Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Dóra Kocsis
dynare
Commits
cc281897
Commit
cc281897
authored
Mar 04, 2012
by
Stéphane Adjemian
Browse files
Added new routine for non linear filter (auxiliary particle filter).
parent
d5900f28
Changes
1
Hide whitespace changes
Inline
Side-by-side
matlab/particle/auxiliary_particle_filter.m
0 → 100644
View file @
cc281897
function
[
LIK
,
lik
]
=
auxiliary_particle_filter
(
ReducedForm
,
Y
,
start
,
DynareOptions
)
% Evaluates the likelihood of a nonlinear model with a particle filter allowing eventually resampling.
%
% INPUTS
% ReducedForm [structure] Matlab's structure describing the reduced form model.
% ReducedForm.measurement.H [double] (pp x pp) variance matrix of measurement errors.
% ReducedForm.state.Q [double] (qq x qq) variance matrix of state errors.
% ReducedForm.state.dr [structure] output of resol.m.
% Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables.
% start [integer] scalar, likelihood evaluation starts at 'start'.
% mf [integer] pp*1 vector of indices.
% number_of_particles [integer] scalar.
%
% OUTPUTS
% LIK [double] scalar, likelihood
% lik [double] vector, density of observations in each period.
%
% REFERENCES
%
% NOTES
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright (C) 2009-2010 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent
init_flag
mf0
mf1
number_of_particles
persistent
sample_size
number_of_observed_variables
number_of_structural_innovations
% Set default
if
isempty
(
start
)
start
=
1
;
end
% Get steady state and mean.
steadystate
=
ReducedForm
.
steadystate
;
constant
=
ReducedForm
.
constant
;
state_variables_steady_state
=
ReducedForm
.
state_variables_steady_state
;
% Set persistent variables.
if
isempty
(
init_flag
)
mf0
=
ReducedForm
.
mf0
;
mf1
=
ReducedForm
.
mf1
;
sample_size
=
size
(
Y
,
2
);
number_of_observed_variables
=
length
(
mf1
);
number_of_structural_innovations
=
length
(
ReducedForm
.
Q
);
number_of_particles
=
DynareOptions
.
particle_filter
.
number_of_particles
;
init_flag
=
1
;
end
% Set local state space model (first order approximation).
ghx
=
ReducedForm
.
ghx
;
ghu
=
ReducedForm
.
ghu
;
% Set local state space model (second order approximation).
ghxx
=
ReducedForm
.
ghxx
;
ghuu
=
ReducedForm
.
ghuu
;
ghxu
=
ReducedForm
.
ghxu
;
% Get covariance matrices
Q
=
ReducedForm
.
Q
;
H
=
ReducedForm
.
H
;
if
isempty
(
H
)
H
=
0
;
end
% Get initial condition for the state vector.
StateVectorMean
=
ReducedForm
.
StateVectorMean
;
StateVectorVarianceSquareRoot
=
reduced_rank_cholesky
(
ReducedForm
.
StateVectorVariance
)
'
;
state_variance_rank
=
size
(
StateVectorVarianceSquareRoot
,
2
);
Q_lower_triangular_cholesky
=
chol
(
Q
)
'
;
% Set seed for randn().
stream
=
RandStream
(
'mt19937ar'
,
'Seed'
,
1
);
RandStream
.
setDefaultStream
(
stream
);
% Initialization of the likelihood.
const_lik
=
log
(
2
*
pi
)
*
number_of_observed_variables
;
lik
=
NaN
(
sample_size
,
1
);
LIK
=
NaN
;
% Initialization of the weights across particles.
weights
=
ones
(
1
,
number_of_particles
);
StateVectors
=
bsxfun
(
@
plus
,
StateVectorVarianceSquareRoot
*
randn
(
state_variance_rank
,
number_of_particles
),
StateVectorMean
);
for
t
=
1
:
sample_size
yhat
=
bsxfun
(
@
minus
,
StateVectors
,
state_variables_steady_state
);
tmp
=
local_state_space_iteration_2
(
yhat
,
zeros
(
number_of_structural_innovations
,
number_of_particles
),
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
);
PredictedObservedMean
=
mean
(
tmp
(
mf1
,:),
2
);
PredictionError
=
bsxfun
(
@
minus
,
Y
(:,
t
),
tmp
(
mf1
,:));
dPredictedObservedMean
=
bsxfun
(
@
minus
,
tmp
(
mf1
,:),
PredictedObservedMean
);
PredictedObservedVariance
=
(
dPredictedObservedMean
*
dPredictedObservedMean
'
)/
number_of_particles
+
H
;
wtilde
=
exp
(
-.
5
*
(
const_lik
+
log
(
det
(
PredictedObservedVariance
))
+
sum
(
PredictionError
.*
(
PredictedObservedVariance
\
PredictionError
),
1
)))
;
tau_tilde
=
weights
.*
wtilde
;
sum_tau_tilde
=
sum
(
tau_tilde
)
;
lik
(
t
)
=
log
(
sum_tau_tilde
)
;
tau_tilde
=
tau_tilde
/
sum_tau_tilde
;
indx_resmpl
=
resample
(
tau_tilde
)
;
yhat
=
yhat
(:,
indx_resmpl
)
;
wtilde
=
wtilde
(
indx_resmpl
)
;
epsilon
=
Q_lower_triangular_cholesky
*
randn
(
number_of_structural_innovations
,
number_of_particles
);
tmp
=
local_state_space_iteration_2
(
yhat
,
epsilon
,
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
);
StateVectors
=
tmp
(
mf0
,:)
;
PredictedObservedMean
=
mean
(
tmp
(
mf1
,:),
2
);
PredictionError
=
bsxfun
(
@
minus
,
Y
(:,
t
),
tmp
(
mf1
,:));
dPredictedObservedMean
=
bsxfun
(
@
minus
,
tmp
(
mf1
,:),
PredictedObservedMean
);
PredictedObservedVariance
=
(
dPredictedObservedMean
*
dPredictedObservedMean
'
)/
number_of_particles
+
H
;
lnw
=
exp
(
-.
5
*
(
const_lik
+
log
(
det
(
PredictedObservedVariance
))
+
sum
(
PredictionError
.*
(
PredictedObservedVariance
\
PredictionError
),
1
)))
;
wtilde
=
lnw
.
/
wtilde
;
weights
=
wtilde
/
sum
(
wtilde
);
end
LIK
=
-
sum
(
lik
(
start
:
end
));
\ No newline at end of file
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment