_particles
;
elseif
strcmp
(
DynareOptions
.
particle
.
resampling
.
status
,
'smoothed'
)
StateParticles
=
multivariate_smooth_resampling
(
SampleWeights
,
StateParticles
',number_of_particles,DynareOptions.particle.resampling.number_of_partitions)'
;
StateParticles
=
resample
(
StateParticles
',SampleWeights,DynareOptions)'
;
StateVectorMean
=
mean
(
StateParticles
,
2
)
;
StateVectorVarianceSquareRoot
=
reduced_rank_cholesky
(
(
StateParticles
*
StateParticles
')/(number_of_particles-1) - StateVectorMean*(StateVectorMean'
)
)
'
;
SampleWeights
=
1
/
number_of_particles
;
...
...
matlab/particle/sequential_importance_particle_filter.m
View file @
155f6f3b
...
...
@@ -60,7 +60,7 @@ function [LIK,lik] = sequential_importance_particle_filter(ReducedForm,Y,start,D
persistent
init_flag
persistent
mf0
mf1
persistent
number_of_particles
persistent
number_of_particles
number_of_state_variables
persistent
sample_size
number_of_observed_variables
number_of_structural_innovations
%
Set
default
value
for
start
...
...
@@ -81,6 +81,7 @@ if isempty(init_flag)
mf0
=
ReducedForm
.
mf0
;
mf1
=
ReducedForm
.
mf1
;
sample_size
=
size
(
Y
,
2
);
number_of_state_variables
=
length
(
mf0
);
number_of_observed_variables
=
length
(
mf1
);
number_of_structural_innovations
=
length
(
ReducedForm
.
Q
);
number_of_particles
=
DynareOptions
.
particle
.
number_of_particles
;
...
...
@@ -151,17 +152,14 @@ for t=1:sample_size
wtilde
=
weights
.
*
exp
(
lnw
-
dfac
);
lik
(
t
)
=
log
(
sum
(
wtilde
))
+
dfac
;
weights
=
wtilde
/
sum
(
wtilde
);
if
(
strcmp
(
DynareOptions
.
particle
.
resampling
.
status
,
'
generic
'
)
&&
neff
(
weights
)
<
DynareOptions
.
particle
.
resampling
.
neff_threshold
*
sample_size
)
||
strcmp
(
DynareOptions
.
particle
.
resampling
.
status
,
'
systematic
'
)
idx
=
resample
(
weights
,
DynareOptions
.
particle
.
resampling
.
method1
,
DynareOptions
.
particle
.
resampling
.
method2
);
StateVectors
=
tmp
(
mf0
,
idx
);
if
(
strcmp
(
DynareOptions
.
particle
.
resampling
.
status
,
'
generic
'
)
&&
neff
(
weights
)
<
DynareOptions
.
particle
.
resampling
.
neff_threshold
*
sample_size
)
||
...
strcmp
(
DynareOptions
.
particle
.
resampling
.
status
,
'
systematic
'
)
if
pruning
StateVectors_
=
tmp_
(
mf0
,
idx
);
end
weights
=
ones
(
1
,
number_of_particles
)
/
number_of_particles
;
elseif
strcmp
(
DynareOptions
.
particle
.
resampling
.
status
,
'
smoothed
'
)
StateVectors
=
multivariate_smooth_resampling
(
weights
'
,
tmp
(
mf0
,
:
)
'
,
number_of_particles
,
DynareOptions
.
particle
.
resampling
.
number_of_partitions
)
'
;
if
pruning
StateVectors_
=
multivariate_smooth_resampling
(
weights
'
,
tmp_
(
mf0
,
:
)
'
,
number_of_particles
,
DynareOptions
.
particle
.
resampling
.
number_of_partitions
)
'
;
temp
=
resample
([
tmp
(
mf0
,
:
)
'
tmp_
(
mf0
,
:
)
'
],
weights
,
DynareOptions
);
StateVectors
=
temp
(
:
,
1
:
number_of_state_variables
)
'
;
StateVectors_
=
temp
(
:
,
number_of_state_variables
+
1
:
2
*
number_of_state_variables
)
'
;
else
StateVectors
=
resample
(
tmp
(
mf0
,
:
)
'
,
weights
,
DynareOptions
)
'
;
end
weights
=
ones
(
1
,
number_of_particles
)
/
number_of_particles
;
elseif
strcmp
(
DynareOptions
.
particle
.
resampling
.
status
,
'
none
'
)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment