diff --git a/matlab/set_state_space.m b/matlab/set_state_space.m index 87b826b4e444f2c315e7424720e13700cec83e43..238371d0505167cede06e3dc6ba53090330edc91 100644 --- a/matlab/set_state_space.m +++ b/matlab/set_state_space.m @@ -32,41 +32,41 @@ function dr=set_state_space(dr,M_) % You should have received a copy of the GNU General Public License % along with Dynare. If not, see <http://www.gnu.org/licenses/>. -xlen = M_.maximum_endo_lead + M_.maximum_endo_lag + 1; -klen = M_.maximum_endo_lag + M_.maximum_endo_lead + 1; +max_lead = M_.maximum_endo_lead; +max_lag = M_.maximum_endo_lag; +endo_nbr = M_.endo_nbr; +lead_lag_incidence = M_.lead_lag_incidence; +xlen = max_lead + max_lag + 1; +klen = max_lag + max_lead + 1; -if ~ M_.lead_lag_incidence(M_.maximum_endo_lag+1,:) > 0 - error ('Error in model specification: some variables don"t appear as current') ; -end - -fwrd_var = find(any(M_.lead_lag_incidence(M_.maximum_endo_lag+2:end,:),1))'; -if M_.maximum_endo_lag > 0 - pred_var = find(any(M_.lead_lag_incidence(1:M_.maximum_endo_lag,:),1))'; +fwrd_var = find(any(lead_lag_incidence(max_lag+2:end,:),1))'; +if max_lag > 0 + pred_var = find(any(lead_lag_incidence(1,:),1))'; both_var = intersect(pred_var,fwrd_var); pred_var = setdiff(pred_var,both_var); fwrd_var = setdiff(fwrd_var,both_var); - stat_var = setdiff([1:M_.endo_nbr]',union(union(pred_var,both_var),fwrd_var)); % static variables + stat_var = setdiff([1:endo_nbr]',union(union(pred_var,both_var),fwrd_var)); % static variables else pred_var = []; both_var = []; - stat_var = setdiff([1:M_.endo_nbr]',fwrd_var); + stat_var = setdiff([1:endo_nbr]',fwrd_var); end nboth = length(both_var); npred = length(pred_var); nfwrd = length(fwrd_var); nstatic = length(stat_var); order_var = [ stat_var(:); pred_var(:); both_var(:); fwrd_var(:)]; -inv_order_var(order_var) = (1:M_.endo_nbr); +inv_order_var(order_var) = (1:endo_nbr); % building kmask for z state vector in t+1 -if M_.maximum_endo_lag > 0 +if max_lag > 0 kmask = []; - if M_.maximum_endo_lead > 0 - kmask = [cumsum(flipud(M_.lead_lag_incidence(M_.maximum_endo_lag+2:end,order_var)),1)] ; + if max_lead > 0 + kmask = [cumsum(flipud(lead_lag_incidence(max_lag+2:end,order_var)),1)] ; end - kmask = [kmask; flipud(cumsum(M_.lead_lag_incidence(1:M_.maximum_endo_lag,order_var),1))] ; + kmask = [kmask; flipud(cumsum(lead_lag_incidence(1,order_var),1))] ; else - kmask = cumsum(flipud(M_.lead_lag_incidence(M_.maximum_endo_lag+2:klen,order_var)),1) ; + kmask = cumsum(flipud(lead_lag_incidence(max_lag+2:klen,order_var)),1) ; end kmask = kmask'; @@ -75,27 +75,16 @@ i_kmask = find(kmask); % index of nonzero entries in kmask nd = size(i_kmask,1); % size of the state vector kmask(i_kmask) = [1:nd]; -% auxiliary equations - -% elements that are both in z(t+1) and z(t) -k1 = find([kmask(1:end-M_.endo_nbr) & kmask(M_.endo_nbr+1:end)] ); -kad = []; -kae = []; -if ~isempty(k1) - kad = kmask(k1+M_.endo_nbr); - kae = kmask(k1); -end - % composition of state vector % col 1: variable; col 2: lead/lag in z(t+1); % col 3: A cols for t+1 (D); col 4: A cols for t (E) -kstate = [ repmat([1:M_.endo_nbr]',klen-1,1) kron([klen:-1:2]',ones(M_.endo_nbr,1)) ... - zeros((klen-1)*M_.endo_nbr,2)]; -kiy = flipud(M_.lead_lag_incidence(:,order_var))'; +kstate = [ repmat([1:endo_nbr]',klen-1,1) kron([klen:-1:2]',ones(endo_nbr,1)) ... + zeros((klen-1)*endo_nbr,2)]; +kiy = flipud(lead_lag_incidence(:,order_var))'; kiy = kiy(:); -kstate(1:M_.maximum_endo_lead*M_.endo_nbr,3) = kiy(1:M_.maximum_endo_lead*M_.endo_nbr)-M_.endo_nbr; +kstate(1:endo_nbr,3) = kiy(1:endo_nbr)-nnz(lead_lag_incidence(2,:)); kstate(find(kstate(:,3) < 0),3) = 0; -kstate(M_.maximum_endo_lead*M_.endo_nbr+1:end,4) = kiy((M_.maximum_endo_lead+1)*M_.endo_nbr+1:end); +kstate(endo_nbr+1:end,4) = kiy(2*endo_nbr+1:end); % put in E only the current variables that are not already in D kstate = kstate(i_kmask,:); @@ -104,28 +93,13 @@ dr.inv_order_var = inv_order_var'; dr.nstatic = nstatic; dr.npred = npred+nboth; dr.kstate = kstate; -dr.kad = kad; -dr.kae = kae; +dr.kad = []; +dr.kae = []; dr.nboth = nboth; dr.nfwrd = nfwrd; % number of forward variables in the state vector -dr.nsfwrd = sum(kstate(:,2) > M_.maximum_endo_lag+1); +dr.nsfwrd = nfwrd; % number of predetermined variables in the state vector -dr.nspred = sum(kstate(:,2) <= M_.maximum_endo_lag+1); +dr.nspred = npred; -% computes column position of auxiliary variables for -% compact transition matrix (only state variables) -aux = zeros(0,1); -k0 = kstate(find(kstate(:,2) <= M_.maximum_endo_lag+1),:);; -i0 = find(k0(:,2) == M_.maximum_endo_lag+1); -for i=M_.maximum_endo_lag:-1:2 - i1 = find(k0(:,2) == i); - n1 = size(i1,1); - j = zeros(n1,1); - for j1 = 1:n1 - j(j1) = find(k0(i0,1)==k0(i1(j1),1)); - end - aux = [aux; i0(j)]; - i0 = i1; -end -dr.transition_auxiliary_variables = [(1:size(aux,1))' aux]; +dr.transition_auxiliary_variables = [];