Commit 7b59c012 by Houtan Bastani

Update userguide .mod files: reconcile text with updated .mod files

parent e02e3b8a
 ... ... @@ -225,7 +225,7 @@ end;}\\ We add the following commands to ask Dynare to run a basic estimation of our model:\\ \\ \texttt{estimation(datafile=fsdat,nobs=192,loglinear,mh\_replic=2000,\\ mode\_compute=4,mh\_nblocks=2,mh\_drop=0.45,mh\_jscale=0.65);}\\ mode\_compute=6,mh\_nblocks=2,mh\_drop=0.45,mh\_jscale=0.65);}\\ \textsf{\textbf{NOTE!}} As mentioned earlier, we need to instruct Dynare to log-linearize our model, since it contains non-linear equations in non-stationary variables. A simple linearization would fail as these variables do not have a steady state. Fortunately, taking the log of the equations involving non-stationary variables does the job of linearizing them.\\ ... ... @@ -234,19 +234,19 @@ We have seen each part of the .mod separately; it's now time to get a picture of \\ \texttt{var m P c e W R k d n l Y\_obs P\_obs y dA; \\ varexo e\_a e\_m;\\ \\ parameters alp, bet, gam, mst, rho, psi, del; parameters alp, bet, gam, mst, rho, psi, del;\\ \\ model;\\ dA = exp(gam+e\_a);\\ log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e\_m;\\ -P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k\textasciicircum (alp-1)\\ *n(+1)\textasciicircum (1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0;\\ -P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))\\ *k\textasciicircum (alp-1)*n(+1)\textasciicircum (1-alp)+(1-del)\\ *exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0;\\ W = l/n;\\ -(psi/(1-psi))*(c*P/(1-n))+l/n = 0;\\ R = P*(1-alp)*exp(-alp*(gam+e\_a))*k(-1)\textasciicircum alp*n\textasciicircum (-alp)/W;\\ 1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e\_a))*k(-1)\textasciicircum alp*n\textasciicircum (1-alp)/(m*l*c(+1)*P(+1)) = 0;\\ c+k = exp(-alp*(gam+e\_a))*k(-1)\textasciicircum alp*n\textasciicircum (1-alp)+(1-del)*exp(-(gam+e\_a))*k(-1);\\ 1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e\_a))*k(-1)\textasciicircum alp*n\textasciicircum (1-alp)/\\(m*l*c(+1)*P(+1)) = 0;\\ c+k = exp(-alp*(gam+e\_a))*k(-1)\textasciicircum alp*n\textasciicircum (1-alp)+(1-del)\\*exp(-(gam+e\_a))*k(-1);\\ P*c = m;\\ m-1+d = l;\\ e = exp(e\_a);\\ ... ... @@ -262,7 +262,7 @@ P\_obs (log(mst)-gam);\\ Y\_obs (gam);\\ end;\\ \\ unit\_root\_vars = P\_obs Y\_obs;\\ unit\_root\_vars P\_obs Y\_obs;\\ \\ initval;\\ k = 6;\\ ... ... @@ -298,7 +298,7 @@ stderr e\_m, inv\_gamma\_pdf, 0.008862, inf;\\ end;\\ \\ estimation(datafile=fsdat,nobs=192,loglinear,mh\_replic=2000,\\ mode\_compute=4,mh\_nblocks=2,mh\_drop=0.45,mh\_jscale=0.65);}\\ mode\_compute=6,mh\_nblocks=2,mh\_drop=0.45,mh\_jscale=0.65);}\\ \\ \subsection{Summing it up} ... ...
 ... ... @@ -35,7 +35,7 @@ end;}\\ \section{Declaring observable variables} This should not come as a surprise. Dynare must know which variables are observable for the estimation procedure. \textsf{\textbf{NOTE!}} These variables must be available in the data file, as explained in section \ref{sec:estimate} below. For the moment, we write:\\ \\ \texttt{varobs Y;}\\ \texttt{varobs y;}\\ \section{Specifying the steady state} \label{sec:ssest} Before Dynare estimates a model, it first linearizes it around a steady state. Thus, a steady state must exist for the model and although Dynare can calculate it, we must give it a hand by declaring approximate values for the steady state. This is just as explained in details and according to the same syntax outlined in chapter \ref{ch:solbase}, covering the \texttt{initval}, \texttt{steady} and \texttt{check} commands. In fact, as this chapter uses the same model as that outlined in chapter \ref{ch:solbase}, the steady state block will look exactly the same.\\ ... ... @@ -138,7 +138,8 @@ displayed). Actually seeing if the various blocks of Metropolis-Hastings runs co Finally, coming back to our example, we could choose a standard option:\\ \\ \texttt{estimation(datafile=simuldataRBC,nobs=200,first\_obs=500,\\ mh\_replic=2000,mh\_nblocks=2,mh\_drop=0.45,mh\_jscale=0.8); }\\ mh\_replic=2000,mh\_nblocks=2,mh\_drop=0.45,mh\_jscale=0.8,\\ mode\_compute=6); }\\ This ends our description of the .mod file. ... ... @@ -147,7 +148,6 @@ To summarize and to get a complete perspective on our work so far, here is the c \\ \texttt{var y c k i l y\_l w r z;\\ varexo e;\\ \\ parameters beta psi delta alpha rho epsilon;\\ \\ model;\\ ... ... @@ -162,7 +162,7 @@ model;\\ z = rho*z(-1)+e;\\ end;\\ \\ varobs Y;\\ varobs y;\\ \\ initval;\\ k = 9;\\ ... ... @@ -175,7 +175,6 @@ initval;\\ end;\\ \\ steady;\\ \\ check;\\ \\ estimated\_params;\\ ... ... @@ -189,7 +188,8 @@ stderr e, inv\_gamma\_pdf, 0.01, inf;\\ end;\\ \\ estimation(datafile=simuldataRBC,nobs=200,first\_obs=500,\\ mh\_replic=2000,mh\_nblocks=2,mh\_drop=0.45,mh\_jscale=0.8); } mh\_replic=2000,mh\_nblocks=2,mh\_drop=0.45,mh\_jscale=0.8,\\ mode\_compute=6); } \\ ... ...
 ... ... @@ -87,8 +87,9 @@ So that you can gain experience by manipulating the entire model, here is the co \\ \\ \texttt{var y, c, k, a, h, b;\\ varexo e,u;\\ varexo e, u;\\ parameters beta, rho, alpha, delta, theta, psi, tau;\\ \\ alpha = 0.36;\\ rho = 0.95;\\ tau = 0.025;\\ ... ... @@ -96,6 +97,7 @@ beta = 0.99;\\ delta = 0.025;\\ psi = 0;\\ theta = 2.95;\\ \\ phi = 0.1;\\ \\ model;\\ ... ...
 ... ... @@ -452,13 +452,14 @@ For completion's sake, and for the pleasure of seeing our work bear its fruits, \texttt{var y c k i l y\_l w r z;\\ varexo e;\\ parameters beta psi delta alpha rho sigma epsilon;\\ parameters beta psi delta alpha rho gamma sigma epsilon;\\ \\ alpha = 0.33;\\ beta = 0.99;\\ delta = 0.023;\\ psi = 1.75;\\ rho = 0.95; \\ sigma = (0.007\/(1-alpha));\\ rho = 0.95;\\ sigma = (0.007/(1-alpha));\\ epsilon = 10;\\ \\ model;\\ ... ... @@ -475,23 +476,22 @@ end;\\ \\ initval;\\ k = 9;\\ c = 0.7;\\ c = 0.76;\\ l = 0.3;\\ w = 2.0;\\ r = 0;\\ z = 0; \\ w = 2.07;\\ r = 0.03;\\ z = 0;\\ e = 0;\\ end;\\ \\ steady;\\ \\ check;\\ \\ shocks;\\ var e = sigma\textasciicircum 2;\\ end;\\ \\ stoch\_simul(periods=2100);}\\ stoch\_simul(periods=2100);} \subsection{The deterministic model (case of temporary shock)} ... ... @@ -502,7 +502,7 @@ alpha = 0.33;\\ beta = 0.99;\\ delta = 0.023;\\ psi = 1.75;\\ sigma = (0.007\/(1-alpha));\\ sigma = (0.007/(1-alpha));\\ epsilon = 10;\\ \\ model;\\ ... ... @@ -530,7 +530,7 @@ steady;\\ check;\\ \\ shocks;\\ var z; var z;\\ periods 1:9;\\ values 0.1;\\ end;\\ ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!