Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Dóra Kocsis
dynare
Commits
70665164
Commit
70665164
authored
Dec 01, 2008
by
michel
Browse files
adding missing data smoother + small corrections
git-svn-id:
https://www.dynare.org/svn/dynare/dynare_v4@2278
ac1d8469-bf42-47a9-8791-bf33cf982152
parent
6a1c5fbd
Changes
6
Hide whitespace changes
Inline
Side-by-side
matlab/DsgeSmoother.m
View file @
70665164
...
...
@@ -264,13 +264,25 @@ function [alphahat,etahat,epsilonhat,ahat,SteadyState,trend_coeff,aK,T,R,P,PK,d,
end
else
if
kalman_algo
==
1
[
alphahat
,
etahat
,
ahat
,
aK
]
=
DiffuseKalmanSmoother1
(
T
,
R
,
Q
,
Pinf
,
Pstar
,
Y
,
trend
,
nobs
,
np
,
smpl
,
mf
);
if
missing_value
[
alphahat
,
etahat
,
ahat
,
aK
]
=
missing_DiffuseKalmanSmoother1
(
T
,
R
,
Q
,
...
Pinf
,
Pstar
,
Y
,
trend
,
nobs
,
np
,
smpl
,
mf
,
data_index
);
else
[
alphahat
,
etahat
,
ahat
,
aK
]
=
DiffuseKalmanSmoother1
(
T
,
R
,
Q
,
...
Pinf
,
Pstar
,
Y
,
trend
,
nobs
,
np
,
smpl
,
mf
);
end
if
all
(
alphahat
(:)
==
0
)
kalman_algo
=
2
;
end
end
if
kalman_algo
==
2
[
alphahat
,
etahat
,
ahat
,
aK
]
=
DiffuseKalmanSmoother3
(
T
,
R
,
Q
,
Pinf
,
Pstar
,
Y
,
trend
,
nobs
,
np
,
smpl
,
mf
);
if
missing_value
[
alphahat
,
etahat
,
ahat
,
aK
]
=
missing_DiffuseKalmanSmoother3
(
T
,
R
,
Q
,
...
Pinf
,
Pstar
,
Y
,
trend
,
nobs
,
np
,
smpl
,
mf
,
data_index
);
else
[
alphahat
,
etahat
,
ahat
,
aK
]
=
DiffuseKalmanSmoother3
(
T
,
R
,
Q
,
...
Pinf
,
Pstar
,
Y
,
trend
,
nobs
,
np
,
smpl
,
mf
);
end
end
if
kalman_algo
==
3
data1
=
Y
-
trend
;
...
...
matlab/describe_missing_data.m
View file @
70665164
...
...
@@ -17,6 +17,6 @@ number_of_observations = length(variable_index);
if ~missing_observations_counter
no_more_missing_observations = 0;
else
tmp = find(missing_observations_counter>=(gend*nvarobs-number_of_observations))
tmp = find(missing_observations_counter>=(gend*nvarobs-number_of_observations))
;
no_more_missing_observations = tmp(1);
end
\ No newline at end of file
matlab/missing_DiffuseKalmanSmoother1.m
0 → 100644
View file @
70665164
function
[
alphahat
,
etahat
,
atilde
,
aK
]
=
DiffuseKalmanSmoother1
(
T
,
R
,
Q
,
Pinf1
,
Pstar1
,
Y
,
trend
,
pp
,
mm
,
smpl
,
mf
,
data_index
)
% function [alphahat,etahat,a, aK] = DiffuseKalmanSmoother1(T,R,Q,Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf)
% Computes the diffuse kalman smoother without measurement error, in the case of a non-singular var-cov matrix
%
% INPUTS
% T: mm*mm matrix
% R: mm*rr matrix
% Q: rr*rr matrix
% Pinf1: mm*mm diagonal matrix with with q ones and m-q zeros
% Pstar1: mm*mm variance-covariance matrix with stationary variables
% Y: pp*1 vector
% trend
% pp: number of observed variables
% mm: number of state variables
% smpl: sample size
% mf: observed variables index in the state vector
% data_index [cell] 1*smpl cell of column vectors of indices.
%
% OUTPUTS
% alphahat: smoothed state variables (a_{t|T})
% etahat: smoothed shocks
% atilde: matrix of updated variables (a_{t|t})
% aK: 3D array of k step ahead filtered state variables (a_{t+k|t})
% SPECIAL REQUIREMENTS
% See "Filtering and Smoothing of State Vector for Diffuse State Space
% Models", S.J. Koopman and J. Durbin (2003, in Journal of Time Series
% Analysis, vol. 24(1), pp. 85-98).
% Copyright (C) 2004-2008 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% modified by M. Ratto:
% new output argument aK (1-step to k-step predictions)
% new options_.nk: the max step ahed prediction in aK (default is 4)
% new crit1 value for rank of Pinf
% it is assured that P is symmetric
global
options_
nk
=
options_
.
nk
;
spinf
=
size
(
Pinf1
);
spstar
=
size
(
Pstar1
);
v
=
zeros
(
pp
,
smpl
);
a
=
zeros
(
mm
,
smpl
+
1
);
atilde
=
zeros
(
mm
,
smpl
);
aK
=
zeros
(
nk
,
mm
,
smpl
+
1
);
iF
=
zeros
(
pp
,
pp
,
smpl
);
Fstar
=
zeros
(
pp
,
pp
,
smpl
);
iFinf
=
zeros
(
pp
,
pp
,
smpl
);
K
=
zeros
(
mm
,
pp
,
smpl
);
L
=
zeros
(
mm
,
mm
,
smpl
);
Linf
=
zeros
(
mm
,
mm
,
smpl
);
Kstar
=
zeros
(
mm
,
pp
,
smpl
);
P
=
zeros
(
mm
,
mm
,
smpl
+
1
);
Pstar
=
zeros
(
spstar
(
1
),
spstar
(
2
),
smpl
+
1
);
Pstar
(:,:,
1
)
=
Pstar1
;
Pinf
=
zeros
(
spinf
(
1
),
spinf
(
2
),
smpl
+
1
);
Pinf
(:,:,
1
)
=
Pinf1
;
crit
=
options_
.
kalman_tol
;
crit1
=
1.e-8
;
steady
=
smpl
;
rr
=
size
(
Q
,
1
);
QQ
=
R
*
Q
*
transpose
(
R
);
QRt
=
Q
*
transpose
(
R
);
alphahat
=
zeros
(
mm
,
smpl
);
etahat
=
zeros
(
rr
,
smpl
);
r
=
zeros
(
mm
,
smpl
+
1
);
Z
=
zeros
(
pp
,
mm
);
for
i
=
1
:
pp
;
Z
(
i
,
mf
(
i
))
=
1
;
end
t
=
0
;
while
rank
(
Pinf
(:,:,
t
+
1
),
crit1
)
&
t
<
smpl
t
=
t
+
1
;
di
=
data_index
{
t
};
if
isempty
(
di
)
atilde
(:,
t
)
=
a
(:,
t
);
Linf
(:,:,
t
)
=
T
;
Pstar
(:,:,
t
+
1
)
=
T
*
Pstar
(:,:,
t
)
*
T
'
+
QQ
;
Pinf
(:,:,
t
+
1
)
=
T
*
Pinf
(:,:,
t
)
*
T
'
;
else
mf1
=
mf
(
di
);
v
(
di
,
t
)
=
Y
(
di
,
t
)
-
a
(
mf1
,
t
)
-
trend
(
di
,
t
);
if
rcond
(
Pinf
(
mf1
,
mf1
,
t
))
<
crit
return
end
iFinf
(
di
,
di
,
t
)
=
inv
(
Pinf
(
mf1
,
mf1
,
t
));
PZI
=
Pinf
(:,
mf1
,
t
)
*
iFinf
(
di
,
di
,
t
);
atilde
(:,
t
)
=
a
(:,
t
)
+
PZI
*
v
(
di
,
t
);
Kinf
(:,
di
,
t
)
=
T
*
PZI
;
a
(:,
t
+
1
)
=
T
*
atilde
(:,
t
);
Linf
(:,:,
t
)
=
T
-
Kinf
(:,
di
,
t
)
*
Z
(
di
,:);
Fstar
(
di
,
di
,
t
)
=
Pstar
(
mf1
,
mf1
,
t
);
Kstar
(:,
di
,
t
)
=
(
T
*
Pstar
(:,
mf1
,
t
)
-
Kinf
(:,
di
,
t
)
*
Fstar
(
di
,
di
,
t
))
*
iFinf
(
di
,
di
,
t
);
Pstar
(:,:,
t
+
1
)
=
T
*
Pstar
(:,:,
t
)
*
transpose
(
T
)
-
T
*
Pstar
(:,
mf1
,
t
)
*
transpose
(
Kinf
(:,
di
,
t
))
-
Kinf
(:,
di
,
t
)
*
Pinf
(
mf1
,
mf1
,
t
)
*
transpose
(
Kstar
(:,
di
,
t
))
+
QQ
;
Pinf
(:,:,
t
+
1
)
=
T
*
Pinf
(:,:,
t
)
*
transpose
(
T
)
-
T
*
Pinf
(:,
mf1
,
t
)
*
...
transpose
(
Kinf
(:,
di
,
t
));
end
aK
(
1
,:,
t
+
1
)
=
a
(:,
t
+
1
);
for
jnk
=
2
:
nk
,
aK
(
jnk
,:,
t
+
jnk
)
=
T
^
(
jnk
-
1
)
*
a
(:,
t
+
1
);
end
end
d
=
t
;
P
(:,:,
d
+
1
)
=
Pstar
(:,:,
d
+
1
);
iFinf
=
iFinf
(:,:,
1
:
d
);
Linf
=
Linf
(:,:,
1
:
d
);
Fstar
=
Fstar
(:,:,
1
:
d
);
Kstar
=
Kstar
(:,:,
1
:
d
);
Pstar
=
Pstar
(:,:,
1
:
d
);
Pinf
=
Pinf
(:,:,
1
:
d
);
notsteady
=
1
;
while
notsteady
&
t
<
smpl
t
=
t
+
1
;
P
(:,:,
t
)
=
tril
(
P
(:,:,
t
))
+
transpose
(
tril
(
P
(:,:,
t
),
-
1
));
di
=
data_index
{
t
};
if
isempty
(
di
)
atilde
(:,
t
)
=
a
(:,
t
);
L
(:,:,
t
)
=
T
;
P
(:,:,
t
+
1
)
=
T
*
P
(:,:,
t
)
*
T
'
+
QQ
;
else
mf1
=
mf
(
di
);
v
(
di
,
t
)
=
Y
(
di
,
t
)
-
a
(
mf1
,
t
)
-
trend
(
di
,
t
);
if
rcond
(
P
(
mf1
,
mf1
,
t
))
<
crit
return
end
iF
(
di
,
di
,
t
)
=
inv
(
P
(
mf1
,
mf1
,
t
));
PZI
=
P
(:,
mf1
,
t
)
*
iF
(
di
,
di
,
t
);
atilde
(:,
t
)
=
a
(:,
t
)
+
PZI
*
v
(
di
,
t
);
K
(:,
di
,
t
)
=
T
*
PZI
;
L
(:,:,
t
)
=
T
-
K
(:,
di
,
t
)
*
Z
(
di
,:);
a
(:,
t
+
1
)
=
T
*
atilde
(:,
t
);
end
aK
(
1
,:,
t
+
1
)
=
a
(:,
t
+
1
);
for
jnk
=
2
:
nk
,
aK
(
jnk
,:,
t
+
jnk
)
=
T
^
(
jnk
-
1
)
*
a
(:,
t
+
1
);
end
P
(:,:,
t
+
1
)
=
T
*
P
(:,:,
t
)
*
transpose
(
T
)
-
T
*
P
(:,
mf
,
t
)
*
transpose
(
K
(:,:,
t
))
+
QQ
;
% notsteady = ~(max(max(abs(P(:,:,t+1)-P(:,:,t))))<crit);
end
% $$$ if t<smpl
% $$$ PZI_s = PZI;
% $$$ K_s = K(:,:,t);
% $$$ iF_s = iF(:,:,t);
% $$$ P_s = P(:,:,t+1);
% $$$ t_steady = t+1;
% $$$ P = cat(3,P(:,:,1:t),repmat(P(:,:,t),[1 1 smpl-t_steady+1]));
% $$$ iF = cat(3,iF(:,:,1:t),repmat(inv(P_s(mf,mf)),[1 1 smpl-t_steady+1]));
% $$$ L = cat(3,L(:,:,1:t),repmat(T-K_s*Z,[1 1 smpl-t_steady+1]));
% $$$ K = cat(3,K(:,:,1:t),repmat(T*P_s(:,mf)*iF_s,[1 1 smpl-t_steady+1]));
% $$$ end
% $$$ while t<smpl
% $$$ t=t+1;
% $$$ v(:,t) = Y(:,t) - a(mf,t) - trend(:,t);
% $$$ atilde(:,t) = a(:,t) + PZI*v(:,t);
% $$$ a(:,t+1) = T*a(:,t) + K_s*v(:,t);
% $$$ aK(1,:,t+1) = a(:,t+1);
% $$$ for jnk=2:nk,
% $$$ aK(jnk,:,t+jnk) = T^(jnk-1)*a(:,t+1);
% $$$ end
% $$$ end
t
=
smpl
+
1
;
while
t
>
d
+
1
t
=
t
-
1
;
di
=
data_index
{
t
};
if
isempty
(
di
)
r
(:,
t
)
=
L
(:,:,
t
)
'*
r
(:,
t
+
1
);
else
r
(:,
t
)
=
Z
(
di
,:)
'*iF(di,di,t)*v(di,t) + L(:,:,t)'
*
r
(:,
t
+
1
);
end
alphahat
(:,
t
)
=
a
(:,
t
)
+
P
(:,:,
t
)
*
r
(:,
t
);
etahat
(:,
t
)
=
QRt
*
r
(:,
t
);
end
if
d
r0
=
zeros
(
mm
,
d
+
1
);
r0
(:,
d
+
1
)
=
r
(:,
d
+
1
);
r1
=
zeros
(
mm
,
d
+
1
);
for
t
=
d
:
-
1
:
1
r0
(:,
t
)
=
Linf
(:,:,
t
)
'*
r0
(:,
t
+
1
);
di
=
data_index
{
t
};
if
isempty
(
di
)
r1
(:,
t
)
=
Linf
(:,:,
t
)
'*
r1
(:,
t
+
1
);
else
r1
(:,
t
)
=
Z
(
di
,:)
'*(iFinf(di,di,t)*v(di,t)-Kstar(:,di,t)'
*
r0
(:,
t
+
1
))
...
+
Linf
(:,:,
t
)
'*
r1
(:,
t
+
1
);
end
alphahat
(:,
t
)
=
a
(:,
t
)
+
Pstar
(:,:,
t
)
*
r0
(:,
t
)
+
Pinf
(:,:,
t
)
*
r1
(:,
t
);
etahat
(:,
t
)
=
QRt
*
r0
(:,
t
);
end
end
matlab/missing_DiffuseKalmanSmoother1_Z.m
0 → 100644
View file @
70665164
function
[
alphahat
,
etahat
,
atilde
,
P
,
aK
,
PK
,
d
,
decomp
]
=
DiffuseKalmanSmoother1_Z
(
T
,
Z
,
R
,
Q
,
Pinf1
,
Pstar1
,
Y
,
pp
,
mm
,
smpl
,
data_index
)
% function [alphahat,etahat,a, aK] = DiffuseKalmanSmoother1(T,Z,R,Q,Pinf1,Pstar1,Y,pp,mm,smpl)
% Computes the diffuse kalman smoother without measurement error, in the case of a non-singular var-cov matrix
%
% INPUTS
% T: mm*mm matrix
% Z: pp*mm matrix
% R: mm*rr matrix
% Q: rr*rr matrix
% Pinf1: mm*mm diagonal matrix with with q ones and m-q zeros
% Pstar1: mm*mm variance-covariance matrix with stationary variables
% Y: pp*1 vector
% pp: number of observed variables
% mm: number of state variables
% smpl: sample size
% data_index [cell] 1*smpl cell of column vectors of indices.
%
% OUTPUTS
% alphahat: smoothed variables (a_{t|T})
% etahat: smoothed shocks
% atilde: matrix of updated variables (a_{t|t})
% aK: 3D array of k step ahead filtered state variables (a_{t+k|t)
% (meaningless for periods 1:d)
% P: 3D array of one-step ahead forecast error variance
% matrices
% PK: 4D array of k-step ahead forecast error variance
% matrices (meaningless for periods 1:d)
% d: number of periods where filter remains in diffuse part
% (should be equal to the order of integration of the model)
% decomp: decomposition of the effect of shocks on filtered values
%
% SPECIAL REQUIREMENTS
% See "Filtering and Smoothing of State Vector for Diffuse State Space
% Models", S.J. Koopman and J. Durbin (2003, in Journal of Time Series
% Analysis, vol. 24(1), pp. 85-98).
% Copyright (C) 2004-2008 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% modified by M. Ratto:
% new output argument aK (1-step to k-step predictions)
% new options_.nk: the max step ahed prediction in aK (default is 4)
% new crit1 value for rank of Pinf
% it is assured that P is symmetric
global
options_
d
=
0
;
decomp
=
[];
nk
=
options_
.
nk
;
spinf
=
size
(
Pinf1
);
spstar
=
size
(
Pstar1
);
v
=
zeros
(
pp
,
smpl
);
a
=
zeros
(
mm
,
smpl
+
1
);
atilde
=
zeros
(
mm
,
smpl
);
aK
=
zeros
(
nk
,
mm
,
smpl
+
nk
);
PK
=
zeros
(
nk
,
mm
,
mm
,
smpl
+
nk
);
iF
=
zeros
(
pp
,
pp
,
smpl
);
Fstar
=
zeros
(
pp
,
pp
,
smpl
);
iFinf
=
zeros
(
pp
,
pp
,
smpl
);
K
=
zeros
(
mm
,
pp
,
smpl
);
L
=
zeros
(
mm
,
mm
,
smpl
);
Linf
=
zeros
(
mm
,
mm
,
smpl
);
Kstar
=
zeros
(
mm
,
pp
,
smpl
);
P
=
zeros
(
mm
,
mm
,
smpl
+
1
);
Pstar
=
zeros
(
spstar
(
1
),
spstar
(
2
),
smpl
+
1
);
Pstar
(:,:,
1
)
=
Pstar1
;
Pinf
=
zeros
(
spinf
(
1
),
spinf
(
2
),
smpl
+
1
);
Pinf
(:,:,
1
)
=
Pinf1
;
crit
=
options_
.
kalman_tol
;
crit1
=
1.e-8
;
steady
=
smpl
;
rr
=
size
(
Q
,
1
);
QQ
=
R
*
Q
*
transpose
(
R
);
QRt
=
Q
*
transpose
(
R
);
alphahat
=
zeros
(
mm
,
smpl
);
etahat
=
zeros
(
rr
,
smpl
);
r
=
zeros
(
mm
,
smpl
+
1
);
t
=
0
;
while
rank
(
Pinf
(:,:,
t
+
1
),
crit1
)
&
t
<
smpl
t
=
t
+
1
;
di
=
data_index
{
t
};
if
isempty
(
di
)
atilde
(:,
t
)
=
a
(:,
t
);
Linf
(:,:,
t
)
=
T
;
Pstar
(:,:,
t
+
1
)
=
T
*
Pstar
(:,:,
t
)
*
T
'
+
QQ
;
Pinf
(:,:,
t
+
1
)
=
T
*
Pinf
(:,:,
t
)
*
T
'
;
else
ZZ
=
Z
(
di
,:);
v
(
di
,
t
)
=
Y
(
di
,
t
)
-
ZZ
*
a
(:,
t
);
F
=
ZZ
*
Pinf
(:,:,
t
)
*
ZZ
'
;
if
rcond
(
F
)
<
crit
return
end
iFinf
(
di
,
di
,
t
)
=
inv
(
F
);
PZI
=
Pinf
(:,:,
t
)
*
ZZ
'*
iFinf
(
di
,
di
,
t
);
atilde
(:,
t
)
=
a
(:,
t
)
+
PZI
*
v
(
di
,
t
);
Kinf
(:,
di
,
t
)
=
T
*
PZI
;
Linf
(:,:,
t
)
=
T
-
Kinf
(:,
di
,
t
)
*
ZZ
;
Fstar
(
di
,
di
,
t
)
=
ZZ
*
Pstar
(:,:,
t
)
*
ZZ
'
;
Kstar
(:,
di
,
t
)
=
(
T
*
Pstar
(:,:,
t
)
*
ZZ
'-
Kinf
(:,
di
,
t
)
*
Fstar
(
di
,
di
,
t
))
*
iFinf
(
di
,
di
,
t
);
Pstar
(:,:,
t
+
1
)
=
T
*
Pstar
(:,:,
t
)
*
T
'-T*Pstar(:,:,t)*ZZ'
*
Kinf
(:,
di
,
t
)
'-Kinf(:,di,t)*F*Kstar(:,di,t)'
+
QQ
;
Pinf
(:,:,
t
+
1
)
=
T
*
Pinf
(:,:,
t
)
*
T
'-T*Pinf(:,:,t)*ZZ'
*
Kinf
(:,
di
,
t
)
'
;
end
a
(:,
t
+
1
)
=
T
*
atilde
(:,
t
);
aK
(
1
,:,
t
+
1
)
=
a
(:,
t
+
1
);
% isn't a meaningless as long as we are in the diffuse part? MJ
for
jnk
=
2
:
nk
,
aK
(
jnk
,:,
t
+
jnk
)
=
T
^
(
jnk
-
1
)
*
a
(:,
t
+
1
);
end
end
d
=
t
;
P
(:,:,
d
+
1
)
=
Pstar
(:,:,
d
+
1
);
iFinf
=
iFinf
(:,:,
1
:
d
);
Linf
=
Linf
(:,:,
1
:
d
);
Fstar
=
Fstar
(:,:,
1
:
d
);
Kstar
=
Kstar
(:,:,
1
:
d
);
Pstar
=
Pstar
(:,:,
1
:
d
);
Pinf
=
Pinf
(:,:,
1
:
d
);
notsteady
=
1
;
while
notsteady
&
t
<
smpl
t
=
t
+
1
;
P
(:,:,
t
)
=
tril
(
P
(:,:,
t
))
+
transpose
(
tril
(
P
(:,:,
t
),
-
1
));
di
=
data_index
{
t
};
if
isempty
(
di
)
atilde
(:,
t
)
=
a
(:,
t
);
L
(:,:,
t
)
=
T
;
P
(:,:,
t
+
1
)
=
T
*
P
(:,:,
t
)
*
T
'
+
QQ
;
else
ZZ
=
Z
(
di
,:);
v
(
di
,
t
)
=
Y
(
di
,
t
)
-
ZZ
*
a
(:,
t
);
F
=
ZZ
*
P
(:,:,
t
)
*
ZZ
'
;
if
rcond
(
F
)
<
crit
return
end
iF
(
di
,
di
,
t
)
=
inv
(
F
);
PZI
=
P
(:,:,
t
)
*
ZZ
'*
iF
(
di
,
di
,
t
);
atilde
(:,
t
)
=
a
(:,
t
)
+
PZI
*
v
(
di
,
t
);
K
(:,
di
,
t
)
=
T
*
PZI
;
L
(:,:,
t
)
=
T
-
K
(:,
di
,
t
)
*
ZZ
;
P
(:,:,
t
+
1
)
=
T
*
P
(:,:,
t
)
*
T
'-T*P(:,:,t)*ZZ'
*
K
(:,
di
,
t
)
'
+
QQ
;
end
a
(:,
t
+
1
)
=
T
*
atilde
(:,
t
);
Pf
=
P
(:,:,
t
);
for
jnk
=
1
:
nk
,
Pf
=
T
*
Pf
*
T
'
+
QQ
;
aK
(
jnk
,:,
t
+
jnk
)
=
T
^
jnk
*
atilde
(:,
t
);
PK
(
jnk
,:,:,
t
+
jnk
)
=
Pf
;
end
% notsteady = ~(max(max(abs(P(:,:,t+1)-P(:,:,t))))<crit);
end
% $$$ if t<smpl
% $$$ PZI_s = PZI;
% $$$ K_s = K(:,:,t);
% $$$ iF_s = iF(:,:,t);
% $$$ P_s = P(:,:,t+1);
% $$$ P = cat(3,P(:,:,1:t),repmat(P_s,[1 1 smpl-t]));
% $$$ iF = cat(3,iF(:,:,1:t),repmat(iF_s,[1 1 smpl-t]));
% $$$ L = cat(3,L(:,:,1:t),repmat(T-K_s*Z,[1 1 smpl-t]));
% $$$ K = cat(3,K(:,:,1:t),repmat(T*P_s*Z'*iF_s,[1 1 smpl-t]));
% $$$ end
% $$$ while t<smpl
% $$$ t=t+1;
% $$$ v(:,t) = Y(:,t) - Z*a(:,t);
% $$$ atilde(:,t) = a(:,t) + PZI*v(:,t);
% $$$ a(:,t+1) = T*atilde(:,t);
% $$$ Pf = P(:,:,t);
% $$$ for jnk=1:nk,
% $$$ Pf = T*Pf*T' + QQ;
% $$$ aK(jnk,:,t+jnk) = T^jnk*atilde(:,t);
% $$$ PK(jnk,:,:,t+jnk) = Pf;
% $$$ end
% $$$ end
t
=
smpl
+
1
;
while
t
>
d
+
1
t
=
t
-
1
;
di
=
data_index
{
t
};
if
isempty
(
di
)
r
(:,
t
)
=
L
(:,:,
t
)
'*
r
(:,
t
+
1
);
else
ZZ
=
Z
(
di
,:);
r
(:,
t
)
=
ZZ
'*iF(di,di,t)*v(di,t) + L(:,:,t)'
*
r
(:,
t
+
1
);
end
alphahat
(:,
t
)
=
a
(:,
t
)
+
P
(:,:,
t
)
*
r
(:,
t
);
etahat
(:,
t
)
=
QRt
*
r
(:,
t
);
end
if
d
r0
=
zeros
(
mm
,
d
+
1
);
r0
(:,
d
+
1
)
=
r
(:,
d
+
1
);
r1
=
zeros
(
mm
,
d
+
1
);
for
t
=
d
:
-
1
:
1
r0
(:,
t
)
=
Linf
(:,:,
t
)
'*
r0
(:,
t
+
1
);
di
=
data_index
{
t
};
if
isempty
(
di
)
r1
(:,
t
)
=
Linf
(:,:,
t
)
'*
r1
(:,
t
+
1
);
else
r1
(:,
t
)
=
Z
(
di
,:)
'*(iFinf(di,di,t)*v(di,t)-Kstar(:,di,t)'
*
r0
(:,
t
+
1
))
...
+
Linf
(:,:,
t
)
'*
r1
(:,
t
+
1
);
end
alphahat
(:,
t
)
=
a
(:,
t
)
+
Pstar
(:,:,
t
)
*
r0
(:,
t
)
+
Pinf
(:,:,
t
)
*
r1
(:,
t
);
etahat
(:,
t
)
=
QRt
*
r0
(:,
t
);
end
end
if
nargout
>
7
decomp
=
zeros
(
nk
,
mm
,
rr
,
smpl
+
nk
);
ZRQinv
=
inv
(
Z
*
QQ
*
Z
'
);
for
t
=
max
(
d
,
1
):
smpl
ri_d
=
Z
'*
iF
(:,:,
t
)
*
v
(:,
t
);
% calculate eta_tm1t
eta_tm1t
=
QRt
*
ri_d
;
% calculate decomposition
Ttok
=
eye
(
mm
,
mm
);
for
h
=
1
:
nk
for
j
=
1
:
rr
eta
=
zeros
(
rr
,
1
);
eta
(
j
)
=
eta_tm1t
(
j
);
decomp
(
h
,:,
j
,
t
+
h
)
=
T
^
(
h
-
1
)
*
P
(:,:,
t
)
*
Z
'*
ZRQinv
*
Z
*
R
*
eta
;
end
end
end
end
matlab/missing_DiffuseKalmanSmoother3.m
0 → 100644
View file @
70665164
function
[
alphahat
,
etahat
,
a
,
aK
]
=
missing_DiffuseKalmanSmoother3
(
T
,
R
,
Q
,
Pinf1
,
Pstar1
,
Y
,
trend
,
pp
,
mm
,
smpl
,
mf
,
data_index
)
% function [alphahat,etahat,a1, aK] = missing_DiffuseKalmanSmoother3(T,R,Q,Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf,data_index)
% Computes the diffuse kalman smoother without measurement error, in the case of a singular var-cov matrix.
% Univariate treatment of multivariate time series.
%
% INPUTS
% T: mm*mm matrix
% R: mm*rr matrix
% Q: rr*rr matrix
% Pinf1: mm*mm diagonal matrix with with q ones and m-q zeros
% Pstar1: mm*mm variance-covariance matrix with stationary variables
% Y: pp*1 vector
% trend
% pp: number of observed variables
% mm: number of state variables
% smpl: sample size
% mf: observed variables index in the state vector
% data_index [cell] 1*smpl cell of column vectors of indices.
%
% OUTPUTS
% alphahat: smoothed state variables (a_{t|T})
% etahat: smoothed shocks
% a: matrix of updated variables (a_{t|t})
% aK: 3D array of k step ahead filtered state variables (a_{t+k|t})
%
% SPECIAL REQUIREMENTS
% See "Filtering and Smoothing of State Vector for Diffuse State Space
% Models", S.J. Koopman and J. Durbin (2003, in Journal of Time Series
% Analysis, vol. 24(1), pp. 85-98).
% Copyright (C) 2004-2008 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% Modified by M. Ratto
% New output argument aK: 1-step to nk-stpe ahed predictions)
% New input argument nk: max order of predictions in aK
% New option options_.diffuse_d where the DKF stops (common with
% diffuselikelihood3)
% New icc variable to count number of iterations for Finf steps
% Pstar % Pinf simmetric
% New termination of DKF iterations based on options_.diffuse_d
% Li also stored during DKF iterations !!
% some bugs corrected in the DKF part of the smoother (Z matrix and
% alphahat)
global
options_
nk
=
options_
.
nk
;
spinf
=
size
(
Pinf1
);
spstar
=
size
(
Pstar1
);
v
=
zeros
(
pp
,
smpl
);
a
=
zeros
(
mm
,
smpl
);
a1
=
zeros
(
mm
,
smpl
+
1
);
aK
=
zeros
(
nk
,
mm
,
smpl
+
nk
);
if
isempty
(
options_
.
diffuse_d
),
smpl_diff
=
1
;
else
smpl_diff
=
rank
(
Pinf1
);
end
Fstar
=
zeros
(
pp
,
smpl_diff
);
Finf
=
zeros
(
pp
,
smpl_diff
);
Ki
=
zeros
(
mm
,
pp
,
smpl
);
Li
=
zeros
(
mm
,
mm
,
pp
,
smpl
);
Linf
=
zeros
(
mm
,
mm
,
pp
,
smpl_diff
);
L0
=
zeros
(
mm
,
mm
,
pp
,
smpl_diff
);
Kstar
=
zeros
(
mm
,
pp
,
smpl_diff
);
P
=
zeros
(
mm
,
mm
,
smpl
+
1
);
P1
=
P
;
Pstar
=
zeros
(
spstar
(
1
),
spstar
(
2
),
smpl_diff
+
1
);
Pstar
(:,:,
1
)
=
Pstar1
;
Pinf
=
zeros
(
spinf
(
1
),
spinf
(
2
),
smpl_diff
+
1
);
Pinf
(:,:,
1
)
=
Pinf1
;
Pstar1
=
Pstar
;
Pinf1
=
Pinf
;
crit
=
options_
.
kalman_tol
;
crit1
=
1.e-6
;
steady
=
smpl
;
rr
=
size
(
Q
,
1
);
QQ
=
R
*
Q
*
transpose
(
R
);
QRt
=
Q
*
transpose
(
R
);
alphahat
=
zeros
(
mm
,
smpl
);
etahat
=
zeros
(
rr
,
smpl
);
r
=
zeros
(
mm
,
smpl
+
1
);
Z
=
zeros
(
pp
,
mm
);