mrdivide.m 5.51 KB
Newer Older
1
function q = mrdivide(o, p) % --*-- Unitary tests --*--
2

3 4
% Overloads the mrdivde (/) operator for dseries objects.
%
Stéphane Adjemian's avatar
Stéphane Adjemian committed
5
% INPUTS
6 7 8
% - o [dseries]           T observations and N variables.
% - p [dseries,double]    scalar, vector or dseries object.
%
Stéphane Adjemian's avatar
Stéphane Adjemian committed
9
% OUTPUTS
10
% - q [dseries]           T observations and N variables.
11

12
% Copyright (C) 2013-2017 Dynare Team
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
Stéphane Adjemian's avatar
Stéphane Adjemian committed
28

29 30
if isnumeric(o) && (isscalar(o) ||  isvector(o))
    if ~isdseries(p)
31 32
        error('dseries::mrdivide: Second input argument must be a dseries object!')
    end
33
    q = copy(p);
34
    q.data = bsxfun(@rdivide, o, p.data);
Stéphane Adjemian's avatar
Stéphane Adjemian committed
35 36 37 38 39 40 41 42 43 44
    for i=1:vobs(q)
        if isscalar(o)
            q.ops(i) = {sprintf('mrdivide(%s, %s)', num2str(o), p.name{i})};
        elseif isrow(o)
            q.ops(i) = {sprintf('mrdivide(%s, %s)', num2str(o(i)), p.name{i})};
        else
            q.ops(i) = {sprintf('mrdivide(%s, %s)', matrix2string(o), p.name{i})};
        end
    end
    return
45 46
end

47 48
if isnumeric(p) && (isscalar(p) || isvector(p))
    if ~isdseries(o)
49 50
        error('dseries::mrdivide: First input argument must be a dseries object!')
    end
51 52
    q = copy(o);
    q.data = bsxfun(@rdivide, o.data, p);
Stéphane Adjemian's avatar
Stéphane Adjemian committed
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    for i=1:vobs(q)
        if isscalar(p)
            if isempty(q.ops{i})
                q.ops(i) = {sprintf('mrdivide(%s, %s)', q.name{i}, num2str(p))};
            else
                q.ops(i) = {sprintf('mrdivide(%s, %s)', q.ops{i}, num2str(p))};
            end
        elseif isrow(p)
            if isempty(q.ops{i})
                q.ops(i) = {sprintf('mrdivide(%s, %s)', q.name{i}, num2str(p(i)))};
            else
                q.ops(i) = {sprintf('mrdivide(%s, %s)', q.ops{i}, num2str(p(i)))};
            end
        else
            if isempty(q.ops{i})
                q.ops(i) = {sprintf('mrdivide(%s, %s)', q.name{i}, matrix2string(p))};
            else
                q.ops(i) = {sprintf('mrdivide(%s, %s)', q.ops{i}, matrix2string(p))};
            end
        end
    end
74
    return
Stéphane Adjemian's avatar
Stéphane Adjemian committed
75
end
76

77
if isdseries(o) && isdseries(p)
78
    % Element by element divisions of two dseries object
79
    if ~isequal(vobs(o), vobs(p)) && ~(isequal(vobs(o),1) || isequal(vobs(p),1))
80 81
        error(['dseries::times: Cannot divide ' inputname(1) ' and ' inputname(2) ' (wrong number of variables)!'])
    else
82 83 84 85 86 87
        if vobs(o)>vobs(p)
            idB = 1:vobs(o);
            idC = ones(1:vobs(o));
        elseif vobs(o)<vobs(p)
            idB = ones(1,vobs(p));
            idC = 1:vobs(p);
88
        else
89 90
            idB = 1:vobs(o);
            idC = 1:vobs(p);
91 92
        end
    end
93
    if ~isequal(frequency(o),frequency(p))
94 95
        error(['dseries::times: Cannot divide ' inputname(1) ' and ' inputname(2) ' (frequencies are different)!'])
    end
96 97
    if ~isequal(nobs(o), nobs(p)) || ~isequal(firstdate(o),firstdate(p))
        [o, p] = align(o, p);
98
    end
Stéphane Adjemian's avatar
Stéphane Adjemian committed
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    if vobs(o)>=vobs(p)
        q = copy(o);
    else
        q = dseries(zeros(size(p.data)), p.firstdate);
    end
    for i=1:vobs(q)
        if isempty(o.ops{idB(i)})
            if isempty(p.ops{idC(i)})
                q.ops(i) = {sprintf('mrdivide(%s, %s)', o.name{idB(i)}, p.name{idC(i)})};
            else
                q.ops(i) = {sprintf('mrdivide(%s, %s)', o.name{idB(i)}, p.ops{idC(i)})};
            end
        else
            if isempty(p.ops{idC(i)})
                q.ops(i) = {sprintf('mrdivide(%s, %s)', o.ops{idB(i)}, p.name{idC(i)})};
            else
                q.ops(i) = {sprintf('mrdivide(%s, %s)', o.ops{idB(i)}, p.ops{idC(i)})};
            end
        end
118
    end
119
    q.data = bsxfun(@rdivide, o.data, p.data);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
else
    error()
end

%@test:1
%$ % Define a datasets.
%$ A = rand(10,2); B = randn(10,1);
%$
%$ % Define names
%$ A_name = {'A1';'A2'}; B_name = {'B1'};
%$
%$ t = zeros(4,1);
%$
%$ % Instantiate a time series object.
%$ try
%$    ts1 = dseries(A,[],A_name,[]);
%$    ts2 = dseries(B,[],B_name,[]);
%$    ts3 = ts1/ts2;
%$    t(1) = 1;
%$ catch
%$    t = 0;
%$ end
%$
%$ if length(t)>1
%$    t(2) = dassert(ts3.vobs,2);
%$    t(3) = dassert(ts3.nobs,10);
%$    t(4) = dassert(ts3.data,[A(:,1)./B, A(:,2)./B],1e-15);
%$ end
%$ T = all(t);
%@eof:1

%@test:2
%$ % Define a datasets.
%$ A = rand(10,2); B = pi;
%$
%$ % Define names
%$ A_name = {'A1';'A2'};
%$
%$ t = zeros(4,1);
%$
%$ % Instantiate a time series object.
%$ try
%$    ts1 = dseries(A,[],A_name,[]);
%$    ts2 = ts1/B;
%$    t(1) = 1;
%$ catch
%$    t = 0;
%$ end
%$
%$ if length(t)>1
%$    t(2) = dassert(ts2.vobs,2);
%$    t(3) = dassert(ts2.nobs,10);
%$    t(4) = dassert(ts2.data,A/B,1e-15);
%$ end
%$ T = all(t);
%@eof:2

%@test:3
%$ % Define a datasets.
%$ A = rand(10,2); B = pi;
%$
%$ % Define names
%$ A_name = {'A1';'A2'};
%$
%$ t = zeros(4,1);
%$
%$ % Instantiate a time series object.
%$ try
%$    ts1 = dseries(A,[],A_name,[]);
%$    ts2 = B/ts1;
%$    t(1) = 1;
%$ catch
%$    t = 0;
%$ end
%$
%$ if length(t)>1
%$    t(2) = dassert(ts2.vobs,2);
%$    t(3) = dassert(ts2.nobs,10);
%$    t(4) = dassert(ts2.data,B./A,1e-15);
%$ end
%$ T = all(t);
%@eof:3