Commit 4268f2f7 authored by ferhat's avatar ferhat
Browse files

topological sort implemented after the block decomposition for dynamic models

git-svn-id: ac1d8469-bf42-47a9-8791-bf33cf982152
parent afb0c757
......@@ -29,6 +29,8 @@
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/strong_components.hpp>
#include <boost/graph/topological_sort.hpp>
#include "BlockTriangular.hh"
......@@ -258,27 +260,65 @@ BlockTriangular::Compute_Block_Decomposition_and_Feedback_Variables_For_Each_Blo
//In a first step we compute the strong components of the graph representation of the static model.
// This insures that block are dynamically recursives.
GraphvizDigraph G2 = AM_2_GraphvizDigraph(AMp, n);
vector<int> component(num_vertices(G2)), discover_time(num_vertices(G2));
vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2));
int num = strong_components(G2, &component[0]);
int num = strong_components(G2, &endo2block[0]);
blocks = vector<pair<int, int> >(num, make_pair(0, 0));
// Compute strongly connected components
// Create directed acyclic graph associated to the strongly connected components
typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;
DirectedGraph dag(num);
/*graph_traits<DirectedGraph>::edge_iterator ei, ei_end;
for(tie(ei, ei_end) = edges(G2); ei != ei_end; ++ei)
int s = endo2block[source(*ei, G2)];
int t = endo2block[target(*ei, G2)];
if (s != t)
add_edge(s, t, dag);
for (int i = 0;i < num_vertices(G2);i++)
GraphvizDigraph::out_edge_iterator it_out, out_end;
GraphvizDigraph::vertex_descriptor vi = vertex(i, G2);
for (tie(it_out, out_end) = out_edges(vi, G2); it_out != out_end; ++it_out)
int t_b = endo2block[target(*it_out, G2)];
int s_b = endo2block[source(*it_out, G2)];
if (s_b != t_b)
add_edge(s_b, t_b, dag);
// Compute topological sort of DAG (ordered list of unordered SCC)
deque<int> ordered2unordered;
topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order
// Construct mapping from unordered SCC to ordered SCC
vector<int> unordered2ordered(num);
for(int i = 0; i < num; i++)
unordered2ordered[ordered2unordered[i]] = i;
//This vector contains for each block:
// - first set = equations belonging to the block,
// - second set = the feeback variables,
// - third vector = the reordered non-feedback variables.
vector<pair<set<int>, pair<set<int>, vector<int> > > > components_set(num);
for (unsigned int i = 0; i < component.size(); i++)
for (unsigned int i = 0; i < endo2block.size(); i++)
endo2block[i] = unordered2ordered[endo2block[i]];
t_vtype equation_lead_lag;
V_Variable_Type = Get_Variable_LeadLag_By_Block(component, num, prologue, epilogue, equation_lead_lag);
V_Variable_Type = Get_Variable_LeadLag_By_Block(endo2block, num, prologue, epilogue, equation_lead_lag);
vector<int> tmp_Index_Equ_IM(Index_Equ_IM), tmp_Index_Var_IM(Index_Var_IM);
int order = prologue;
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment