ydiff_.m 2.96 KB
Newer Older
1 2 3 4
function o = ydiff_(o) % --*-- Unitary tests --*--

% Computes yearly differences.
%
Stéphane Adjemian's avatar
Stéphane Adjemian committed
5
% INPUTS
6 7
% - o   [dseries]
%
Stéphane Adjemian's avatar
Stéphane Adjemian committed
8
% OUTPUTS
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
% - o   [dseries]

% Copyright (C) 2012-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

switch frequency(o)
  case 1
    o.data(2:end,:) = o.data(2:end,:)-o.data(1:end-1,:);
    o.data(1,:) = NaN;
  case 4
    o.data(5:end,:) = o.data(5:end,:)-o.data(1:end-4,:);
    o.data(1:4,:) = NaN;
  case 12
    o.data(13:end,:) = o.data(13:end,:)-o.data(1:end-12,:);
    o.data(1:12,:) = NaN;
  case 52
    o.data(53:end,:) = o.data(53:end,:)-o.data(1:end-52,:);
    o.data(1:52,:) = NaN;
  otherwise
    error(['dseries::ydiff: object ' inputname(1) ' has unknown frequency']);
end

Stéphane Adjemian's avatar
Stéphane Adjemian committed
45 46 47 48 49 50 51 52
for i = 1:vobs(o)
    if isempty(o.ops{i})
        o.ops(i) = {['ydiff(' o.name{i} ')']};
    else
        o.ops(i) = {['ydiff(' o.ops{i} ')']};
    end
end

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
%@test:1
%$ try
%$     data = transpose(1:100);
%$     ts = dseries(data,'1950Q1',{'A1'},{'A_1'});
%$     ts.ydiff_;
%$     t(1) = true;
%$ catch
%$     t(1) = false;
%$ end
%$
%$
%$ if t(1)
%$     DATA = NaN(4,ts.vobs);
%$     DATA = [DATA; 4*ones(ts.nobs-4,ts.vobs)];
%$     t(2) = dassert(ts.data,DATA);
Stéphane Adjemian's avatar
Stéphane Adjemian committed
68
%$     t(3) = dassert(ts.ops{1},['ydiff(A1)']);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
%$ end
%$
%$ T = all(t);
%@eof:1

%@test:2
%$ try
%$     data = transpose(1:100);
%$     ts = dseries(data,'1950M1',{'A1'},{'A_1'});
%$     ts.ydiff_;
%$     t(1) = true;
%$ catch
%$     t(1) = false;
%$ end
%$
%$
%$ if t(1)
%$     DATA = NaN(12,ts.vobs);
%$     DATA = [DATA; 12*ones(ts.nobs-12,ts.vobs)];
%$     t(2) = dassert(ts.data,DATA);
Stéphane Adjemian's avatar
Stéphane Adjemian committed
89
%$     t(3) = dassert(ts.ops{1},['ydiff(A1)']);
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
%$ end
%$
%$ T = all(t);
%@eof:2

%@test:3
%$ try
%$     data = transpose(1:100);
%$     ts = dseries(data,'1950W1',{'A1'},{'A_1'});
%$     ts.ydiff_;
%$     t(1) = true;
%$ catch
%$     t(1) = false;
%$ end
%$
%$ if t(1)
%$     DATA = NaN(52,ts.vobs);
%$     DATA = [DATA; 52*ones(ts.nobs-52,ts.vobs)];
%$     t(2) = dassert(ts.data,DATA);
Stéphane Adjemian's avatar
Stéphane Adjemian committed
109
%$     t(3) = dassert(ts.ops{1},['ydiff(A1)']);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
%$ end
%$
%$ T = all(t);
%@eof:3

%@test:4
%$ try
%$     data = transpose(1:100);
%$     ts = dseries(data,'1950Y',{'A1'},{'A_1'});
%$     ts.ydiff_;
%$     t(1) = true;
%$ catch
%$     t(1) = false;
%$ end
%$
%$
%$ if t(1)
%$     DATA = NaN(1,ts.vobs);
%$     DATA = [DATA; ones(ts.nobs-1,ts.vobs)];
%$     t(2) = dassert(ts.data,DATA);
Stéphane Adjemian's avatar
Stéphane Adjemian committed
130
%$     t(3) = dassert(ts.ops{1},['ydiff(A1)']);
131 132 133 134
%$ end
%$
%$ T = all(t);
%@eof:4