fs2000_common.inc 3.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/*
 * This file is based on the cash in advance model described
 * Frank Schorfheide (2000): "Loss function-based evaluation of DSGE models",
 * Journal of Applied Econometrics, 15(6), 645-670.
 *
 * The equations are taken from J. Nason and T. Cogley (1994): "Testing the
 * implications of long-run neutrality for monetary business cycle models",
 * Journal of Applied Econometrics, 9, S37-S70.
 * Note that there is an initial minus sign missing in equation (A1), p. S63.
 *
 * This implementation was written by Michel Juillard. Please note that the
 * following copyright notice only applies to this Dynare implementation of the
 * model.
 */

/*
17
 * Copyright (C) 2004-2015 Dynare Team
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

var m P c e W R k d n l gy_obs gp_obs y dA;
varexo e_a e_m;

parameters alp bet gam mst rho psi del theta;

alp = 0.33;
bet = 0.99;
gam = 0.003;
mst = 1.011;
rho = 0.7;
psi = 0.787;
del = 0.02;
theta=0;

model;
dA = exp(gam+e_a);
log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e_m;
-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0;
W = l/n;
-(psi/(1-psi))*(c*P/(1-n))+l/n = 0;
R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W;
1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0;
c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1);
P*c = m;
m-1+d = l;
e = exp(e_a);
y = k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a));
gy_obs = dA*y/y(-1);
gp_obs = (P/P(-1))*m(-1)/dA;
end;

steady_state_model;
  dA = exp(gam);
  gst = 1/dA;
  m = mst;
  khst = ( (1-gst*bet*(1-del)) / (alp*gst^alp*bet) )^(1/(alp-1));
  xist = ( ((khst*gst)^alp - (1-gst*(1-del))*khst)/mst )^(-1);
  nust = psi*mst^2/( (1-alp)*(1-psi)*bet*gst^alp*khst^alp );
  n  = xist/(nust+xist);
  P  = xist + nust;
  k  = khst*n;

  l  = psi*mst*n/( (1-psi)*(1-n) );
  c  = mst/P;
  d  = l - mst + 1;
  y  = k^alp*n^(1-alp)*gst^alp;
  R  = mst/bet;
  W  = l/n;
  ist  = y-c;
  q  = 1 - d;

  e = 1;
  
  gp_obs = m/dA;
  gy_obs = dA;
end;

varobs gp_obs gy_obs;

shocks;
var e_a; stderr 0.014;
var e_m; stderr 0.005;
corr gy_obs,gp_obs = 0.5;
end;

steady;

estimated_params;
alp, 0.356;
gam,  0.0085;
del, 0.01;
stderr e_a, 0.035449;
stderr e_m, 0.008862;
corr e_m, e_a, 0;
stderr gp_obs, 1;
stderr gy_obs, 1;
corr gp_obs, gy_obs,0;
end;

114
data(file='../../fs2000/fsdat_simul.m');
115

116
117
options_.order=1;

118
119
[dataset_, dataset_info, xparam1, hh, M_, options_, oo_, estim_params_, bayestopt_, bounds] = ...
    dynare_estimation_init(char(), M_.fname, [], M_, options_, oo_, estim_params_, bayestopt_);