Commit b0788fae authored by Frédéric Karamé's avatar Frédéric Karamé
Browse files

computes the proposal distribution during the importance sampling step in...

computes the proposal distribution during the importance sampling step in gaussian nonlinear filters. Uses a nonlinear Kalman filter and several gaussian approximations.
parent 553c26e0
function [PredictedStateMean,PredictedStateVarianceSquareRoot,StateVectorMean,StateVectorVarianceSquareRoot] = gaussian_filter_bank(ReducedForm,obs,StateVectorMean,StateVectorVarianceSquareRoot,Q_lower_triangular_cholesky,H_lower_triangular_cholesky,H,DynareOptions)
%
% Computes the proposal with a gaussian approximation for importance
% sampling
% This proposal is a gaussian distribution calculated à la Kalman
%
% INPUTS
% reduced_form_model [structure] Matlab's structure describing the reduced form model.
% reduced_form_model.measurement.H [double] (pp x pp) variance matrix of measurement errors.
% reduced_form_model.state.Q [double] (qq x qq) variance matrix of state errors.
% reduced_form_model.state.dr [structure] output of resol.m.
% Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables.
%
% OUTPUTS
% LIK [double] scalar, likelihood
% lik [double] vector, density of observations in each period.
%
% REFERENCES
%
% NOTES
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright (C) 2009-2010 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent init_flag2 mf0 mf1
persistent number_of_state_variables number_of_observed_variables
persistent number_of_structural_innovations
% Set local state space model (first-order approximation).
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
% Set local state space model (second-order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
if any(any(isnan(ghx))) || any(any(isnan(ghu))) || any(any(isnan(ghxx))) || any(any(isnan(ghuu))) || any(any(isnan(ghxu))) || ...
any(any(isinf(ghx))) || any(any(isinf(ghu))) || any(any(isinf(ghxx))) || any(any(isinf(ghuu))) || any(any(isinf(ghxu))) ...
any(any(abs(ghx)>1e4)) || any(any(abs(ghu)>1e4)) || any(any(abs(ghxx)>1e4)) || any(any(abs(ghuu)>1e4)) || any(any(abs(ghxu)>1e4))
ghx
ghu
ghxx
ghuu
ghxu
end
constant = ReducedForm.constant;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
% Set persistent variables.
if isempty(init_flag2)
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
init_flag2 = 1;
end
if strcmpi(DynareOptions.particle.IS_approximation_method,'cubature') || strcmpi(DynareOptions.particle.IS_approximation_method,'monte-carlo')
[nodes,weights] = spherical_radial_sigma_points(number_of_state_variables+number_of_structural_innovations) ;
weights_c = weights ;
end
if strcmpi(DynareOptions.particle.IS_approximation_method,'quadrature')
[nodes,weights] = nwspgr('GQN',number_of_state_variables+number_of_structural_innovations,DynareOptions.particle.smolyak_accuracy) ;
weights_c = weights ;
end
if strcmpi(DynareOptions.particle.IS_approximation_method,'unscented')
[nodes,weights,weights_c] = unscented_sigma_points(number_of_state_variables+number_of_structural_innovations,DynareOptions) ;
end
xbar = [StateVectorMean ; zeros(number_of_structural_innovations,1) ] ;
sqr_Px = [ [ StateVectorVarianceSquareRoot zeros(number_of_state_variables,number_of_structural_innovations) ] ;
[ zeros(number_of_structural_innovations,number_of_state_variables) Q_lower_triangular_cholesky ] ] ;
sigma_points = bsxfun(@plus,xbar,sqr_Px*(nodes')) ;
StateVectors = sigma_points(1:number_of_state_variables,:) ;
epsilon = sigma_points(number_of_state_variables+1:number_of_state_variables+number_of_structural_innovations,:) ;
yhat = bsxfun(@minus,StateVectors,state_variables_steady_state);
tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2);
PredictedStateMean = tmp(mf0,:)*weights ;
PredictedObservedMean = tmp(mf1,:)*weights;
if strcmpi(DynareOptions.particle.IS_approximation_method,'cubature') || strcmpi(DynareOptions.particle.IS_approximation_method,'monte-carlo')
PredictedStateMean = sum(PredictedStateMean,2) ;
PredictedObservedMean = sum(PredictedObservedMean,2) ;
dState = bsxfun(@minus,tmp(mf0,:),PredictedStateMean)'.*sqrt(weights) ;
dObserved = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean)'.*sqrt(weights);
PredictedStateVarianceSquareRoot = chol(dState'*dState)';
big_mat = [dObserved dState ; [H_lower_triangular_cholesky zeros(number_of_observed_variables,number_of_state_variables)] ] ;
[mat1,mat] = qr2(big_mat) ;
mat = mat' ;
clear('mat1');
PredictedObservedVarianceSquareRoot = mat(1:number_of_observed_variables,1:number_of_observed_variables) ;
CovarianceObservedStateSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),1:number_of_observed_variables) ;
StateVectorVarianceSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),number_of_observed_variables+(1:number_of_state_variables)) ;
PredictionError = obs - PredictedObservedMean ;
StateVectorMean = PredictedStateMean + (CovarianceObservedStateSquareRoot/PredictedObservedVarianceSquareRoot)*PredictionError ;
end
if strcmpi(DynareOptions.particle.IS_approximation_method,'quadrature') || strcmpi(DynareOptions.particle.IS_approximation_method,'unscented')
dState = bsxfun(@minus,tmp(mf0,:),PredictedStateMean);
dObserved = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean);
PredictedStateVariance = dState*diag(weights_c)*dState';
PredictedObservedVariance = dObserved*diag(weights_c)*dObserved' + H;
PredictedStateAndObservedCovariance = dState*diag(weights_c)*dObserved';
PredictedStateVarianceSquareRoot = chol(PredictedStateVariance)';
PredictionError = obs - PredictedObservedMean;
KalmanFilterGain = PredictedStateAndObservedCovariance/PredictedObservedVariance ;
StateVectorMean = PredictedStateMean + KalmanFilterGain*PredictionError;
StateVectorVariance = PredictedStateVariance - KalmanFilterGain*PredictedObservedVariance*KalmanFilterGain';
StateVectorVariance = .5*(StateVectorVariance+StateVectorVariance');
StateVectorVarianceSquareRoot = reduced_rank_cholesky(StateVectorVariance)';
end
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment