initial_estimation_checks.m 10.8 KB
Newer Older
1
function DynareResults = initial_estimation_checks(objective_function,xparam1,DynareDataset,DatasetInfo,Model,EstimatedParameters,DynareOptions,BayesInfo,BoundsInfo,DynareResults)
2
% function DynareResults = initial_estimation_checks(objective_function,xparam1,DynareDataset,DatasetInfo,Model,EstimatedParameters,DynareOptions,BayesInfo,BoundsInfo,DynareResults)
assia's avatar
assia committed
3
% Checks data (complex values, ML evaluation, initial values, BK conditions,..)
4
%
assia's avatar
assia committed
5
% INPUTS
6
7
%   objective_function  [function handle] of the objective function
%   xparam1:            [vector] of parameters to be estimated
8
9
%   DynareDataset:      [dseries] object storing the dataset
%   DataSetInfo:        [structure] storing informations about the sample.
10
11
12
13
%   Model:              [structure] decribing the model
%   EstimatedParameters [structure] characterizing parameters to be estimated
%   DynareOptions       [structure] describing the options
%   BayesInfo           [structure] describing the priors
14
%   BoundsInfo          [structure] containing prior bounds
15
%   DynareResults       [structure] storing the results
16
%
assia's avatar
assia committed
17
% OUTPUTS
18
%    DynareResults     structure of temporary results
19
%
assia's avatar
assia committed
20
21
22
% SPECIAL REQUIREMENTS
%    none

23
% Copyright (C) 2003-2018 Dynare Team
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
assia's avatar
assia committed
39

40
41
42
43
%get maximum number of simultaneously observed variables for stochastic
%singularity check
maximum_number_non_missing_observations=max(sum(~isnan(DynareDataset.data),2));

44
45
46
47
48
49
50
51
52
53
if DynareOptions.order>1 
    if any(any(isnan(DynareDataset.data)))
        error('initial_estimation_checks:: particle filtering does not support missing observations')
    end
    if DynareOptions.prefilter==1
        error('initial_estimation_checks:: particle filtering does not support the prefilter option')
    end
    if BayesInfo.with_trend
        error('initial_estimation_checks:: particle filtering does not support trends')
    end
54
55
56
57
58
59
60
61
    if Model.H==0
        error('initial_estimation_checks:: particle filtering requires measurement error on the observables')
    else
        [~,flag]=chol(Model.H);
        if flag
            error('initial_estimation_checks:: the measurement error matrix must be positive definite')
        end
    end
62
63
end

64
65
66
non_zero_ME=length(EstimatedParameters.H_entries_to_check_for_positive_definiteness);

if maximum_number_non_missing_observations>Model.exo_nbr+non_zero_ME
67
68
    error(['initial_estimation_checks:: Estimation can''t take place because there are less declared shocks than observed variables!'])
end
69

70
if maximum_number_non_missing_observations>length(find(diag(Model.Sigma_e)))+non_zero_ME
71
    error(['initial_estimation_checks:: Estimation can''t take place because too many shocks have been calibrated with a zero variance!'])
72
73
end

74
if (any(BayesInfo.pshape  >0 ) && DynareOptions.mh_replic) && DynareOptions.mh_nblck<1
75
    error(['initial_estimation_checks:: Bayesian estimation cannot be conducted with mh_nblocks=0.'])
76
77
end

78
79
80
81
82
old_steady_params=Model.params; %save initial parameters for check if steady state changes param values

% % check if steady state solves static model (except if diffuse_filter == 1)
[DynareResults.steady_state, new_steady_params] = evaluate_steady_state(DynareResults.steady_state,Model,DynareOptions,DynareResults,DynareOptions.diffuse_filter==0);

83
if isfield(EstimatedParameters,'param_vals') && ~isempty(EstimatedParameters.param_vals)
84
85
86
    %check whether steady state file changes estimated parameters
    Model_par_varied=Model; %store Model structure
    Model_par_varied.params(EstimatedParameters.param_vals(:,1))=Model_par_varied.params(EstimatedParameters.param_vals(:,1))*1.01; %vary parameters
87
    [~, new_steady_params_2] = evaluate_steady_state(DynareResults.steady_state,Model_par_varied,DynareOptions,DynareResults,DynareOptions.diffuse_filter==0);
88

89
    changed_par_indices=find((old_steady_params(EstimatedParameters.param_vals(:,1))-new_steady_params(EstimatedParameters.param_vals(:,1))) ...
90
                             | (Model_par_varied.params(EstimatedParameters.param_vals(:,1))-new_steady_params_2(EstimatedParameters.param_vals(:,1))));
91

92
93
    if ~isempty(changed_par_indices)
        fprintf('\nThe steady state file internally changed the values of the following estimated parameters:\n')
94
        disp(char(Model.param_names(EstimatedParameters.param_vals(changed_par_indices,1))))
95
        fprintf('This will override the parameter values drawn from the proposal density and may lead to wrong results.\n')
96
        fprintf('Check whether this is really intended.\n')
97
98
        warning('The steady state file internally changes the values of the estimated parameters.')
    end
99
end
100

101
102
if any(BayesInfo.pshape) % if Bayesian estimation
    nvx=EstimatedParameters.nvx;
103
    if nvx && any(BayesInfo.p3(1:nvx)<0)
104
105
106
107
        warning('Your prior allows for negative standard deviations for structural shocks. Due to working with variances, Dynare will be able to continue, but it is recommended to change your prior.')
    end
    offset=nvx;
    nvn=EstimatedParameters.nvn;
108
    if nvn && any(BayesInfo.p3(1+offset:offset+nvn)<0)
109
110
111
        warning('Your prior allows for negative standard deviations for measurement error. Due to working with variances, Dynare will be able to continue, but it is recommended to change your prior.')
    end
    offset = nvx+nvn;
112
113
    ncx=EstimatedParameters.ncx;
    if ncx && (any(BayesInfo.p3(1+offset:offset+ncx)<-1) || any(BayesInfo.p4(1+offset:offset+ncx)>1))
114
        warning('Your prior allows for correlations between structural shocks larger than +-1 and will not integrate to 1 due to truncation. Please change your prior')
115
116
    end
    offset = nvx+nvn+ncx;
117
118
    ncn=EstimatedParameters.ncn;
    if ncn && (any(BayesInfo.p3(1+offset:offset+ncn)<-1) || any(BayesInfo.p4(1+offset:offset+ncn)>1))
119
        warning('Your prior allows for correlations between measurement errors larger than +-1 and will not integrate to 1 due to truncation. Please change your prior')
120
121
122
    end
end

123
% display warning if some parameters are still NaN
124
test_for_deep_parameters_calibration(Model);
125

126
[lnprior,~,~,info]= priordens(xparam1,BayesInfo.pshape,BayesInfo.p6,BayesInfo.p7,BayesInfo.p3,BayesInfo.p4);
127
if any(info)
128
129
130
    fprintf('The prior density evaluated at the initial values is Inf for the following parameters: %s\n',BayesInfo.name{info,1})
    error('The initial value of the prior is -Inf')
end
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

if DynareOptions.ramsey_policy
    %test whether specification matches
    inst_nbr = size(DynareOptions.instruments,1);
    if inst_nbr~=0
        orig_endo_aux_nbr = Model.orig_endo_nbr + min(find([Model.aux_vars.type] == 6)) - 1;
        implied_inst_nbr = orig_endo_aux_nbr - Model.orig_eq_nbr;
        if inst_nbr>implied_inst_nbr
            error('You have specified more instruments than there are omitted equations')
        elseif inst_nbr<implied_inst_nbr
            error('You have specified fewer instruments than there are omitted equations')
        end
    end
end

146
% Evaluate the likelihood.
147
148
ana_deriv = DynareOptions.analytic_derivation;
DynareOptions.analytic_derivation=0;
149
150
if ~isequal(DynareOptions.mode_compute,11) || ...
        (isequal(DynareOptions.mode_compute,11) && isequal(DynareOptions.order,1))
151
152
153
154
155
156
    %shut off potentially automatic switch to diffuse filter for the
    %purpose of checking stochastic singularity
    use_univariate_filters_if_singularity_is_detected_old=DynareOptions.use_univariate_filters_if_singularity_is_detected;
    DynareOptions.use_univariate_filters_if_singularity_is_detected=0;
    [fval,info] = feval(objective_function,xparam1,DynareDataset,DatasetInfo,DynareOptions,Model,EstimatedParameters,BayesInfo,BoundsInfo,DynareResults);
    if info(1)==50
157
158
159
160
161
        fprintf('\ninitial_estimation_checks:: The forecast error variance in the multivariate Kalman filter became singular.\n')
        fprintf('initial_estimation_checks:: This is often a sign of stochastic singularity, but can also sometimes happen by chance\n')
        fprintf('initial_estimation_checks:: for a particular combination of parameters and data realizations.\n')
        fprintf('initial_estimation_checks:: If you think the latter is the case, you should try with different initial values for the estimated parameters.\n')
        error('initial_estimation_checks:: The forecast error variance in the multivariate Kalman filter became singular.')
162
    end
163
164
165
166
    if info(1)==201
        fprintf('initial_estimation_checks:: Initial covariance of the states is not positive definite. Try a different nonlinear_filter_initialization.\n')
        error('initial_estimation_checks:: Initial covariance of the states is not positive definite. Try a different nonlinear_filter_initialization.')
    end        
167
    %reset options
168
    DynareOptions.use_univariate_filters_if_singularity_is_detected=use_univariate_filters_if_singularity_is_detected_old;
169
else
170
    info=0;
171
172
    fval = 0;
end
173
174
175
if DynareOptions.debug
    DynareResults.likelihood_at_initial_parameters=fval;
end
176
DynareOptions.analytic_derivation=ana_deriv;
177

178
179
180
181
182
% if DynareOptions.mode_compute==5
%     if ~strcmp(func2str(objective_function),'dsge_likelihood')
%         error('Options mode_compute=5 is not compatible with non linear filters or Dsge-VAR models!')
%     end
% end
183
184
185
186
187
if isnan(fval)
    error('The initial value of the likelihood is NaN')
elseif imag(fval)
    error('The initial value of the likelihood is complex')
end
michel's avatar
michel committed
188

189
if info(1) > 0
190
191
    if DynareOptions.order>1
        [eigenvalues_] = check(Model,DynareOptions, DynareResults);
192
        if any(abs(1-abs(eigenvalues_))<abs(DynareOptions.qz_criterium-1))
193
            error('Your model has at least one unit root and you are using a nonlinear filter. Please set nonlinear_filter_initialization=3.')
194
195
        end
    else
196
197
        disp('Error in computing likelihood for initial parameter values')
        print_info(info, DynareOptions.noprint, DynareOptions)
198
    end
199
200
end

201
202
203
204
205
206
if DynareOptions.prefilter==1
    if (~DynareOptions.loglinear && any(abs(DynareResults.steady_state(BayesInfo.mfys))>1e-9)) || (DynareOptions.loglinear && any(abs(log(DynareResults.steady_state(BayesInfo.mfys)))>1e-9))
        disp(['You are trying to estimate a model with a non zero steady state for the observed endogenous'])
        disp(['variables using demeaned data!'])
        error('You should change something in your mod file...')
    end
207
208
end

209
210
211
if ~isequal(DynareOptions.mode_compute,11)
    disp(['Initial value of the log posterior (or likelihood): ' num2str(-fval)]);
end