diff --git a/tests/.gitignore b/tests/.gitignore index 722a27d5d7d11d53c5cdc860106a4364cda2f7c0..275d8736e94b9035f21f0e54738f55cc04d1cd29 100644 --- a/tests/.gitignore +++ b/tests/.gitignore @@ -50,8 +50,10 @@ wsOct !/ep/mean_preserving_spread.m !/ep/rbcii_steady_state.m !/estimation/fsdat_simul.m -!/estimation/method_of_moments/RBC_MoM_steady_helper.m -!/estimation/method_of_moments/RBC_Andreasen_Data_2.mat +!/estimation/method_of_moments/RBC/RBC_MoM_steady_helper.m +!/estimation/method_of_moments/RBC/RBC_Andreasen_Data_2.mat +!/estimation/method_of_moments/AFVRR/AFVRR_data.mat +!/estimation/method_of_moments/AFVRR/AFVRR_steady_helper.m !/expectations/expectation_ss_old_steadystate.m !/external_function/extFunDeriv.m !/external_function/extFunNoDerivs.m diff --git a/tests/Makefile.am b/tests/Makefile.am index fd050916a1143b6efa11c79aa64db0fb9d6e1b0b..1b7929a58219e2c4e60038215a412e07b2933684 100644 --- a/tests/Makefile.am +++ b/tests/Makefile.am @@ -50,10 +50,13 @@ MODFILES = \ estimation/MH_recover/fs2000_recover_3.mod \ estimation/t_proposal/fs2000_student.mod \ estimation/tune_mh_jscale/fs2000.mod \ - estimation/method_of_moments/AnScho_MoM.mod \ - estimation/method_of_moments/RBC_MoM_Andreasen.mod \ - estimation/method_of_moments/RBC_MoM_SMM_ME.mod \ - estimation/method_of_moments/RBC_MoM_prefilter.mod \ + estimation/method_of_moments/AnScho/AnScho_MoM.mod \ + estimation/method_of_moments/RBC/RBC_MoM_Andreasen.mod \ + estimation/method_of_moments/RBC/RBC_MoM_SMM_ME.mod \ + estimation/method_of_moments/RBC/RBC_MoM_prefilter.mod \ + estimation/method_of_moments/AFVRR/AFVRR_M0.mod \ + estimation/method_of_moments/AFVRR/AFVRR_MFB.mod \ + estimation/method_of_moments/AFVRR/AFVRR_MFB_RRA.mod \ moments/example1_var_decomp.mod \ moments/example1_bp_test.mod \ moments/test_AR1_spectral_density.mod \ @@ -835,6 +838,10 @@ particle: m/particle o/particle m/particle: $(patsubst %.mod, %.m.trs, $(PARTICLEFILES)) o/particle: $(patsubst %.mod, %.o.trs, $(PARTICLEFILES)) +method_of_moments: m/method_of_moments o/method_of_moments +m/method_of_moments: $(patsubst %.mod, %.m.trs, $(filter estimation/method_of_moments/%.mod, $(MODFILES))) +o/method_of_moments: $(patsubst %.mod, %.o.trs, $(filter estimation/method_of_moments/%.mod, $(MODFILES))) + # Matlab TRS Files M_TRS_FILES = $(patsubst %.mod, %.m.trs, $(MODFILES)) M_TRS_FILES += run_block_byte_tests_matlab.m.trs \ @@ -984,8 +991,10 @@ EXTRA_DIST = \ lmmcp/sw-common-header.inc \ lmmcp/sw-common-footer.inc \ estimation/tune_mh_jscale/fs2000.inc \ - estimation/method_of_moments/RBC_MoM_common.inc \ - estimation/method_of_moments/RBC_MoM_steady_helper.m \ + estimation/method_of_moments/RBC/RBC_MoM_common.inc \ + estimation/method_of_moments/RBC/RBC_MoM_steady_helper.m \ + estimation/method_of_moments/AFVRR/AFVRR_common.inc \ + estimation/method_of_moments/AFVRR/AFVRR_steady_helper.m \ histval_initval_file_unit_tests.m \ histval_initval_file/my_assert.m \ histval_initval_file/ramst_data.xls \ diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_M0.mod b/tests/estimation/method_of_moments/AFVRR/AFVRR_M0.mod new file mode 100644 index 0000000000000000000000000000000000000000..8e51ac51368237c54d02210941407fdfd3a8db08 --- /dev/null +++ b/tests/estimation/method_of_moments/AFVRR/AFVRR_M0.mod @@ -0,0 +1,299 @@ +% DSGE model based on replication files of +% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49 +% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021 +% ========================================================================= +% Copyright (C) 2021 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. +% ========================================================================= + +% This is the benchmark model with no feedback M_0 +% Original code RunGMM_standardModel_RRA.m by Martin M. Andreasen, Jan 2016 + +@#include "AFVRR_common.inc" + +%-------------------------------------------------------------------------- +% Parameter calibration taken from RunGMM_standardModel_RRA.m +%-------------------------------------------------------------------------- +% fixed parameters +INHABIT = 1; +PHI1 = 4; +PHI4 = 1; +KAPAone = 0; +DELTA = 0.025; +THETA = 0.36; +ETA = 6; +CHI = 0; +CONSxhr40 = 0; +BETTAxhr = 0; +BETTAxhr40= 0; +RHOD = 0; +GAMA = 0.9999; +CONSxhr20 = 0; + +% estimated parameters +BETTA = 0.999544966118000; +B = 0.668859504661000; +H = 0.342483445196000; +PHI2 = 0.997924964981000; +RRA = 662.7953149595370; +KAPAtwo = 5.516226495551000; +ALFA = 0.809462321180000; +RHOR = 0.643873352513000; +BETTAPAI = 1.270087844103000; +BETTAY = 0.031812764291000; +MYYPS = 1.001189151180000; +MYZ = 1.005286347928000; +RHOA = 0.743239127127000; +RHOG = 0.793929380230000; +PAI = 1.012163659169000; +GoY = 0.206594858866000; +STDA = 0.016586292524000; +STDG = 0.041220613851000; +STDD = 0.013534473123000; + +% endogenous parameters set via steady state, no need to initialize +%PHIzero = ; +%AA = ; +%PHI3 = ; +%negVf = ; + +model_diagnostics; +% Model diagnostics show that some parameters are endogenously determined +% via the steady state, so we run steady to calibrate all parameters +steady; +model_diagnostics; +% Now all parameters are determined + +resid; +check; + +%-------------------------------------------------------------------------- +% Shock distribution +%-------------------------------------------------------------------------- +shocks; +var eps_a = STDA^2; +var eps_d = STDD^2; +var eps_g = STDG^2; +end; + +%-------------------------------------------------------------------------- +% Estimated Params block - these parameters will be estimated, we +% initialize at calibrated values +%-------------------------------------------------------------------------- +estimated_params; +BETTA; +B; +H; +PHI2; +RRA; +KAPAtwo; +ALFA; +RHOR; +BETTAPAI; +BETTAY; +MYYPS; +MYZ; +RHOA; +RHOG; +PAI; +GoY; +stderr eps_a; +stderr eps_g; +stderr eps_d; +end; + +estimated_params_init(use_calibration); +end; + +%-------------------------------------------------------------------------- +% Compare whether toolbox yields equivalent moments at second order +%-------------------------------------------------------------------------- +% Note that we compare results for orderApp=1|2 and not for orderApp=3, because +% there is a small error in the replication files of the original article in the +% computation of the covariance matrix of the extended innovations vector. +% The authors have been contacted, fixed it, and report that the results +% change only slightly at orderApp=3 to what they report in the paper. At +% orderApp=2 all is correct and so the following part tests whether we get +% the same model moments at the calibrated parameters (we do not optimize). +% We compare it to the replication file RunGMM_standardModel_RRA.m with the +% following settings: orderApp=1|2, seOn=0, q_lag=10, weighting=1; +% scaled=0; optimizer=0; estimator=1; momentSet=2; +% +% Output of the replication files for orderApp=1 +AndreasenEtAl.Q1 = 23893.072; +AndreasenEtAl.moments1 =[ % note that we reshuffeled to be compatible with our matched moments block + {[ 1]} {'Ex' } {'Gr_C '} {' ' } {'0.024388' } {'0.023764' } + {[ 2]} {'Ex' } {'Gr_I '} {' ' } {'0.031046' } {'0.028517' } + {[ 3]} {'Ex' } {'Infl ' } {' ' } {'0.03757' } {'0.048361' } + {[ 4]} {'Ex' } {'r1 ' } {' ' } {'0.056048' } {'0.073945' } + {[ 5]} {'Ex' } {'r40 ' } {' ' } {'0.069929' } {'0.073945' } + {[ 6]} {'Ex' } {'xhr40 '} {' ' } {'0.017237' } {'0' } + {[ 7]} {'Ex' } {'GoY '} {' ' } {'-1.5745' } {'-1.577' } + {[ 8]} {'Ex' } {'hours '} {' ' } {'-0.043353' } {'-0.042861' } + {[ 9]} {'Exx' } {'Gr_C '} {'Gr_C '} {'0.0013159' } {'0.0011816' } + {[17]} {'Exx' } {'Gr_C '} {'Gr_I '} {'0.0021789' } {'0.0016052' } + {[18]} {'Exx' } {'Gr_C '} {'Infl ' } {'0.00067495' } {'0.00090947' } + {[19]} {'Exx' } {'Gr_C '} {'r1 ' } {'0.0011655' } {'0.0016016' } + {[20]} {'Exx' } {'Gr_C '} {'r40 ' } {'0.0015906' } {'0.0017076' } + {[21]} {'Exx' } {'Gr_C '} {'xhr40 '} {'0.0020911' } {'0.0013997' } + {[10]} {'Exx' } {'Gr_I '} {'Gr_I '} {'0.0089104' } {'0.0055317' } + {[22]} {'Exx' } {'Gr_I '} {'Infl ' } {'0.00063139' } {'0.00050106' } + {[23]} {'Exx' } {'Gr_I '} {'r1 ' } {'0.0011031' } {'0.0018178' } + {[24]} {'Exx' } {'Gr_I '} {'r40 ' } {'0.0018445' } {'0.0020186' } + {[25]} {'Exx' } {'Gr_I '} {'xhr40 '} {'0.00095556' } {'0.0064471' } + {[11]} {'Exx' } {'Infl ' } {'Infl ' } {'0.0020268' } {'0.0030519' } + {[26]} {'Exx' } {'Infl ' } {'r1 ' } {'0.0025263' } {'0.0042181' } + {[27]} {'Exx' } {'Infl ' } {'r40 ' } {'0.0029126' } {'0.0039217' } + {[28]} {'Exx' } {'Infl ' } {'xhr40 '} {'-0.00077101'} {'-0.0019975' } + {[12]} {'Exx' } {'r1 ' } {'r1 ' } {'0.0038708' } {'0.0061403' } + {[29]} {'Exx' } {'r1 ' } {'r40 ' } {'0.0044773' } {'0.0058343' } + {[30]} {'Exx' } {'r1 ' } {'xhr40 '} {'-0.00048202'} {'-0.00089501'} + {[13]} {'Exx' } {'r40 ' } {'r40 ' } {'0.0054664' } {'0.0056883' } + {[31]} {'Exx' } {'r40 ' } {'xhr40 '} {'0.00053864' } {'-0.00041184'} + {[14]} {'Exx' } {'xhr40 '} {'xhr40 '} {'0.053097' } {'0.016255' } + {[15]} {'Exx' } {'GoY '} {'GoY '} {'2.4863' } {'2.4919' } + {[16]} {'Exx' } {'hours '} {'hours '} {'0.0018799' } {'0.0018384' } + {[32]} {'Exx1'} {'Gr_C '} {'Gr_C '} {'0.00077917' } {'0.00065543' } + {[33]} {'Exx1'} {'Gr_I '} {'Gr_I '} {'0.0050104' } {'0.0033626' } + {[34]} {'Exx1'} {'Infl ' } {'Infl ' } {'0.0019503' } {'0.0029033' } + {[35]} {'Exx1'} {'r1 ' } {'r1 ' } {'0.0038509' } {'0.006112' } + {[36]} {'Exx1'} {'r40 ' } {'r40 ' } {'0.0054699' } {'0.005683' } + {[37]} {'Exx1'} {'xhr40 '} {'xhr40 '} {'-0.00098295'} {'3.3307e-16' } + {[38]} {'Exx1'} {'GoY '} {'GoY '} {'2.4868' } {'2.4912' } + {[39]} {'Exx1'} {'hours '} {'hours '} {'0.0018799' } {'0.0018378' } +]; + +% Output of the replication files for orderApp=2 +AndreasenEtAl.Q2 = 65.8269; +AndreasenEtAl.moments2 =[ % note that we reshuffeled to be compatible with our matched moments block + {[ 1]} {'Ex' } {'Gr_C '} {' ' } {'0.024388' } {'0.023764' } + {[ 2]} {'Ex' } {'Gr_I '} {' ' } {'0.031046' } {'0.028517' } + {[ 3]} {'Ex' } {'Infl ' } {' ' } {'0.03757' } {'0.034882' } + {[ 4]} {'Ex' } {'r1 ' } {' ' } {'0.056048' } {'0.056542' } + {[ 5]} {'Ex' } {'r40 ' } {' ' } {'0.069929' } {'0.070145' } + {[ 6]} {'Ex' } {'xhr40 '} {' ' } {'0.017237' } {'0.020825' } + {[ 7]} {'Ex' } {'GoY '} {' ' } {'-1.5745' } {'-1.5748' } + {[ 8]} {'Ex' } {'hours '} {' ' } {'-0.043353' } {'-0.04335' } + {[ 9]} {'Exx' } {'Gr_C '} {'Gr_C '} {'0.0013159' } {'0.001205' } + {[17]} {'Exx' } {'Gr_C '} {'Gr_I '} {'0.0021789' } {'0.0016067' } + {[18]} {'Exx' } {'Gr_C '} {'Infl ' } {'0.00067495' } {'0.00059406'} + {[19]} {'Exx' } {'Gr_C '} {'r1 ' } {'0.0011655' } {'0.0011949' } + {[20]} {'Exx' } {'Gr_C '} {'r40 ' } {'0.0015906' } {'0.0016104' } + {[21]} {'Exx' } {'Gr_C '} {'xhr40 '} {'0.0020911' } {'0.0020245' } + {[10]} {'Exx' } {'Gr_I '} {'Gr_I '} {'0.0089104' } {'0.0060254' } + {[22]} {'Exx' } {'Gr_I '} {'Infl ' } {'0.00063139' } {'8.3563e-05'} + {[23]} {'Exx' } {'Gr_I '} {'r1 ' } {'0.0011031' } {'0.0013176' } + {[24]} {'Exx' } {'Gr_I '} {'r40 ' } {'0.0018445' } {'0.0019042' } + {[25]} {'Exx' } {'Gr_I '} {'xhr40 '} {'0.00095556' } {'0.0064261' } + {[11]} {'Exx' } {'Infl ' } {'Infl ' } {'0.0020268' } {'0.0020735' } + {[26]} {'Exx' } {'Infl ' } {'r1 ' } {'0.0025263' } {'0.0027621' } + {[27]} {'Exx' } {'Infl ' } {'r40 ' } {'0.0029126' } {'0.0029257' } + {[28]} {'Exx' } {'Infl ' } {'xhr40 '} {'-0.00077101'} {'-0.0012165'} + {[12]} {'Exx' } {'r1 ' } {'r1 ' } {'0.0038708' } {'0.0040235' } + {[29]} {'Exx' } {'r1 ' } {'r40 ' } {'0.0044773' } {'0.0044702' } + {[30]} {'Exx' } {'r1 ' } {'xhr40 '} {'-0.00048202'} {'0.00030542'} + {[13]} {'Exx' } {'r40 ' } {'r40 ' } {'0.0054664' } {'0.0052718' } + {[31]} {'Exx' } {'r40 ' } {'xhr40 '} {'0.00053864' } {'0.0010045' } + {[14]} {'Exx' } {'xhr40 '} {'xhr40 '} {'0.053097' } {'0.018416' } + {[15]} {'Exx' } {'GoY '} {'GoY '} {'2.4863' } {'2.4853' } + {[16]} {'Exx' } {'hours '} {'hours '} {'0.0018799' } {'0.0018806' } + {[32]} {'Exx1'} {'Gr_C '} {'Gr_C '} {'0.00077917' } {'0.00067309'} + {[33]} {'Exx1'} {'Gr_I '} {'Gr_I '} {'0.0050104' } {'0.0033293' } + {[34]} {'Exx1'} {'Infl ' } {'Infl ' } {'0.0019503' } {'0.0019223' } + {[35]} {'Exx1'} {'r1 ' } {'r1 ' } {'0.0038509' } {'0.0039949' } + {[36]} {'Exx1'} {'r40 ' } {'r40 ' } {'0.0054699' } {'0.0052659' } + {[37]} {'Exx1'} {'xhr40 '} {'xhr40 '} {'-0.00098295'} {'0.0004337' } + {[38]} {'Exx1'} {'GoY '} {'GoY '} {'2.4868' } {'2.4846' } + {[39]} {'Exx1'} {'hours '} {'hours '} {'0.0018799' } {'0.00188' } +]; + +@#for orderApp in 1:2 + +method_of_moments( + mom_method = GMM % method of moments method; possible values: GMM|SMM + , datafile = 'AFVRR_data.mat' % name of filename with data + , bartlett_kernel_lag = 10 % bandwith in optimal weighting matrix + , order = @{orderApp} % order of Taylor approximation in perturbation + , pruning % use pruned state space system at higher-order + % , verbose % display and store intermediate estimation results + , weighting_matrix = ['DIAGONAL'] % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename + % , TeX % print TeX tables and graphics + % Optimization options that can be set by the user in the mod file, otherwise default values are provided + %, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons + , mode_compute = 0 % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer + , optim = ('TolFun', 1e-6 + ,'TolX', 1e-6 + ,'MaxIter', 3000 + ,'MaxFunEvals', 1D6 + ,'UseParallel' , 1 + %,'Jacobian' , 'on' + ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute + %, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between + %, analytic_standard_errors + , se_tolx=1e-10 +); + +% Check results + +fprintf('****************************************************************\n') +fprintf('Compare Results for perturbation order @{orderApp}\n') +fprintf('****************************************************************\n') +dev_Q = AndreasenEtAl.Q@{orderApp} - oo_.mom.Q; +dev_datamoments = str2double(AndreasenEtAl.moments@{orderApp}(:,5)) - oo_.mom.data_moments; +dev_modelmoments = str2double(AndreasenEtAl.moments@{orderApp}(:,6)) - oo_.mom.model_moments; + +table([AndreasenEtAl.Q@{orderApp} ; str2double(AndreasenEtAl.moments@{orderApp}(:,5)) ; str2double(AndreasenEtAl.moments@{orderApp}(:,6))],... + [oo_.mom.Q ; oo_.mom.data_moments ; oo_.mom.model_moments ],... + [dev_Q ; dev_datamoments ; dev_modelmoments ],... + 'VariableNames', {'Andreasen et al', 'Dynare', 'dev'},... + 'RowNames', ['Q'; strcat('Data_', M_.matched_moments(:,4)); strcat('Model_', M_.matched_moments(:,4))]) + +if norm(dev_modelmoments)> 1e-4 + error('Something wrong in the computation of moments at order @{orderApp}') +end + +@#endfor + +%-------------------------------------------------------------------------- +% Replicate estimation at orderApp=3 +%-------------------------------------------------------------------------- +@#ifdef DoEstimation +method_of_moments( + mom_method = GMM % method of moments method; possible values: GMM|SMM + , datafile = 'AFVRR_data.mat' % name of filename with data + , bartlett_kernel_lag = 10 % bandwith in optimal weighting matrix + , order = 3 % order of Taylor approximation in perturbation + , pruning % use pruned state space system at higher-order + % , verbose % display and store intermediate estimation results + , weighting_matrix = ['DIAGONAL', 'OPTIMAL'] % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename + % , TeX % print TeX tables and graphics + % Optimization options that can be set by the user in the mod file, otherwise default values are provided + %, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons + , mode_compute = 13 % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer + , additional_optimizer_steps = [13] + , optim = ('TolFun', 1e-6 + ,'TolX', 1e-6 + ,'MaxIter', 3000 + ,'MaxFunEvals', 1D6 + ,'UseParallel' , 1 + %,'Jacobian' , 'on' + ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute + %, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between + %, analytic_standard_errors + , se_tolx=1e-10 +); +@#endif \ No newline at end of file diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB.mod b/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB.mod new file mode 100644 index 0000000000000000000000000000000000000000..450739ad3bd153855806d8bcbab513d554eb33b7 --- /dev/null +++ b/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB.mod @@ -0,0 +1,300 @@ +% DSGE model based on replication files of +% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49 +% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021 +% ========================================================================= +% Copyright (C) 2021 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. +% ========================================================================= + +% This is the model with Feedback M_FB +% Original code RunGMM_Feedback_estim_RRA.m by Martin M. Andreasen, Jan 2016 + +@#include "AFVRR_common.inc" + +%-------------------------------------------------------------------------- +% Parameter calibration taken from RunGMM_Feedback_estim_RRA.m +%-------------------------------------------------------------------------- +% fixed parameters +INHABIT = 1; +PHI1 = 4; +PHI4 = 1; +KAPAone = 0; +DELTA = 0.025; +THETA = 0.36; +ETA = 6; +CHI = 0; +BETTAxhr = 0; +BETTAxhr40= 0; +RHOD = 0; +GAMA = 0.9999; +CONSxhr20 = 0; + +% estimated parameters +BETTA = 0.997007023687000; +B = 0.692501768577000; +H = 0.339214495653000; +PHI2 = 0.688555040951000; +RRA = 24.346514272871001; +KAPAtwo = 10.018421876923000; +ALFA = 0.792507553312000; +RHOR = 0.849194030384000; +BETTAPAI = 2.060579322980000; +BETTAY = 0.220573712342000; +MYYPS = 1.001016690133000; +MYZ = 1.005356313981000; +RHOA = 0.784141391843000; +RHOG = 0.816924540497000; +PAI = 1.011924196487000; +CONSxhr40 = 0.878774662208000; +GoY = 0.207110300602000; +STDA = 0.013024450606000; +STDG = 0.051049871928000; +STDD = 0.008877423780000; + +% endogenous parameters set via steady state, no need to initialize +%PHIzero = ; +%AA = ; +%PHI3 = ; +%negVf = ; + +model_diagnostics; +% Model diagnostics show that some parameters are endogenously determined +% via the steady state, so we run steady to calibrate all parameters +steady; +model_diagnostics; +% Now all parameters are determined + +resid; +check; + +%-------------------------------------------------------------------------- +% Shock distribution +%-------------------------------------------------------------------------- +shocks; +var eps_a = STDA^2; +var eps_d = STDD^2; +var eps_g = STDG^2; +end; + +%-------------------------------------------------------------------------- +% Estimated Params block - these parameters will be estimated, we +% initialize at calibrated values +%-------------------------------------------------------------------------- +estimated_params; +BETTA; +B; +H; +PHI2; +RRA; +KAPAtwo; +ALFA; +RHOR; +BETTAPAI; +BETTAY; +MYYPS; +MYZ; +RHOA; +RHOG; +PAI; +CONSxhr40; +GoY; +stderr eps_a; +stderr eps_g; +stderr eps_d; +end; + +estimated_params_init(use_calibration); +end; + +%-------------------------------------------------------------------------- +% Compare whether toolbox yields equivalent moments at second order +%-------------------------------------------------------------------------- +% Note that we compare results for orderApp=1|2 and not for orderApp=3, because +% there is a small error in the replication files of the original article in the +% computation of the covariance matrix of the extended innovations vector. +% The authors have been contacted, fixed it, and report that the results +% change only slightly at orderApp=3 to what they report in the paper. At +% orderApp=2 all is correct and so the following part tests whether we get +% the same model moments at the calibrated parameters (we do not optimize). +% We compare it to the replication file RunGMM_Feedback_estim_RRA.m with the +% following settings: orderApp=1|2, seOn=0, q_lag=10, weighting=1; +% scaled=0; optimizer=0; estimator=1; momentSet=2; +% +% Output of the replication files for orderApp=1 +AndreasenEtAl.Q1 = 201778.9697; +AndreasenEtAl.moments1 =[ % note that we reshuffeled to be compatible with our matched moments block + {[ 1]} {'Ex' } {'Gr_C '} {' ' } {'0.024388' } {'0.023654' } + {[ 2]} {'Ex' } {'Gr_I '} {' ' } {'0.031046' } {'0.027719' } + {[ 3]} {'Ex' } {'Infl ' } {' ' } {'0.03757' } {'0.047415' } + {[ 4]} {'Ex' } {'r1 ' } {' ' } {'0.056048' } {'0.083059' } + {[ 5]} {'Ex' } {'r40 ' } {' ' } {'0.069929' } {'0.083059' } + {[ 6]} {'Ex' } {'xhr40 '} {' ' } {'0.017237' } {'0' } + {[ 7]} {'Ex' } {'GoY '} {' ' } {'-1.5745' } {'-1.5745' } + {[ 8]} {'Ex' } {'hours '} {' ' } {'-0.043353' } {'-0.043245' } + {[ 9]} {'Exx' } {'Gr_C '} {'Gr_C '} {'0.0013159' } {'0.0012253' } + {[17]} {'Exx' } {'Gr_C '} {'Gr_I '} {'0.0021789' } {'0.0015117' } + {[18]} {'Exx' } {'Gr_C '} {'Infl ' } {'0.00067495' } {'0.00080078' } + {[19]} {'Exx' } {'Gr_C '} {'r1 ' } {'0.0011655' } {'0.00182' } + {[20]} {'Exx' } {'Gr_C '} {'r40 ' } {'0.0015906' } {'0.001913' } + {[21]} {'Exx' } {'Gr_C '} {'xhr40 '} {'0.0020911' } {'0.0016326' } + {[10]} {'Exx' } {'Gr_I '} {'Gr_I '} {'0.0089104' } {'0.0040112' } + {[22]} {'Exx' } {'Gr_I '} {'Infl ' } {'0.00063139' } {'0.00060604' } + {[23]} {'Exx' } {'Gr_I '} {'r1 ' } {'0.0011031' } {'0.0021426' } + {[24]} {'Exx' } {'Gr_I '} {'r40 ' } {'0.0018445' } {'0.0022348' } + {[25]} {'Exx' } {'Gr_I '} {'xhr40 '} {'0.00095556' } {'0.0039852' } + {[11]} {'Exx' } {'Infl ' } {'Infl ' } {'0.0020268' } {'0.0030058' } + {[26]} {'Exx' } {'Infl ' } {'r1 ' } {'0.0025263' } {'0.0044951' } + {[27]} {'Exx' } {'Infl ' } {'r40 ' } {'0.0029126' } {'0.0042225' } + {[28]} {'Exx' } {'Infl ' } {'xhr40 '} {'-0.00077101'} {'-0.0021222' } + {[12]} {'Exx' } {'r1 ' } {'r1 ' } {'0.0038708' } {'0.0074776' } + {[29]} {'Exx' } {'r1 ' } {'r40 ' } {'0.0044773' } {'0.0071906' } + {[30]} {'Exx' } {'r1 ' } {'xhr40 '} {'-0.00048202'} {'-0.0006736' } + {[13]} {'Exx' } {'r40 ' } {'r40 ' } {'0.0054664' } {'0.0070599' } + {[31]} {'Exx' } {'r40 ' } {'xhr40 '} {'0.00053864' } {'-0.00036735'} + {[14]} {'Exx' } {'xhr40 '} {'xhr40 '} {'0.053097' } {'0.014516' } + {[15]} {'Exx' } {'GoY '} {'GoY '} {'2.4863' } {'2.4866' } + {[16]} {'Exx' } {'hours '} {'hours '} {'0.0018799' } {'0.0018713' } + {[32]} {'Exx1'} {'Gr_C '} {'Gr_C '} {'0.00077917' } {'0.00076856' } + {[33]} {'Exx1'} {'Gr_I '} {'Gr_I '} {'0.0050104' } {'0.002163' } + {[34]} {'Exx1'} {'Infl ' } {'Infl ' } {'0.0019503' } {'0.0028078' } + {[35]} {'Exx1'} {'r1 ' } {'r1 ' } {'0.0038509' } {'0.0074583' } + {[36]} {'Exx1'} {'r40 ' } {'r40 ' } {'0.0054699' } {'0.0070551' } + {[37]} {'Exx1'} {'xhr40 '} {'xhr40 '} {'-0.00098295'} {'7.2164e-16' } + {[38]} {'Exx1'} {'GoY '} {'GoY '} {'2.4868' } {'2.4856' } + {[39]} {'Exx1'} {'hours '} {'hours '} {'0.0018799' } {'0.0018708' } +]; + +% Output of the replication files for orderApp=2 +AndreasenEtAl.Q2 = 59.3323; +AndreasenEtAl.moments2 =[ % note that we reshuffeled to be compatible with our matched moments block + {[ 1]} {'Ex' } {'Gr_C '} {' ' } {'0.024388' } {'0.023654' } + {[ 2]} {'Ex' } {'Gr_I '} {' ' } {'0.031046' } {'0.027719' } + {[ 3]} {'Ex' } {'Infl ' } {' ' } {'0.03757' } {'0.034565' } + {[ 4]} {'Ex' } {'r1 ' } {' ' } {'0.056048' } {'0.056419' } + {[ 5]} {'Ex' } {'r40 ' } {' ' } {'0.069929' } {'0.07087' } + {[ 6]} {'Ex' } {'xhr40 '} {' ' } {'0.017237' } {'0.01517' } + {[ 7]} {'Ex' } {'GoY '} {' ' } {'-1.5745' } {'-1.5743' } + {[ 8]} {'Ex' } {'hours '} {' ' } {'-0.043353' } {'-0.043352' } + {[ 9]} {'Exx' } {'Gr_C '} {'Gr_C '} {'0.0013159' } {'0.0012464' } + {[17]} {'Exx' } {'Gr_C '} {'Gr_I '} {'0.0021789' } {'0.0015247' } + {[18]} {'Exx' } {'Gr_C '} {'Infl ' } {'0.00067495' } {'0.0004867' } + {[19]} {'Exx' } {'Gr_C '} {'r1 ' } {'0.0011655' } {'0.0011867' } + {[20]} {'Exx' } {'Gr_C '} {'r40 ' } {'0.0015906' } {'0.0016146' } + {[21]} {'Exx' } {'Gr_C '} {'xhr40 '} {'0.0020911' } {'0.0021395' } + {[10]} {'Exx' } {'Gr_I '} {'Gr_I '} {'0.0089104' } {'0.0043272' } + {[22]} {'Exx' } {'Gr_I '} {'Infl ' } {'0.00063139' } {'0.00021752'} + {[23]} {'Exx' } {'Gr_I '} {'r1 ' } {'0.0011031' } {'0.0013919' } + {[24]} {'Exx' } {'Gr_I '} {'r40 ' } {'0.0018445' } {'0.0018899' } + {[25]} {'Exx' } {'Gr_I '} {'xhr40 '} {'0.00095556' } {'0.0037854' } + {[11]} {'Exx' } {'Infl ' } {'Infl ' } {'0.0020268' } {'0.0021043' } + {[26]} {'Exx' } {'Infl ' } {'r1 ' } {'0.0025263' } {'0.0026571' } + {[27]} {'Exx' } {'Infl ' } {'r40 ' } {'0.0029126' } {'0.0028566' } + {[28]} {'Exx' } {'Infl ' } {'xhr40 '} {'-0.00077101'} {'-0.0016279'} + {[12]} {'Exx' } {'r1 ' } {'r1 ' } {'0.0038708' } {'0.0039136' } + {[29]} {'Exx' } {'r1 ' } {'r40 ' } {'0.0044773' } {'0.0044118' } + {[30]} {'Exx' } {'r1 ' } {'xhr40 '} {'-0.00048202'} {'0.00016791'} + {[13]} {'Exx' } {'r40 ' } {'r40 ' } {'0.0054664' } {'0.0052851' } + {[31]} {'Exx' } {'r40 ' } {'xhr40 '} {'0.00053864' } {'0.00062143'} + {[14]} {'Exx' } {'xhr40 '} {'xhr40 '} {'0.053097' } {'0.018126' } + {[15]} {'Exx' } {'GoY '} {'GoY '} {'2.4863' } {'2.4863' } + {[16]} {'Exx' } {'hours '} {'hours '} {'0.0018799' } {'0.0018806' } + {[32]} {'Exx1'} {'Gr_C '} {'Gr_C '} {'0.00077917' } {'0.00078586'} + {[33]} {'Exx1'} {'Gr_I '} {'Gr_I '} {'0.0050104' } {'0.0021519' } + {[34]} {'Exx1'} {'Infl ' } {'Infl ' } {'0.0019503' } {'0.0019046' } + {[35]} {'Exx1'} {'r1 ' } {'r1 ' } {'0.0038509' } {'0.0038939' } + {[36]} {'Exx1'} {'r40 ' } {'r40 ' } {'0.0054699' } {'0.0052792' } + {[37]} {'Exx1'} {'xhr40 '} {'xhr40 '} {'-0.00098295'} {'0.00023012'} + {[38]} {'Exx1'} {'GoY '} {'GoY '} {'2.4868' } {'2.4852' } + {[39]} {'Exx1'} {'hours '} {'hours '} {'0.0018799' } {'0.0018801' } +]; + +@#for orderApp in 1:2 + +method_of_moments( + mom_method = GMM % method of moments method; possible values: GMM|SMM + , datafile = 'AFVRR_data.mat' % name of filename with data + , bartlett_kernel_lag = 10 % bandwith in optimal weighting matrix + , order = @{orderApp} % order of Taylor approximation in perturbation + , pruning % use pruned state space system at higher-order + % , verbose % display and store intermediate estimation results + , weighting_matrix = ['DIAGONAL'] % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename + % , TeX % print TeX tables and graphics + % Optimization options that can be set by the user in the mod file, otherwise default values are provided + %, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons + , mode_compute = 0 % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer + , optim = ('TolFun', 1e-6 + ,'TolX', 1e-6 + ,'MaxIter', 3000 + ,'MaxFunEvals', 1D6 + ,'UseParallel' , 1 + %,'Jacobian' , 'on' + ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute + %, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between + %, analytic_standard_errors + , se_tolx=1e-10 +); + +% Check results + +fprintf('****************************************************************\n') +fprintf('Compare Results for perturbation order @{orderApp}\n') +fprintf('****************************************************************\n') +dev_Q = AndreasenEtAl.Q@{orderApp} - oo_.mom.Q; +dev_datamoments = str2double(AndreasenEtAl.moments@{orderApp}(:,5)) - oo_.mom.data_moments; +dev_modelmoments = str2double(AndreasenEtAl.moments@{orderApp}(:,6)) - oo_.mom.model_moments; + +table([AndreasenEtAl.Q@{orderApp} ; str2double(AndreasenEtAl.moments@{orderApp}(:,5)) ; str2double(AndreasenEtAl.moments@{orderApp}(:,6))],... + [oo_.mom.Q ; oo_.mom.data_moments ; oo_.mom.model_moments ],... + [dev_Q ; dev_datamoments ; dev_modelmoments ],... + 'VariableNames', {'Andreasen et al', 'Dynare', 'dev'},... + 'RowNames', ['Q'; strcat('Data_', M_.matched_moments(:,4)); strcat('Model_', M_.matched_moments(:,4))]) + +if norm(dev_modelmoments)> 1e-4 + warning('Something wrong in the computation of moments at order @{orderApp}') +end + +@#endfor + +%-------------------------------------------------------------------------- +% Replicate estimation at orderApp=3 +%-------------------------------------------------------------------------- +@#ifdef DoEstimation +method_of_moments( + mom_method = GMM % method of moments method; possible values: GMM|SMM + , datafile = 'AFVRR_data.mat' % name of filename with data + , bartlett_kernel_lag = 10 % bandwith in optimal weighting matrix + , order = 3 % order of Taylor approximation in perturbation + , pruning % use pruned state space system at higher-order + % , verbose % display and store intermediate estimation results + , weighting_matrix = ['DIAGONAL', 'Optimal'] % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename + % , TeX % print TeX tables and graphics + % Optimization options that can be set by the user in the mod file, otherwise default values are provided + %, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons + , mode_compute = 13 % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer + , additional_optimizer_steps = [13] + , optim = ('TolFun', 1e-6 + ,'TolX', 1e-6 + ,'MaxIter', 3000 + ,'MaxFunEvals', 1D6 + ,'UseParallel' , 1 + %,'Jacobian' , 'on' + ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute + %, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between + %, analytic_standard_errors + , se_tolx=1e-10 +); +@#endif \ No newline at end of file diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB_RRA.mod b/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB_RRA.mod new file mode 100644 index 0000000000000000000000000000000000000000..9c069d3a3dff9dfb87ce7e40f2678f27ce1364aa --- /dev/null +++ b/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB_RRA.mod @@ -0,0 +1,299 @@ +% DSGE model based on replication files of +% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49 +% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021 +% ========================================================================= +% Copyright (C) 2021 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. +% ========================================================================= + +% This is the model with feedback and calibrated RRA +% Original code RunGMM_Feedback_estim_RRA_5.m by Martin M. Andreasen, Jan 2016 + +@#include "AFVRR_common.inc" + +%-------------------------------------------------------------------------- +% Parameter calibration taken from RunGMM_Feedback_estim_RRA_5.m +%-------------------------------------------------------------------------- +% fixed parameters +INHABIT = 1; +PHI1 = 4; +PHI4 = 1; +KAPAone = 0; +DELTA = 0.025; +THETA = 0.36; +ETA = 6; +CHI = 0; +BETTAxhr = 0; +BETTAxhr40= 0; +RHOD = 0; +GAMA = 0.9999; +CONSxhr20 = 0; +RRA = 5; + +% estimated parameters +BETTA = 0.996850651147000; +B = 0.684201133923000; +H = 0.338754441432000; +PHI2 = 0.738293581320000; +KAPAtwo = 11.664785970704999; +ALFA = 0.831836572237000; +RHOR = 0.772754520116000; +BETTAPAI = 3.020381242896000; +BETTAY = 0.288367683973000; +MYYPS = 1.000911709188000; +MYZ = 1.005433723022000; +RHOA = 0.749465413198000; +RHOG = 0.847225569814000; +PAI = 1.010428794858000; +CONSxhr40 = 0.992863217133000; +GoY = 0.207099399789000; +STDA = 0.015621059978000; +STDG = 0.047539390956000; +STDD = 0.008623441943000; + +% endogenous parameters set via steady state, no need to initialize +%PHIzero = ; +%AA = ; +%PHI3 = ; +%negVf = ; + +model_diagnostics; +% Model diagnostics show that some parameters are endogenously determined +% via the steady state, so we run steady to calibrate all parameters +steady; +model_diagnostics; +% Now all parameters are determined + +resid; +check; + +%-------------------------------------------------------------------------- +% Shock distribution +%-------------------------------------------------------------------------- +shocks; +var eps_a = STDA^2; +var eps_d = STDD^2; +var eps_g = STDG^2; +end; + +%-------------------------------------------------------------------------- +% Estimated Params block - these parameters will be estimated, we +% initialize at calibrated values +%-------------------------------------------------------------------------- +estimated_params; +BETTA; +B; +H; +PHI2; +KAPAtwo; +ALFA; +RHOR; +BETTAPAI; +BETTAY; +MYYPS; +MYZ; +RHOA; +RHOG; +PAI; +CONSxhr40; +GoY; +stderr eps_a; +stderr eps_g; +stderr eps_d; +end; + +estimated_params_init(use_calibration); +end; + +%-------------------------------------------------------------------------- +% Compare whether toolbox yields equivalent moments at second order +%-------------------------------------------------------------------------- +% Note that we compare results for orderApp=1|2 and not for orderApp=3, because +% there is a small error in the replication files of the original article in the +% computation of the covariance matrix of the extended innovations vector. +% The authors have been contacted, fixed it, and report that the results +% change only slightly at orderApp=3 to what they report in the paper. At +% orderApp=2 all is correct and so the following part tests whether we get +% the same model moments at the calibrated parameters (we do not optimize). +% We compare it to the replication file RunGMM_Feedback_estim_RRA.m with the +% following settings: orderApp=1|2, seOn=1, q_lag=10, weighting=1+1; +% scaled=0; optimizer=0; estimator=1; momentSet=2; +% +% Output of the replication files for orderApp=1 +AndreasenEtAl.Q1 = 60275.3715; +AndreasenEtAl.moments1 =[ % note that we reshuffeled to be compatible with our matched moments block + {[ 1]} {'Ex' } {'Gr_C '} {' ' } {'0.024388' } {'0.023726' } + {[ 2]} {'Ex' } {'Gr_I '} {' ' } {'0.031046' } {'0.027372' } + {[ 3]} {'Ex' } {'Infl ' } {' ' } {'0.03757' } {'0.041499' } + {[ 4]} {'Ex' } {'r1 ' } {' ' } {'0.056048' } {'0.077843' } + {[ 5]} {'Ex' } {'r40 ' } {' ' } {'0.069929' } {'0.077843' } + {[ 6]} {'Ex' } {'xhr40 '} {' ' } {'0.017237' } {'0' } + {[ 7]} {'Ex' } {'GoY '} {' ' } {'-1.5745' } {'-1.5746' } + {[ 8]} {'Ex' } {'hours '} {' ' } {'-0.043353' } {'-0.043299' } + {[ 9]} {'Exx' } {'Gr_C '} {'Gr_C '} {'0.0013159' } {'0.0012763' } + {[17]} {'Exx' } {'Gr_C '} {'Gr_I '} {'0.0021789' } {'0.0017759' } + {[18]} {'Exx' } {'Gr_C '} {'Infl ' } {'0.00067495' } {'0.00077354' } + {[19]} {'Exx' } {'Gr_C '} {'r1 ' } {'0.0011655' } {'0.0016538' } + {[20]} {'Exx' } {'Gr_C '} {'r40 ' } {'0.0015906' } {'0.0017949' } + {[21]} {'Exx' } {'Gr_C '} {'xhr40 '} {'0.0020911' } {'0.0017847' } + {[10]} {'Exx' } {'Gr_I '} {'Gr_I '} {'0.0089104' } {'0.0053424' } + {[22]} {'Exx' } {'Gr_I '} {'Infl ' } {'0.00063139' } {'0.00064897' } + {[23]} {'Exx' } {'Gr_I '} {'r1 ' } {'0.0011031' } {'0.0019533' } + {[24]} {'Exx' } {'Gr_I '} {'r40 ' } {'0.0018445' } {'0.0020602' } + {[25]} {'Exx' } {'Gr_I '} {'xhr40 '} {'0.00095556' } {'0.0064856' } + {[11]} {'Exx' } {'Infl ' } {'Infl ' } {'0.0020268' } {'0.0020922' } + {[26]} {'Exx' } {'Infl ' } {'r1 ' } {'0.0025263' } {'0.0036375' } + {[27]} {'Exx' } {'Infl ' } {'r40 ' } {'0.0029126' } {'0.0034139' } + {[28]} {'Exx' } {'Infl ' } {'xhr40 '} {'-0.00077101'} {'-0.0011665' } + {[12]} {'Exx' } {'r1 ' } {'r1 ' } {'0.0038708' } {'0.0066074' } + {[29]} {'Exx' } {'r1 ' } {'r40 ' } {'0.0044773' } {'0.0062959' } + {[30]} {'Exx' } {'r1 ' } {'xhr40 '} {'-0.00048202'} {'-0.00075499'} + {[13]} {'Exx' } {'r40 ' } {'r40 ' } {'0.0054664' } {'0.0061801' } + {[31]} {'Exx' } {'r40 ' } {'xhr40 '} {'0.00053864' } {'-0.00030456'} + {[14]} {'Exx' } {'xhr40 '} {'xhr40 '} {'0.053097' } {'0.012048' } + {[15]} {'Exx' } {'GoY '} {'GoY '} {'2.4863' } {'2.4872' } + {[16]} {'Exx' } {'hours '} {'hours '} {'0.0018799' } {'0.0018759' } + {[32]} {'Exx1'} {'Gr_C '} {'Gr_C '} {'0.00077917' } {'0.00080528' } + {[33]} {'Exx1'} {'Gr_I '} {'Gr_I '} {'0.0050104' } {'0.0017036' } + {[34]} {'Exx1'} {'Infl ' } {'Infl ' } {'0.0019503' } {'0.0020185' } + {[35]} {'Exx1'} {'r1 ' } {'r1 ' } {'0.0038509' } {'0.0065788' } + {[36]} {'Exx1'} {'r40 ' } {'r40 ' } {'0.0054699' } {'0.0061762' } + {[37]} {'Exx1'} {'xhr40 '} {'xhr40 '} {'-0.00098295'} {'-4.5519e-15'} + {[38]} {'Exx1'} {'GoY '} {'GoY '} {'2.4868' } {'2.4863' } + {[39]} {'Exx1'} {'hours '} {'hours '} {'0.0018799' } {'0.0018755' } +]; + +% Output of the replication files for orderApp=2 +AndreasenEtAl.Q2 = 140.8954; +AndreasenEtAl.moments2 =[ % note that we reshuffeled to be compatible with our matched moments block + {[ 1]} {'Ex' } {'Gr_C '} {' ' } {'0.024388' } {'0.023726' } + {[ 2]} {'Ex' } {'Gr_I '} {' ' } {'0.031046' } {'0.027372' } + {[ 3]} {'Ex' } {'Infl ' } {' ' } {'0.03757' } {'0.034618' } + {[ 4]} {'Ex' } {'r1 ' } {' ' } {'0.056048' } {'0.056437' } + {[ 5]} {'Ex' } {'r40 ' } {' ' } {'0.069929' } {'0.07051' } + {[ 6]} {'Ex' } {'xhr40 '} {' ' } {'0.017237' } {'0.014242' } + {[ 7]} {'Ex' } {'GoY '} {' ' } {'-1.5745' } {'-1.574' } + {[ 8]} {'Ex' } {'hours '} {' ' } {'-0.043353' } {'-0.043351' } + {[ 9]} {'Exx' } {'Gr_C '} {'Gr_C '} {'0.0013159' } {'0.0012917' } + {[17]} {'Exx' } {'Gr_C '} {'Gr_I '} {'0.0021789' } {'0.0017862' } + {[18]} {'Exx' } {'Gr_C '} {'Infl ' } {'0.00067495' } {'0.00061078' } + {[19]} {'Exx' } {'Gr_C '} {'r1 ' } {'0.0011655' } {'0.0011494' } + {[20]} {'Exx' } {'Gr_C '} {'r40 ' } {'0.0015906' } {'0.0016149' } + {[21]} {'Exx' } {'Gr_C '} {'xhr40 '} {'0.0020911' } {'0.002203' } + {[10]} {'Exx' } {'Gr_I '} {'Gr_I '} {'0.0089104' } {'0.0054317' } + {[22]} {'Exx' } {'Gr_I '} {'Infl ' } {'0.00063139' } {'0.00045278' } + {[23]} {'Exx' } {'Gr_I '} {'r1 ' } {'0.0011031' } {'0.0013672' } + {[24]} {'Exx' } {'Gr_I '} {'r40 ' } {'0.0018445' } {'0.0018557' } + {[25]} {'Exx' } {'Gr_I '} {'xhr40 '} {'0.00095556' } {'0.0067742' } + {[11]} {'Exx' } {'Infl ' } {'Infl ' } {'0.0020268' } {'0.0016583' } + {[26]} {'Exx' } {'Infl ' } {'r1 ' } {'0.0025263' } {'0.0024521' } + {[27]} {'Exx' } {'Infl ' } {'r40 ' } {'0.0029126' } {'0.002705' } + {[28]} {'Exx' } {'Infl ' } {'xhr40 '} {'-0.00077101'} {'-0.00065007'} + {[12]} {'Exx' } {'r1 ' } {'r1 ' } {'0.0038708' } {'0.0038274' } + {[29]} {'Exx' } {'r1 ' } {'r40 ' } {'0.0044773' } {'0.004297' } + {[30]} {'Exx' } {'r1 ' } {'xhr40 '} {'-0.00048202'} {'6.3243e-05' } + {[13]} {'Exx' } {'r40 ' } {'r40 ' } {'0.0054664' } {'0.0051686' } + {[31]} {'Exx' } {'r40 ' } {'xhr40 '} {'0.00053864' } {'0.00066645' } + {[14]} {'Exx' } {'xhr40 '} {'xhr40 '} {'0.053097' } {'0.013543' } + {[15]} {'Exx' } {'GoY '} {'GoY '} {'2.4863' } {'2.4858' } + {[16]} {'Exx' } {'hours '} {'hours '} {'0.0018799' } {'0.0018804' } + {[32]} {'Exx1'} {'Gr_C '} {'Gr_C '} {'0.00077917' } {'0.00081772' } + {[33]} {'Exx1'} {'Gr_I '} {'Gr_I '} {'0.0050104' } {'0.0017106' } + {[34]} {'Exx1'} {'Infl ' } {'Infl ' } {'0.0019503' } {'0.0015835' } + {[35]} {'Exx1'} {'r1 ' } {'r1 ' } {'0.0038509' } {'0.0037985' } + {[36]} {'Exx1'} {'r40 ' } {'r40 ' } {'0.0054699' } {'0.0051642' } + {[37]} {'Exx1'} {'xhr40 '} {'xhr40 '} {'-0.00098295'} {'0.00020285' } + {[38]} {'Exx1'} {'GoY '} {'GoY '} {'2.4868' } {'2.4848' } + {[39]} {'Exx1'} {'hours '} {'hours '} {'0.0018799' } {'0.0018799' } +]; + +@#for orderApp in 1:2 + +method_of_moments( + mom_method = GMM % method of moments method; possible values: GMM|SMM + , datafile = 'AFVRR_data.mat' % name of filename with data + , bartlett_kernel_lag = 10 % bandwith in optimal weighting matrix + , order = @{orderApp} % order of Taylor approximation in perturbation + , pruning % use pruned state space system at higher-order + % , verbose % display and store intermediate estimation results + , weighting_matrix = ['DIAGONAL'] % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename + % , TeX % print TeX tables and graphics + % Optimization options that can be set by the user in the mod file, otherwise default values are provided + %, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons + , mode_compute = 0 % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer + , optim = ('TolFun', 1e-6 + ,'TolX', 1e-6 + ,'MaxIter', 3000 + ,'MaxFunEvals', 1D6 + ,'UseParallel' , 1 + %,'Jacobian' , 'on' + ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute + %, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between + %, analytic_standard_errors + , se_tolx=1e-10 +); + +% Check results + +fprintf('****************************************************************\n') +fprintf('Compare Results for perturbation order @{orderApp}\n') +fprintf('****************************************************************\n') +dev_Q = AndreasenEtAl.Q@{orderApp} - oo_.mom.Q; +dev_datamoments = str2double(AndreasenEtAl.moments@{orderApp}(:,5)) - oo_.mom.data_moments; +dev_modelmoments = str2double(AndreasenEtAl.moments@{orderApp}(:,6)) - oo_.mom.model_moments; + +table([AndreasenEtAl.Q@{orderApp} ; str2double(AndreasenEtAl.moments@{orderApp}(:,5)) ; str2double(AndreasenEtAl.moments@{orderApp}(:,6))],... + [oo_.mom.Q ; oo_.mom.data_moments ; oo_.mom.model_moments ],... + [dev_Q ; dev_datamoments ; dev_modelmoments ],... + 'VariableNames', {'Andreasen et al', 'Dynare', 'dev'},... + 'RowNames', ['Q'; strcat('Data_', M_.matched_moments(:,4)); strcat('Model_', M_.matched_moments(:,4))]) + +if norm(dev_modelmoments)> 1e-4 + warning('Something wrong in the computation of moments at order @{orderApp}') +end + +@#endfor + +%-------------------------------------------------------------------------- +% Replicate estimation at orderApp=3 +%-------------------------------------------------------------------------- +@#ifdef DoEstimation +method_of_moments( + mom_method = GMM % method of moments method; possible values: GMM|SMM + , datafile = 'AFVRR_data.mat' % name of filename with data + , bartlett_kernel_lag = 10 % bandwith in optimal weighting matrix + , order = 3 % order of Taylor approximation in perturbation + , pruning % use pruned state space system at higher-order + % , verbose % display and store intermediate estimation results + , weighting_matrix = ['DIAGONAL', 'Optimal'] % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename + % , TeX % print TeX tables and graphics + % Optimization options that can be set by the user in the mod file, otherwise default values are provided + %, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons + , mode_compute = 13 % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer + , additional_optimizer_steps = [13] + , optim = ('TolFun', 1e-6 + ,'TolX', 1e-6 + ,'MaxIter', 3000 + ,'MaxFunEvals', 1D6 + ,'UseParallel' , 1 + %,'Jacobian' , 'on' + ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute + %, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between + %, analytic_standard_errors + , se_tolx=1e-10 +); +@#endif \ No newline at end of file diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_common.inc b/tests/estimation/method_of_moments/AFVRR/AFVRR_common.inc new file mode 100644 index 0000000000000000000000000000000000000000..76aea9e0b0104df02664e55bc65fedb338af2376 --- /dev/null +++ b/tests/estimation/method_of_moments/AFVRR/AFVRR_common.inc @@ -0,0 +1,540 @@ +% DSGE model based on replication files of +% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49 +% Original code by Martin M. Andreasen, Jan 2016 +% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021 +% ========================================================================= +% Copyright (C) 2021 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. +% ========================================================================= + +%-------------------------------------------------------------------------- +% Variable declaration +%-------------------------------------------------------------------------- +var +ln_k +ln_s +ln_a +ln_g +ln_d + +ln_c +ln_r +ln_pai +ln_h +ln_q +ln_evf +ln_iv +ln_x2 +ln_la +ln_goy +ln_Esdf + +xhr20 +xhr40 +Exhr + +@#for i in 1:40 +ln_p@{i} +@#endfor + +Obs_Gr_C +Obs_Gr_I +Obs_Infl +Obs_r1 +Obs_r40 +Obs_xhr40 +Obs_GoY +Obs_hours +; + +predetermined_variables ln_k ln_s; + +varobs Obs_Gr_C Obs_Gr_I Obs_Infl Obs_r1 Obs_r40 Obs_xhr40 Obs_GoY Obs_hours; + +%-------------------------------------------------------------------------- +% Exogenous shocks +%-------------------------------------------------------------------------- +varexo +eps_a +eps_d +eps_g +; + +%-------------------------------------------------------------------------- +% Parameter declaration +%-------------------------------------------------------------------------- +parameters +BETTA +B +INHABIT +H +PHI1 +PHI2 +RRA +PHI4 +KAPAone +KAPAtwo +DELTA +THETA +ETA +ALFA +CHI +RHOR +BETTAPAI +BETTAY +MYYPS +MYZ +RHOA +%STDA +RHOG +%STDG +RHOD +%STDD +CONSxhr40 +BETTAxhr +BETTAxhr40 +CONSxhr20 +PAI +GAMA +GoY + +%auxiliary +PHIzero +AA +PHI3 +negVf +; + + +%-------------------------------------------------------------------------- +% Model equations +%-------------------------------------------------------------------------- +% Based on DSGE_model_NegVf_yieldCurve.m and DSGE_model_PosVf_yieldCurve.m +% Note that we include an auxiliary parameter negVf to distinguish whether +% the steady state value function is positive (negVf=0) or negative (negVf=1). +% This parameter is endogenously determined in the steady_state_model block. + +model; +%-------------------------------------------------------------------------- +% Auxiliary expressions +%-------------------------------------------------------------------------- +% do exp transform such that variables are logged variables +@#for var in [ "k", "s", "c", "r", "a", "g", "d", "pai", "h", "q", "evf", "iv", "x2", "la", "goy", "Esdf" ] +#@{var}_ba1 = exp(ln_@{var}(-1)); +#@{var}_cu = exp(ln_@{var}); +#@{var}_cup = exp(ln_@{var}(+1)); +@#endfor +@#for i in 1:40 +#p@{i}_cu = exp(ln_p@{i}); +#p@{i}_cup = exp(ln_p@{i}(+1)); +@#endfor +% these variables are not transformed +#xhr20_cu = xhr20; +#xhr20_cup = xhr20(+1); +#xhr40_cu = xhr40; +#xhr40_cup = xhr40(+1); +#Exhr_cu = Exhr; +#Exhr_cup = Exhr(+1); + +% auxiliary steady state variables +#K = exp(steady_state(ln_k)); +#IV = exp(steady_state(ln_iv)); +#C = exp(steady_state(ln_c)); +#Y = (C + IV)/(1-GoY); +#R = exp(steady_state(ln_r)); +#G = Y-C-IV; + +#removeMeanXhr = 1; + +% The atemporal relations if possible +% No stochastic trend in investment specific shocks +#myyps_cu = MYYPS; +#myyps_cup = MYYPS; + +% No stochastic trend in non-stationary technology shocks +#myz_cu = MYZ; +#myz_cup = MYZ; + +% Defining myzstar +#MYZSTAR = MYYPS^(THETA/(1-THETA))*MYZ; +#myzstar_cu = myyps_cu ^(THETA/(1-THETA))*myz_cu; +#myzstar_cup= myyps_cup^(THETA/(1-THETA))*myz_cup; + +% The expression for the value function (only valid for deterministic trends!) +% Note that we make use of auxiliary parameter negVf to switch signs +#mvf_cup = -negVf*(d_cup/(1-PHI2)*((c_cup-B*c_cu*MYZSTAR^-1)^(1-PHI2)-1) + d_cup*PHIzero/(1-PHI1)*(1-h_cup)^(1-PHI1) - negVf* BETTA*MYZSTAR^((1-PHI4)*(1-PHI2))*AA*evf_cup^(1/(1-PHI3))); + +% The growth rate in lambda +#myla_cup = (la_cup/la_cu)*(AA*evf_cu^(1/(1-PHI3))/mvf_cup)^PHI3*myzstar_cup^(-PHI2*(1-PHI4)-PHI4); + +% The relation between the optimal price for the firms and the pris and inflation +%ptil_cu = ((1-ALFA*(pai_ba1^CHI/pai_cu )^(1-ETA))/(1-ALFA))^(1/(1-ETA)); +%ptil_cup = ((1-ALFA*(pai_cu ^CHI/pai_cup)^(1-ETA))/(1-ALFA))^(1/(1-ETA)); +#ptil_cu = ((1-ALFA*(1/pai_cu )^(1-ETA))/(1-ALFA))^(1/(1-ETA)); +#ptil_cup = ((1-ALFA*(1/pai_cup)^(1-ETA))/(1-ALFA))^(1/(1-ETA)); + +% From the households' FOC for labor +#w_cu = d_cu*PHIzero*(1-h_cu )^(-PHI1)/la_cu; +#w_cup = d_cu*PHIzero*(1-h_cup)^(-PHI1)/la_cup; +% Shouldn't w_cup include d_cup? Let's stick to the original (wrong) code in the replication files as results don't change dramatically... [@wmutschl] + +% The firms' FOC for labor +#mc_cu = w_cu /((1-THETA)*a_cu *myyps_cu ^(-THETA/(1-THETA))*myz_cu ^-THETA *k_cu ^THETA*h_cu ^(-THETA)); +#mc_cup = w_cup/((1-THETA)*a_cup*myyps_cup^(-THETA/(1-THETA))*myz_cup^-THETA *k_cup^THETA*h_cup^(-THETA)); + +% The firms' FOC for capital +#rk_cu = mc_cu *THETA* a_cu *myyps_cu *myz_cu ^(1-THETA)*k_cu ^(THETA-1)*h_cu ^(1-THETA); +#rk_cup = mc_cup*THETA* a_cup*myyps_cup*myz_cup^(1-THETA)*k_cup^(THETA-1)*h_cup^(1-THETA); + +% The income identity +#y_cu = c_cu + iv_cu + g_cu; + +%-------------------------------------------------------------------------- +% Actual model equations +%-------------------------------------------------------------------------- + +[name='Expected value of the value function'] +0 = -evf_cu + (mvf_cup/AA)^(1-PHI3); + +[name='Households FOC for capital'] +0 = -q_cu+BETTA*myla_cup/myyps_cup*(rk_cup+q_cup*(1-DELTA) -q_cup*KAPAtwo/2*(iv_cup/k_cup*myyps_cup*myzstar_cup - IV/K*MYYPS*MYZSTAR)^2 +q_cup*KAPAtwo*(iv_cup/k_cup*myyps_cup*myzstar_cup - IV/K*MYYPS*MYZSTAR)*iv_cup/k_cup*myyps_cup*myzstar_cup); + +[name='Households FOC for investments'] +0 = -1+q_cu*(1-KAPAone/2*(iv_cu/IV-1)^2-iv_cu/IV*KAPAone*(iv_cu/IV-1)-KAPAtwo*(iv_cu/k_cu*myyps_cu*myzstar_cu - IV/K*MYYPS*MYZSTAR)); + +[name='Euler equation for consumption'] +0 = -1+BETTA*r_cu*exp(CONSxhr40*xhr40_cu + CONSxhr20*xhr20_cu)*myla_cup/pai_cup; + +[name='Households FOC for consumption'] +0 = -la_cu + d_cu*(c_cu -B*c_ba1*myzstar_cu^-1)^(-PHI2) -INHABIT*B*BETTA*d_cup*(AA*evf_cu^(1/(1-PHI3))/mvf_cup)^PHI3*(c_cup -B*c_cu*myzstar_cup^-1)^(-PHI2)*myzstar_cup^(-PHI2*(1-PHI4)-PHI4); + +[name='Nonlinear pricing, relation for x1 = (ETA-1)/ETA*x2'] +0= -(ETA-1)/ETA*x2_cu+y_cu*mc_cu*ptil_cu^(-ETA-1) +ALFA*BETTA*myla_cup*(ptil_cu/ptil_cup)^(-ETA-1)*(1/pai_cup)^(-ETA)*(ETA-1)/ETA*x2_cup*myzstar_cup; + +[name='Nonlinear pricing, relation for x2'] +0=-x2_cu+y_cu*ptil_cu^-ETA +ALFA*BETTA*myla_cup*(ptil_cu/ptil_cup)^(-ETA)*(1/pai_cup)^(1-ETA)*x2_cup*myzstar_cup; + +[name='Nonlinear pricing, relation for s'] +0= -s_cup+(1-ALFA)*ptil_cu^(-ETA)+ALFA*(pai_cu/1)^ETA*s_cu; + +[name='Interest rate rule'] +0 = -log(r_cu/R)+RHOR*log(r_ba1/R)+(1-RHOR)*(BETTAPAI*log(pai_cu/PAI)+BETTAY*log(y_cu/Y) + BETTAxhr*(BETTAxhr40*xhr40_cu - removeMeanXhr*Exhr_cu)); + +[name='Production function'] +0 = -y_cu*s_cup + a_cu *(k_cu *myyps_cu ^(-1/(1-THETA))*myz_cu ^-1)^THETA*h_cu ^(1-THETA); + +[name='Relation for physical capital stock'] +0= -k_cup + (1-DELTA)*k_cu*(myyps_cu*myzstar_cu)^-1 + iv_cu - iv_cu*KAPAone/2*(iv_cu/IV-1)^2 - k_cu*(myyps_cu*myzstar_cu)^-1*KAPAtwo/2*(iv_cu/k_cu*myyps_cu*myzstar_cu - IV/K*MYYPS*MYZSTAR)^2; + +[name='Goverment spending over output'] +0=-goy_cu + g_cu/y_cu; + +[name='The yield curve: p1'] +0= -p1_cu + 1/r_cu; + +@#for i in 2:40 +[name='The yield curve: p@{i}'] +0= -p@{i}_cu + BETTA*myla_cup/pai_cup*p@{i-1}_cup; +@#endfor + +[name='Stochastic discount factor'] +0= -Esdf_cu+ BETTA*myla_cup/pai_cup; + +[name='Expected 5 year excess holding period return'] +0= -xhr20_cu+ log(p19_cup) - log(p20_cu) - log(r_cu); + +[name='Expected 10 year excess holding period return'] +0= -xhr40_cu+ log(p39_cup) - log(p40_cu) - log(r_cu); + +[name='Mean of expected excess holding period return in Taylor rule'] +0= -Exhr_cu + (1-GAMA)*(BETTAxhr40*xhr40_cu) + GAMA*Exhr_cup; + +[name='Exogenous process for productivity'] +0 = -log(a_cu)+RHOA*log(a_ba1) + eps_a; + +[name='Exogenous process for government spending'] +0 = -log(g_cu/G)+RHOG*log(g_ba1/G) + eps_g; + +[name='Exogenous process for discount factor shifter'] +0 = -log(d_cu)+RHOD*log(d_ba1) + eps_d; + +[name='Observable annualized consumption growth'] +Obs_Gr_C = 4*( ln_c -ln_c(-1) + log(MYZSTAR)); + +[name='Observable annualized investment growth'] +Obs_Gr_I = 4*( ln_iv - ln_iv(-1) + log(MYZSTAR)+log(MYYPS)); + +[name='Observable annualized inflation'] +Obs_Infl = 4*( ln_pai); + +[name='Observable annualized one-quarter nominal yield'] +Obs_r1 = 4*( ln_r); + +[name='Observable annualized 10-year nominal yield'] +Obs_r40 = 4*( -1/40*ln_p40); + +[name='Observable annualized 10-year ex post excess holding period return'] +Obs_xhr40 = 4*( ln_p39 - ln_p40(-1) - ln_r(-1) ); + +[name='Observable annualized log ratio of government spending to GDP'] +Obs_GoY = 4*( 1/4*ln_goy); + +[name='Observable annualized log of hours'] +Obs_hours = 4*( 1/100*ln_h); +end; + + +%-------------------------------------------------------------------------- +% Steady State Computations +%-------------------------------------------------------------------------- +% Based on DSGE_model_yieldCurve_ss.m, getPHI3.m, ObjectGMM.m +% Note that we include an auxiliary parameter negVf to distinguish whether +% the steady state value function is positive (negVf=0) or negative (negVf=1). +% This parameter is endogenously determined in the steady_state_model block. + + +steady_state_model; + +% The growth rate in the firms' fixed costs +MYZSTARBAR = MYYPS^(THETA/(1-THETA))*MYZ; + +% The growth rate for lampda +MYLABAR = MYZSTARBAR^(-PHI2*(1-PHI4)-PHI4); + +% The relative optimal price for firms +PTILBAR = ((1-ALFA*PAI^((CHI-1)*(1-ETA)))/(1-ALFA))^(1/(1-ETA)); + +% The state variable s for distortions between output and produktion +SBAR = ((1-ALFA)*PTILBAR^(-ETA))/(1-ALFA*PAI^((1-CHI)*ETA)); + +% The 1-period interest rate +RBAR = PAI/(BETTA*MYLABAR); + +% The market price of capital +QBAR = 1; + +% The real price of renting capital +RKBAR = QBAR*(MYYPS/(BETTA*MYLABAR)-(1-DELTA)); + +% The marginal costs in the firms +MCBAR = (1-ALFA*BETTA*MYLABAR*PAI^((1-CHI)*ETA)*MYZSTARBAR)*(ETA-1)/ETA*PTILBAR/(1-ALFA*BETTA*MYLABAR*PAI^((CHI-1)*(1-ETA))*MYZSTARBAR); + +% The capital stock +KBAR = H*(RKBAR/(MCBAR*THETA*MYYPS*MYZ^(1-THETA)))^(1/(THETA-1)); + +% The wage level +WBAR = MCBAR*(1-THETA)*MYYPS^(-THETA/(1-THETA))*MYZ^-THETA*(KBAR/H)^THETA; + +% The level of investment +IVBAR = KBAR - (1-DELTA)*KBAR*MYYPS^(-1/(1-THETA))*MYZ^-1; + +% The consumption level +CBAR = ((1-GoY)*(KBAR*MYYPS^(-1/(1-THETA))*MYZ^-1)^THETA*H^(1-THETA))/SBAR-IVBAR; + +% The output level +YBAR = (CBAR + IVBAR)/(1-GoY); + +% The value of lambda +LABAR = (CBAR-B*CBAR*MYZSTARBAR^-1)^-PHI2 - INHABIT*B*BETTA*(CBAR-B*CBAR*MYZSTARBAR^-1)^-PHI2*MYZSTARBAR^(-PHI2*(1-PHI4)-PHI4); + +% The value of PHIzero +PHIzero = LABAR*WBAR*(1-H)^PHI1; + +% The level of the value function +VFBAR = 1/(1-BETTA*MYZSTARBAR^((1-PHI4)*(1-PHI2)))*(1/(1-PHI2)*((CBAR-B*CBAR*MYZSTARBAR^-1)^(1-PHI2)-1)+PHIzero/(1-PHI1)*(1-H)^(1-PHI1)); +UBAR = 1/(1-PHI2)*((CBAR-B*CBAR*MYZSTARBAR^-1)^(1-PHI2)-1)+PHIzero/(1-PHI1)*(1-H)^(1-PHI1); +[AA, EVFBAR, PHI3, negVf, info]= AFVRR_steady_helper(VFBAR,RBAR,IVBAR,CBAR,KBAR,LABAR,QBAR,YBAR, BETTA,B,PAI,H,PHIzero,PHI1,PHI2,THETA,MYYPS,MYZ,INHABIT,RRA,CONSxhr40); +% The value of X2 +X2BAR = YBAR*PTILBAR^(-ETA)/(1-BETTA*ALFA*MYLABAR*PAI^((CHI-1)*(1-ETA))*MYZSTARBAR); + +% Government spending +GBAR = GoY*YBAR; +%************************************************************************** + +% map into model variables +ln_k = log(KBAR); +ln_s = log(SBAR); +ln_c_ba1 = log(CBAR); +ln_r_ba1 = log(RBAR); +ln_a = log(1); +ln_g = log(GBAR); +ln_d = log(1); + +ln_c = log(CBAR); +ln_r = log(RBAR); +ln_pai = log(PAI); +ln_h = log(H); +ln_q = log(QBAR); +ln_evf = log(EVFBAR); +ln_iv = log(IVBAR); +ln_x2 = log(X2BAR); +ln_la = log(LABAR); +ln_goy = log(GoY); +ln_Esdf = log(1/RBAR); +xhr20 = 0; +xhr40 = 0; +Exhr = 0; +% The yield curve +ln_p1 = log((1/RBAR)^1); +ln_p2 = log((1/RBAR)^2); +ln_p3 = log((1/RBAR)^3); +ln_p4 = log((1/RBAR)^4); +ln_p5 = log((1/RBAR)^5); +ln_p6 = log((1/RBAR)^6); +ln_p7 = log((1/RBAR)^7); +ln_p8 = log((1/RBAR)^8); +ln_p9 = log((1/RBAR)^9); +ln_p10 = log((1/RBAR)^10); +ln_p11 = log((1/RBAR)^11); +ln_p12 = log((1/RBAR)^12); +ln_p13 = log((1/RBAR)^13); +ln_p14 = log((1/RBAR)^14); +ln_p15 = log((1/RBAR)^15); +ln_p16 = log((1/RBAR)^16); +ln_p17 = log((1/RBAR)^17); +ln_p18 = log((1/RBAR)^18); +ln_p19 = log((1/RBAR)^19); +ln_p20 = log((1/RBAR)^20); +ln_p21 = log((1/RBAR)^21); +ln_p22 = log((1/RBAR)^22); +ln_p23 = log((1/RBAR)^23); +ln_p24 = log((1/RBAR)^24); +ln_p25 = log((1/RBAR)^25); +ln_p26 = log((1/RBAR)^26); +ln_p27 = log((1/RBAR)^27); +ln_p28 = log((1/RBAR)^28); +ln_p29 = log((1/RBAR)^29); +ln_p30 = log((1/RBAR)^30); +ln_p31 = log((1/RBAR)^31); +ln_p32 = log((1/RBAR)^32); +ln_p33 = log((1/RBAR)^33); +ln_p34 = log((1/RBAR)^34); +ln_p35 = log((1/RBAR)^35); +ln_p36 = log((1/RBAR)^36); +ln_p37 = log((1/RBAR)^37); +ln_p38 = log((1/RBAR)^38); +ln_p39 = log((1/RBAR)^39); +ln_p40 = log((1/RBAR)^40); + +Obs_Gr_C = 4*( log(MYZSTARBAR) ); +Obs_Gr_I = 4*( log(MYZSTARBAR)+log(MYYPS) ); +Obs_Infl = 4*( ln_pai ); +Obs_r1 = 4*( ln_r ); +Obs_r40 = 4*( -1/40*ln_p40 ); +Obs_xhr40 = 4*( xhr40 ); +Obs_GoY = 4*( 1/4*ln_goy ); +Obs_hours = 4*( 1/100*ln_h ); +end; + +%-------------------------------------------------------------------------- +% Declare moments to use in estimation +%-------------------------------------------------------------------------- +% These are the moments used in the paper; corresponds to momentSet=2 in the replication files + +matched_moments; +%mean +Obs_Gr_C; +Obs_Gr_I; +Obs_Infl; +Obs_r1; +Obs_r40; +Obs_xhr40; +Obs_GoY; +Obs_hours; + +% all variances +Obs_Gr_C*Obs_Gr_C; +Obs_Gr_I*Obs_Gr_I; +Obs_Infl*Obs_Infl; +Obs_r1*Obs_r1; +Obs_r40*Obs_r40; +Obs_xhr40*Obs_xhr40; +Obs_GoY*Obs_GoY; +Obs_hours*Obs_hours; + +% covariance excluding GoY and hours +Obs_Gr_C*Obs_Gr_I; +Obs_Gr_C*Obs_Infl; +Obs_Gr_C*Obs_r1; +Obs_Gr_C*Obs_r40; +Obs_Gr_C*Obs_xhr40; +%Obs_Gr_C*Obs_GoY; +%Obs_Gr_C*Obs_hours; + +Obs_Gr_I*Obs_Infl; +Obs_Gr_I*Obs_r1; +Obs_Gr_I*Obs_r40; +Obs_Gr_I*Obs_xhr40; +%Obs_Gr_I*Obs_GoY; +%Obs_Gr_I*Obs_hours; + +Obs_Infl*Obs_r1; +Obs_Infl*Obs_r40; +Obs_Infl*Obs_xhr40; +%Obs_Infl*Obs_GoY; +%Obs_Infl*Obs_hours; + +Obs_r1*Obs_r40; +Obs_r1*Obs_xhr40; +%Obs_r1*Obs_GoY; +%Obs_r1*Obs_hours; + +Obs_r40*Obs_xhr40; +%Obs_r40*Obs_GoY; +%Obs_r40*Obs_hours; + +%Obs_xhr40*Obs_GoY; +%Obs_xhr40*Obs_hours; + +%Obs_GoY*Obs_hours; + +%first autocovariance +Obs_Gr_C*Obs_Gr_C(-1); +Obs_Gr_I*Obs_Gr_I(-1); +Obs_Infl*Obs_Infl(-1); +Obs_r1*Obs_r1(-1); +Obs_r40*Obs_r40(-1); +Obs_xhr40*Obs_xhr40(-1); +Obs_GoY*Obs_GoY(-1); +Obs_hours*Obs_hours(-1); +end; + +%-------------------------------------------------------------------------- +% Create Data +%-------------------------------------------------------------------------- +@#ifdef CreateData +verbatim; +% From 1961Q3 to 2007Q4 +DataUS = xlsread('Data_PruningPaper_v5.xlsx','Data_used','E3:M188'); +% ANNUALIZED (except for hours and GoY) +% 1 2 3 4 5 6 7 8 9 +% Lables: Date Gr_C Gr_I GoY hours Infl_C r1 r40 xhr40 +%label_data = {'Gr_C ', 'Gr_I ','Infl ', 'r1 ', 'r40 ', 'xhr40 ','GoY ', 'hours '}; +%DataUS = [DataUS(:,2:3) DataUS(:,6:8) DataUS(:,9) log(DataUS(:,4)) 4*log(DataUS(:,5))/100]; +Obs_Gr_C = DataUS(:,2); +Obs_Gr_I = DataUS(:,3); +Obs_Infl = DataUS(:,6); +Obs_r1 = DataUS(:,7); +Obs_r40 = DataUS(:,8); +Obs_xhr40 = DataUS(:,9); +Obs_GoY = log(DataUS(:,4)); +Obs_hours = 4*log(DataUS(:,5))/100; + +save('AFVRR_data.mat','Obs_Gr_C','Obs_Gr_I','Obs_Infl','Obs_r1','Obs_r40','Obs_xhr40','Obs_GoY','Obs_hours'); +pause(1); +end; +@#endif \ No newline at end of file diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_data.mat b/tests/estimation/method_of_moments/AFVRR/AFVRR_data.mat new file mode 100644 index 0000000000000000000000000000000000000000..f606b2109e2bf61024b860d13000842c27f3d290 Binary files /dev/null and b/tests/estimation/method_of_moments/AFVRR/AFVRR_data.mat differ diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_steady_helper.m b/tests/estimation/method_of_moments/AFVRR/AFVRR_steady_helper.m new file mode 100644 index 0000000000000000000000000000000000000000..b8289d48488efd077fcd83461454b319a6f93fc0 --- /dev/null +++ b/tests/estimation/method_of_moments/AFVRR/AFVRR_steady_helper.m @@ -0,0 +1,80 @@ +% DSGE model based on replication files of +% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49 +% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021 +% ========================================================================= +% Copyright (C) 2021 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. +% ========================================================================= + +% This is a helper function to compute steady state values and endogenous parameters +% Based on DSGE_model_yieldCurve_ss.m, getPHI3.m, ObjectGMM.m + +function [AA, EVFBAR, PHI3, negVf, info]= AFVRR_steady_helper(VFBAR,RBAR,IVBAR,CBAR,KBAR,LABAR,QBAR,YBAR, BETTA,B,PAI,H,PHIzero,PHI1,PHI2,THETA,MYYPS,MYZ,INHABIT,RRA,CONSxhr40) +% We get nice values of EVF by setting AA app. equal to VF. +% The value of the expected value function raised to the power 1-PHI3 +% Also we check bounds on other variables +% % Adding PHI3 to params. Note that PHI3 only affects the value function in +% % steady state, hence the value we assign to PHI3 is irrelevant +% PHI3 = -100; + +info=0; +AA = NaN; +EVFBAR = NaN; +PHI3 = NaN; +negVf = NaN; + +MYZSTAR = MYYPS^(THETA/(1-THETA))*MYZ; +% The wage level +WBAR = PHIzero*(1-H)^(-PHI1)/LABAR; +RRAc = RRA; +if INHABIT == 1 + PHI3 = (RRAc - PHI2/((1-B*MYZSTAR^-1)/(1-BETTA*B)+PHI2/PHI1*WBAR*(1-H)/CBAR))/((1-PHI2)/((1-B*MYZSTAR^-1)/(1-BETTA*B)-(CBAR-B*CBAR*MYZSTAR^-1)^PHI2/((1-BETTA*B)*CBAR)+WBAR*(1-H)/CBAR*(1-PHI2)/(1-PHI1))); +else + PHI3 = (RRAc - PHI2/(1-B*MYZSTAR^-1+PHI2/PHI1*WBAR*(1-H)/CBAR))/((1-PHI2)/(1-B*MYZSTAR^-1-(CBAR-B*CBAR*MYZSTAR^-1)^PHI2/((1-BETTA*B)*CBAR)+WBAR*(1-H)/CBAR*(1-PHI2)/(1-PHI1))); +end +if abs(PHI3) > 30000 + disp('abs of PHI3 exceeds 30000') + info=1; + return +end + +if CONSxhr40 > 1 + info=1; + return +end + + +if VFBAR < 0 + AA = -VFBAR; + EVFBAR = (-VFBAR/AA)^(1-PHI3); + negVf = 1; +else + AA = VFBAR; + EVFBAR = (VFBAR/AA)^(1-PHI3); + negVf = -1; + disp('Positive Value Function'); +end + + +if RBAR < 1 || IVBAR < 0 || CBAR < 0 || KBAR < 0 || PAI < 1 || H < 0 || H > 1 || QBAR < 0 || YBAR < 0 + info = 1; +end + +end + + + diff --git a/tests/estimation/method_of_moments/AnScho_MoM.mod b/tests/estimation/method_of_moments/AnScho/AnScho_MoM.mod similarity index 100% rename from tests/estimation/method_of_moments/AnScho_MoM.mod rename to tests/estimation/method_of_moments/AnScho/AnScho_MoM.mod diff --git a/tests/estimation/method_of_moments/RBC_Andreasen_Data_2.mat b/tests/estimation/method_of_moments/RBC/RBC_Andreasen_Data_2.mat similarity index 100% rename from tests/estimation/method_of_moments/RBC_Andreasen_Data_2.mat rename to tests/estimation/method_of_moments/RBC/RBC_Andreasen_Data_2.mat diff --git a/tests/estimation/method_of_moments/RBC_MoM_Andreasen.mod b/tests/estimation/method_of_moments/RBC/RBC_MoM_Andreasen.mod similarity index 100% rename from tests/estimation/method_of_moments/RBC_MoM_Andreasen.mod rename to tests/estimation/method_of_moments/RBC/RBC_MoM_Andreasen.mod diff --git a/tests/estimation/method_of_moments/RBC_MoM_SMM_ME.mod b/tests/estimation/method_of_moments/RBC/RBC_MoM_SMM_ME.mod similarity index 100% rename from tests/estimation/method_of_moments/RBC_MoM_SMM_ME.mod rename to tests/estimation/method_of_moments/RBC/RBC_MoM_SMM_ME.mod diff --git a/tests/estimation/method_of_moments/RBC_MoM_common.inc b/tests/estimation/method_of_moments/RBC/RBC_MoM_common.inc similarity index 100% rename from tests/estimation/method_of_moments/RBC_MoM_common.inc rename to tests/estimation/method_of_moments/RBC/RBC_MoM_common.inc diff --git a/tests/estimation/method_of_moments/RBC_MoM_prefilter.mod b/tests/estimation/method_of_moments/RBC/RBC_MoM_prefilter.mod similarity index 100% rename from tests/estimation/method_of_moments/RBC_MoM_prefilter.mod rename to tests/estimation/method_of_moments/RBC/RBC_MoM_prefilter.mod diff --git a/tests/estimation/method_of_moments/RBC_MoM_steady_helper.m b/tests/estimation/method_of_moments/RBC/RBC_MoM_steady_helper.m similarity index 100% rename from tests/estimation/method_of_moments/RBC_MoM_steady_helper.m rename to tests/estimation/method_of_moments/RBC/RBC_MoM_steady_helper.m diff --git a/tests/estimation/method_of_moments/RBC_MoM_steadystate.m b/tests/estimation/method_of_moments/RBC_MoM_steadystate.m deleted file mode 100644 index ba4ef9240b522ac5bbf83fc41380a50f3f1805f8..0000000000000000000000000000000000000000 --- a/tests/estimation/method_of_moments/RBC_MoM_steadystate.m +++ /dev/null @@ -1,74 +0,0 @@ -% By Willi Mutschler, September 26, 2016. Email: willi@mutschler.eu -function [ys,params,check] = RBCmodel_steadystate(ys,exo,M_,options_) -%% Step 0: initialize indicator and set options for numerical solver -check = 0; -options = optimset('Display','off','TolX',1e-12,'TolFun',1e-12); -params = M_.params; - -%% Step 1: read out parameters to access them with their name -for ii = 1:M_.param_nbr - eval([ M_.param_names{ii} ' = M_.params(' int2str(ii) ');']); -end - -%% Step 2: Check parameter restrictions -if ETAc*ETAl<1 % parameter violates restriction (here it is artifical) - check=1; %set failure indicator - return; %return without updating steady states -end - -%% Step 3: Enter model equations here -A = 1; -RK = 1/BETTA - (1-DELTA); -K_O_N = (RK/(A*(1-ALFA)))^(-1/ALFA); -if K_O_N <= 0 - check = 1; % set failure indicator - return; % return without updating steady states -end -W = A*ALFA*(K_O_N)^(1-ALFA); -IV_O_N = DELTA*K_O_N; -Y_O_N = A*K_O_N^(1-ALFA); -C_O_N = Y_O_N - IV_O_N; -if C_O_N <= 0 - check = 1; % set failure indicator - return; % return without updating steady states -end - -% The labor level -if ETAc == 1 && ETAl == 1 - N = (1-BETTA*B)*(C_O_N*(1-B))^-1*W/THETA/(1+(1-BETTA*B)*(C_O_N*(1-B))^-1*W/THETA); -else - % No closed-form solution use a fixed-point algorithm - N0 = 1/3; - [N,~,exitflag] = fsolve(@(N) THETA*(1-N)^(-ETAl)*N^ETAc - (1-BETTA*B)*(C_O_N*(1-B))^(-ETAc)*W, N0,options); - if exitflag <= 0 - check = 1; % set failure indicator - return % return without updating steady states - end -end - -C=C_O_N*N; -Y=Y_O_N*N; -IV=IV_O_N*N; -K=K_O_N*N; -LA = (C-B*C)^(-ETAc)-BETTA*B*(C-B*C)^(-ETAc); - -k=log(K); -c=log(C); -a=log(A); -iv=log(IV); -y=log(Y); -la=log(LA); -n=log(N); -rk=log(RK); -w=log(W); -%% Step 4: Update parameters and variables -params=NaN(M_.param_nbr,1); -for iter = 1:M_.param_nbr %update parameters set in the file - eval([ 'params(' num2str(iter) ') = ' M_.param_names{iter} ';' ]) -end - -for ii = 1:M_.orig_endo_nbr %auxiliary variables are set automatically - eval(['ys(' int2str(ii) ') = ' M_.endo_names{ii} ';']); -end - -end