plus.m 9.11 KB
Newer Older
1
function q = plus(o, p) % --*-- Unitary tests --*--
2

3 4
% Overloads the plus (+) operator for dseries objects.
%
Stéphane Adjemian's avatar
Stéphane Adjemian committed
5
% INPUTS
6 7 8
% - o [dseries, real]
% - p [dseries, real]
%
Stéphane Adjemian's avatar
Stéphane Adjemian committed
9
% OUTPUTS
10
% - q [dseries]
11

12
% Copyright (C) 2011-2017 Dynare Team
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

29 30
if isnumeric(o) && (isscalar(o) ||  isvector(o))
    if ~isdseries(p)
31 32
        error('dseries::plus: Second input argument must be a dseries object!')
    end
33
    q = copy(p);
Stéphane Adjemian's avatar
Stéphane Adjemian committed
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    q.data = bsxfun(@plus, o, p.data);
    for i=1:vobs(q)
        if isscalar(o)
            if isempty(p.ops{i})
                q.ops(i) = {sprintf('plus(%s, %s)', num2str(o), p.name{i})};
            else
                q.ops(i) = {sprintf('plus(%s, %s)', num2str(o), p.ops{i})};
            end
        elseif isrow(o)
            if isempty(p.ops{i})
                q.ops(i) = {sprintf('plus(%s, %s)', num2str(o(i)), p.name{i})};
            else
                q.ops(i) = {sprintf('plus(%s, %s)', num2str(o(i)), p.ops{i})};
            end
        else
            if isempty(p.ops{i})
                q.ops(i) = {sprintf('plus(%s, %s)', matrix2string(o), p.name{i})};
            else
                q.ops(i) = {sprintf('plus(%s, %s)', matrix2string(o), p.ops{i})};
            end
        end
    end
56
    return
57 58
end

59 60
if isnumeric(p) && (isscalar(p) || isvector(p))
    if ~isdseries(o)
61 62
        error('dseries::plus: First input argument must be a dseries object!')
    end
63 64
    q = copy(o);
    q.data = bsxfun(@plus,o.data,p);
Stéphane Adjemian's avatar
Stéphane Adjemian committed
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    for i=1:vobs(q)
        if isscalar(p)
            if isempty(q.ops{i})
                q.ops(i) = {sprintf('plus(%s, %s)', q.name{i}, num2str(p))};
            else
                q.ops(i) = {sprintf('plus(%s, %s)', q.ops{i}, num2str(p))};
            end
        elseif isrow(p)
            if isempty(q.ops{i})
                q.ops(i) = {sprintf('plus(%s, %s)', q.name{i}, num2str(p(i)))};
            else
                q.ops(i) = {sprintf('plus(%s, %s)', q.ops{i}, num2str(p(i)))};
            end
        else
            if isempty(q.ops{i})
                q.ops(i) = {sprintf('plus(%s, %s)', q.name{i}, matrix2string(p))};
            else
                q.ops(i) = {sprintf('plus(%s, %s)', q.ops{i}, matrix2string(p))};
            end
        end
    end
86 87 88
    return
end

Stéphane Adjemian's avatar
Stéphane Adjemian committed
89 90 91 92 93 94 95 96 97 98 99
if isdseries(o) && isdseries(p)
    if isempty(o)
        q = copy(p);
        return
    end
    if isempty(p)
        q = copy(o);
        return
    end
    if ~isequal(vobs(o), vobs(p)) && ~(isequal(vobs(o), 1) || isequal(vobs(p), 1))
        error(['dseries::plus: Cannot add ' inputname(1) ' and ' inputname(2) ' (wrong number of variables)!'])
100
    else
Stéphane Adjemian's avatar
Stéphane Adjemian committed
101 102 103 104 105 106 107 108 109 110
        if vobs(o)>vobs(p)
            ido = 1:vobs(o);
            idp = ones(1,vobs(o));
        elseif vobs(o)<vobs(p)
            ido = ones(1,vobs(p));
            idp = 1:vobs(p);
        else
            ido = 1:vobs(o);
            idp = ido;
        end
111
    end
Stéphane Adjemian's avatar
Stéphane Adjemian committed
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    
    if ~isequal(frequency(o),frequency(p))
        error(['dseries::plus: Cannot add ' inputname(1) ' and ' inputname(2) ' (frequencies are different)!'])
    end
    
    if ~isequal(nobs(o), nobs(p)) || ~isequal(firstdate(o),firstdate(p))
        [o, p] = align(o, p);
    end
    if vobs(o)>=vobs(p)
        q = copy(o);
    else
        q = dseries(zeros(size(p.data)), p.firstdate);
    end
    for i=1:vobs(q)
        if isempty(o.ops{ido(i)})
            if isempty(p.ops{idp(i)})
                q.ops(i) = {sprintf('plus(%s, %s)', o.name{ido(i)}, p.name{idp(i)})};
            else
                q.ops(i) = {sprintf('plus(%s, %s)', o.name{ido(i)}, p.ops{idp(i)})};
            end
        else
            if isempty(p.ops{idp(i)})
                q.ops(i) = {sprintf('plus(%s, %s)', o.ops{ido(i)}, p.name{idp(i)})};
            else
                q.ops(i) = {sprintf('plus(%s, %s)', o.ops{ido(i)}, p.ops{idp(i)})};
            end
        end
    end
    q.data = bsxfun(@plus,o.data,p.data);
else
    error()
143 144 145 146 147 148 149 150 151 152 153 154 155 156
end

%@test:1
%$ % Define a datasets.
%$ A = rand(10,2); B = randn(10,1);
%$
%$ % Define names
%$ A_name = {'A1';'A2'}; B_name = {'B1'};
%$
%$ % Instantiate a time series object.
%$ try
%$    ts1 = dseries(A,[],A_name,[]);
%$    ts2 = dseries(B,[],B_name,[]);
%$    ts3 = ts1+ts2;
157
%$    t(1) = true;
158
%$ catch
159
%$    t = false;
160 161 162 163 164 165
%$ end
%$
%$ if length(t)>1
%$    t(2) = dassert(ts3.vobs,2);
%$    t(3) = dassert(ts3.nobs,10);
%$    t(4) = dassert(ts3.data,[A(:,1)+B, A(:,2)+B],1e-15);
Stéphane Adjemian's avatar
Stéphane Adjemian committed
166 167
%$    t(5) = dassert(ts3.name,{'A1';'A2'});
%$    t(6) = dassert(ts3.name,{'plus(A1, B1)';'plus(A2, B1)'});
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
%$ end
%$ T = all(t);
%@eof:1

%@test:2
%$ % Define a datasets.
%$ A = rand(10,2); B = randn(10,1);
%$
%$ % Define names
%$ A_name = {'A1';'A2'}; B_name = {'B1'};
%$
%$ % Instantiate a time series object.
%$ try
%$    ts1 = dseries(A,[],A_name,[]);
%$    ts2 = dseries(B,[],B_name,[]);
%$    ts3 = ts1+ts2;
Stéphane Adjemian's avatar
Stéphane Adjemian committed
184
%$    ts4 = ts3+ts1;
185
%$    t(1) = true;
186
%$ catch
187
%$    t = false;
188 189 190 191 192 193
%$ end
%$
%$ if length(t)>1
%$    t(2) = dassert(ts4.vobs,2);
%$    t(3) = dassert(ts4.nobs,10);
%$    t(4) = dassert(ts4.data,[A(:,1)+B, A(:,2)+B]+A,1e-15);
Stéphane Adjemian's avatar
Stéphane Adjemian committed
194 195
%$    t(5) = dassert(ts4.name,{'A1';'A2'});
%$    t(6) = dassert(ts4.name,{'plus(plus(A1, B1), A1)';'plus(plus(A2, B1), A2)'});
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
%$ end
%$ T = all(t);
%@eof:2


%@test:3
%$ % Define a datasets.
%$ A = rand(10,2); B = randn(5,1);
%$
%$ % Define names
%$ A_name = {'A1';'A2'}; B_name = {'B1'};
%$
%$ % Instantiate a time series object.
%$ try
%$    ts1 = dseries(A,[],A_name,[]);
%$    ts2 = dseries(B,[],B_name,[]);
%$    ts3 = ts1+ts2;
213
%$    t(1) = true;
214
%$ catch
215
%$    t = false;
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
%$ end
%$
%$ if length(t)>1
%$    t(2) = dassert(ts3.vobs,2);
%$    t(3) = dassert(ts3.nobs,10);
%$    t(4) = dassert(ts3.data,[A(1:5,1)+B(1:5), A(1:5,2)+B(1:5) ; NaN(5,2)],1e-15);
%$ end
%$ T = all(t);
%@eof:3

%@test:4
%$ try
%$     ts = dseries(transpose(1:5),'1950q1',{'Output'}, {'Y_t'});
%$     us = dseries(transpose(1:5),'1949q4',{'Consumption'}, {'C_t'});
%$     vs = ts+us;
231
%$     t(1) = true;
232
%$ catch
233
%$     t = false;
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
%$ end
%$
%$ if length(t)>1
%$     t(2) = dassert(ts.freq,4);
%$     t(3) = dassert(us.freq,4);
%$     t(4) = dassert(ts.init.time,[1950, 1]);
%$     t(5) = dassert(us.init.time,[1949, 4]);
%$     t(6) = dassert(vs.init.time,[1949, 4]);
%$     t(7) = dassert(vs.nobs,6);
%$ end
%$
%$ T = all(t);
%@eof:4

%@test:5
%$ try
%$     ts = dseries(transpose(1:5),'1950q1',{'Output'}, {'Y_t'});
%$     us = dseries(transpose(1:7),'1950q1',{'Consumption'}, {'C_t'});
%$     vs = ts+us;
253
%$     t(1) = true;
254
%$ catch
255
%$     t = false;
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
%$ end
%$
%$ if length(t)>1
%$     t(2) = dassert(ts.freq,4);
%$     t(3) = dassert(us.freq,4);
%$     t(4) = dassert(ts.init.time,[1950, 1]);
%$     t(5) = dassert(us.init.time,[1950, 1]);
%$     t(6) = dassert(vs.init.time,[1950, 1]);
%$     t(7) = dassert(vs.nobs,7);
%$ end
%$
%$ T = all(t);
%@eof:5

%@test:6
%$ try
%$     ts = dseries(transpose(1:5),'1950q1',{'Output'}, {'Y_t'});
%$     us = dseries(transpose(1:7),'1950q1',{'Consumption'}, {'C_t'});
%$     vs = ts+us('1950q1').data;
275
%$     t(1) = true;
276
%$ catch
277
%$     t = false;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
%$ end
%$
%$ if length(t)>1
%$     t(2) = dassert(ts.freq,4);
%$     t(3) = dassert(us.freq,4);
%$     t(4) = dassert(ts.init.time,[1950, 1]);
%$     t(5) = dassert(us.init.time,[1950, 1]);
%$     t(6) = dassert(vs.init.time,[1950, 1]);
%$     t(7) = dassert(vs.nobs,5);
%$     t(8) = dassert(vs.data,ts.data+1);
%$ end
%$
%$ T = all(t);
%@eof:6

%@test:7
%$ try
%$     ts = dseries([transpose(1:5), transpose(1:5)],'1950q1');
%$     us = dseries([transpose(1:7),2*transpose(1:7)],'1950q1');
%$     vs = ts+us('1950q1').data;
298
%$     t(1) = true;
299
%$ catch
300
%$     t = false;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
%$ end
%$
%$ if length(t)>1
%$     t(2) = dassert(ts.freq,4);
%$     t(3) = dassert(us.freq,4);
%$     t(4) = dassert(ts.init.time,[1950, 1]);
%$     t(5) = dassert(us.init.time,[1950, 1]);
%$     t(6) = dassert(vs.init.time,[1950, 1]);
%$     t(7) = dassert(vs.nobs,5);
%$     t(8) = dassert(vs.data,bsxfun(@plus,ts.data,[1, 2]));
%$ end
%$
%$ T = all(t);
%@eof:7

%@test:8
%$ ts1 = dseries(ones(3,1));
%$ ts2 = ts1+1;
%$ ts3 = 1+ts1;
%$ t(1) = isequal(ts2.data, 2*ones(3,1));
%$ t(2) = isequal(ts3.data, 2*ones(3,1));
%$ T = all(t);
%@eof:8

%@test:9
%$ ts1 = dseries(ones(3,2));
%$ ts2 = ts1+1;
%$ ts3 = 1+ts1;
%$ t(1) = isequal(ts2.data, 2*ones(3,2));
%$ t(2) = isequal(ts3.data, 2*ones(3,2));
%$ T = all(t);
%@eof:9

%@test:10
%$ ts1 = dseries(ones(3,2));
%$ ts2 = ts1+ones(3,1);
%$ ts3 = ones(3,1)+ts1;
%$ t(1) = isequal(ts2.data, 2*ones(3,2));
%$ t(2) = isequal(ts3.data, 2*ones(3,2));
%$ T = all(t);
%@eof:10

%@test:11
%$ ts1 = dseries(ones(3,2));
%$ ts2 = ts1+ones(1,2);
%$ ts3 = ones(1,2)+ts1;
%$ t(1) = isequal(ts2.data, 2*ones(3,2));
%$ t(2) = isequal(ts3.data, 2*ones(3,2));
%$ T = all(t);
%@eof:11