From 562a9c737fd10a91679ff86a55c3da2cc8c0969c Mon Sep 17 00:00:00 2001 From: Willi Mutschler <willi@mutschler.eu> Date: Wed, 6 Jan 2021 14:03:51 +0100 Subject: [PATCH] MoM: Improve testsuite - add Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2017) test models - move models to dedicated folders - add `make m/method_of_moments` and `make o/method_of_moments` commands to run testsuite only for method of moments --- tests/.gitignore | 6 +- tests/Makefile.am | 21 +- .../method_of_moments/AFVRR/AFVRR_M0.mod | 299 ++++++++++ .../method_of_moments/AFVRR/AFVRR_MFB.mod | 300 ++++++++++ .../method_of_moments/AFVRR/AFVRR_MFB_RRA.mod | 299 ++++++++++ .../method_of_moments/AFVRR/AFVRR_common.inc | 540 ++++++++++++++++++ .../method_of_moments/AFVRR/AFVRR_data.mat | Bin 0 -> 10941 bytes .../AFVRR/AFVRR_steady_helper.m | 80 +++ .../{ => AnScho}/AnScho_MoM.mod | 0 .../{ => RBC}/RBC_Andreasen_Data_2.mat | Bin .../{ => RBC}/RBC_MoM_Andreasen.mod | 0 .../{ => RBC}/RBC_MoM_SMM_ME.mod | 0 .../{ => RBC}/RBC_MoM_common.inc | 0 .../{ => RBC}/RBC_MoM_prefilter.mod | 0 .../{ => RBC}/RBC_MoM_steady_helper.m | 0 .../method_of_moments/RBC_MoM_steadystate.m | 74 --- 16 files changed, 1537 insertions(+), 82 deletions(-) create mode 100644 tests/estimation/method_of_moments/AFVRR/AFVRR_M0.mod create mode 100644 tests/estimation/method_of_moments/AFVRR/AFVRR_MFB.mod create mode 100644 tests/estimation/method_of_moments/AFVRR/AFVRR_MFB_RRA.mod create mode 100644 tests/estimation/method_of_moments/AFVRR/AFVRR_common.inc create mode 100644 tests/estimation/method_of_moments/AFVRR/AFVRR_data.mat create mode 100644 tests/estimation/method_of_moments/AFVRR/AFVRR_steady_helper.m rename tests/estimation/method_of_moments/{ => AnScho}/AnScho_MoM.mod (100%) rename tests/estimation/method_of_moments/{ => RBC}/RBC_Andreasen_Data_2.mat (100%) rename tests/estimation/method_of_moments/{ => RBC}/RBC_MoM_Andreasen.mod (100%) rename tests/estimation/method_of_moments/{ => RBC}/RBC_MoM_SMM_ME.mod (100%) rename tests/estimation/method_of_moments/{ => RBC}/RBC_MoM_common.inc (100%) rename tests/estimation/method_of_moments/{ => RBC}/RBC_MoM_prefilter.mod (100%) rename tests/estimation/method_of_moments/{ => RBC}/RBC_MoM_steady_helper.m (100%) delete mode 100644 tests/estimation/method_of_moments/RBC_MoM_steadystate.m diff --git a/tests/.gitignore b/tests/.gitignore index 722a27d5d7..275d8736e9 100644 --- a/tests/.gitignore +++ b/tests/.gitignore @@ -50,8 +50,10 @@ wsOct !/ep/mean_preserving_spread.m !/ep/rbcii_steady_state.m !/estimation/fsdat_simul.m -!/estimation/method_of_moments/RBC_MoM_steady_helper.m -!/estimation/method_of_moments/RBC_Andreasen_Data_2.mat +!/estimation/method_of_moments/RBC/RBC_MoM_steady_helper.m +!/estimation/method_of_moments/RBC/RBC_Andreasen_Data_2.mat +!/estimation/method_of_moments/AFVRR/AFVRR_data.mat +!/estimation/method_of_moments/AFVRR/AFVRR_steady_helper.m !/expectations/expectation_ss_old_steadystate.m !/external_function/extFunDeriv.m !/external_function/extFunNoDerivs.m diff --git a/tests/Makefile.am b/tests/Makefile.am index fd050916a1..1b7929a582 100644 --- a/tests/Makefile.am +++ b/tests/Makefile.am @@ -50,10 +50,13 @@ MODFILES = \ estimation/MH_recover/fs2000_recover_3.mod \ estimation/t_proposal/fs2000_student.mod \ estimation/tune_mh_jscale/fs2000.mod \ - estimation/method_of_moments/AnScho_MoM.mod \ - estimation/method_of_moments/RBC_MoM_Andreasen.mod \ - estimation/method_of_moments/RBC_MoM_SMM_ME.mod \ - estimation/method_of_moments/RBC_MoM_prefilter.mod \ + estimation/method_of_moments/AnScho/AnScho_MoM.mod \ + estimation/method_of_moments/RBC/RBC_MoM_Andreasen.mod \ + estimation/method_of_moments/RBC/RBC_MoM_SMM_ME.mod \ + estimation/method_of_moments/RBC/RBC_MoM_prefilter.mod \ + estimation/method_of_moments/AFVRR/AFVRR_M0.mod \ + estimation/method_of_moments/AFVRR/AFVRR_MFB.mod \ + estimation/method_of_moments/AFVRR/AFVRR_MFB_RRA.mod \ moments/example1_var_decomp.mod \ moments/example1_bp_test.mod \ moments/test_AR1_spectral_density.mod \ @@ -835,6 +838,10 @@ particle: m/particle o/particle m/particle: $(patsubst %.mod, %.m.trs, $(PARTICLEFILES)) o/particle: $(patsubst %.mod, %.o.trs, $(PARTICLEFILES)) +method_of_moments: m/method_of_moments o/method_of_moments +m/method_of_moments: $(patsubst %.mod, %.m.trs, $(filter estimation/method_of_moments/%.mod, $(MODFILES))) +o/method_of_moments: $(patsubst %.mod, %.o.trs, $(filter estimation/method_of_moments/%.mod, $(MODFILES))) + # Matlab TRS Files M_TRS_FILES = $(patsubst %.mod, %.m.trs, $(MODFILES)) M_TRS_FILES += run_block_byte_tests_matlab.m.trs \ @@ -984,8 +991,10 @@ EXTRA_DIST = \ lmmcp/sw-common-header.inc \ lmmcp/sw-common-footer.inc \ estimation/tune_mh_jscale/fs2000.inc \ - estimation/method_of_moments/RBC_MoM_common.inc \ - estimation/method_of_moments/RBC_MoM_steady_helper.m \ + estimation/method_of_moments/RBC/RBC_MoM_common.inc \ + estimation/method_of_moments/RBC/RBC_MoM_steady_helper.m \ + estimation/method_of_moments/AFVRR/AFVRR_common.inc \ + estimation/method_of_moments/AFVRR/AFVRR_steady_helper.m \ histval_initval_file_unit_tests.m \ histval_initval_file/my_assert.m \ histval_initval_file/ramst_data.xls \ diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_M0.mod b/tests/estimation/method_of_moments/AFVRR/AFVRR_M0.mod new file mode 100644 index 0000000000..8e51ac5136 --- /dev/null +++ b/tests/estimation/method_of_moments/AFVRR/AFVRR_M0.mod @@ -0,0 +1,299 @@ +% DSGE model based on replication files of +% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49 +% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021 +% ========================================================================= +% Copyright (C) 2021 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. +% ========================================================================= + +% This is the benchmark model with no feedback M_0 +% Original code RunGMM_standardModel_RRA.m by Martin M. Andreasen, Jan 2016 + +@#include "AFVRR_common.inc" + +%-------------------------------------------------------------------------- +% Parameter calibration taken from RunGMM_standardModel_RRA.m +%-------------------------------------------------------------------------- +% fixed parameters +INHABIT = 1; +PHI1 = 4; +PHI4 = 1; +KAPAone = 0; +DELTA = 0.025; +THETA = 0.36; +ETA = 6; +CHI = 0; +CONSxhr40 = 0; +BETTAxhr = 0; +BETTAxhr40= 0; +RHOD = 0; +GAMA = 0.9999; +CONSxhr20 = 0; + +% estimated parameters +BETTA = 0.999544966118000; +B = 0.668859504661000; +H = 0.342483445196000; +PHI2 = 0.997924964981000; +RRA = 662.7953149595370; +KAPAtwo = 5.516226495551000; +ALFA = 0.809462321180000; +RHOR = 0.643873352513000; +BETTAPAI = 1.270087844103000; +BETTAY = 0.031812764291000; +MYYPS = 1.001189151180000; +MYZ = 1.005286347928000; +RHOA = 0.743239127127000; +RHOG = 0.793929380230000; +PAI = 1.012163659169000; +GoY = 0.206594858866000; +STDA = 0.016586292524000; +STDG = 0.041220613851000; +STDD = 0.013534473123000; + +% endogenous parameters set via steady state, no need to initialize +%PHIzero = ; +%AA = ; +%PHI3 = ; +%negVf = ; + +model_diagnostics; +% Model diagnostics show that some parameters are endogenously determined +% via the steady state, so we run steady to calibrate all parameters +steady; +model_diagnostics; +% Now all parameters are determined + +resid; +check; + +%-------------------------------------------------------------------------- +% Shock distribution +%-------------------------------------------------------------------------- +shocks; +var eps_a = STDA^2; +var eps_d = STDD^2; +var eps_g = STDG^2; +end; + +%-------------------------------------------------------------------------- +% Estimated Params block - these parameters will be estimated, we +% initialize at calibrated values +%-------------------------------------------------------------------------- +estimated_params; +BETTA; +B; +H; +PHI2; +RRA; +KAPAtwo; +ALFA; +RHOR; +BETTAPAI; +BETTAY; +MYYPS; +MYZ; +RHOA; +RHOG; +PAI; +GoY; +stderr eps_a; +stderr eps_g; +stderr eps_d; +end; + +estimated_params_init(use_calibration); +end; + +%-------------------------------------------------------------------------- +% Compare whether toolbox yields equivalent moments at second order +%-------------------------------------------------------------------------- +% Note that we compare results for orderApp=1|2 and not for orderApp=3, because +% there is a small error in the replication files of the original article in the +% computation of the covariance matrix of the extended innovations vector. +% The authors have been contacted, fixed it, and report that the results +% change only slightly at orderApp=3 to what they report in the paper. At +% orderApp=2 all is correct and so the following part tests whether we get +% the same model moments at the calibrated parameters (we do not optimize). +% We compare it to the replication file RunGMM_standardModel_RRA.m with the +% following settings: orderApp=1|2, seOn=0, q_lag=10, weighting=1; +% scaled=0; optimizer=0; estimator=1; momentSet=2; +% +% Output of the replication files for orderApp=1 +AndreasenEtAl.Q1 = 23893.072; +AndreasenEtAl.moments1 =[ % note that we reshuffeled to be compatible with our matched moments block + {[ 1]} {'Ex' } {'Gr_C '} {' ' } {'0.024388' } {'0.023764' } + {[ 2]} {'Ex' } {'Gr_I '} {' ' } {'0.031046' } {'0.028517' } + {[ 3]} {'Ex' } {'Infl ' } {' ' } {'0.03757' } {'0.048361' } + {[ 4]} {'Ex' } {'r1 ' } {' ' } {'0.056048' } {'0.073945' } + {[ 5]} {'Ex' } {'r40 ' } {' ' } {'0.069929' } {'0.073945' } + {[ 6]} {'Ex' } {'xhr40 '} {' ' } {'0.017237' } {'0' } + {[ 7]} {'Ex' } {'GoY '} {' ' } {'-1.5745' } {'-1.577' } + {[ 8]} {'Ex' } {'hours '} {' ' } {'-0.043353' } {'-0.042861' } + {[ 9]} {'Exx' } {'Gr_C '} {'Gr_C '} {'0.0013159' } {'0.0011816' } + {[17]} {'Exx' } {'Gr_C '} {'Gr_I '} {'0.0021789' } {'0.0016052' } + {[18]} {'Exx' } {'Gr_C '} {'Infl ' } {'0.00067495' } {'0.00090947' } + {[19]} {'Exx' } {'Gr_C '} {'r1 ' } {'0.0011655' } {'0.0016016' } + {[20]} {'Exx' } {'Gr_C '} {'r40 ' } {'0.0015906' } {'0.0017076' } + {[21]} {'Exx' } {'Gr_C '} {'xhr40 '} {'0.0020911' } {'0.0013997' } + {[10]} {'Exx' } {'Gr_I '} {'Gr_I '} {'0.0089104' } {'0.0055317' } + {[22]} {'Exx' } {'Gr_I '} {'Infl ' } {'0.00063139' } {'0.00050106' } + {[23]} {'Exx' } {'Gr_I '} {'r1 ' } {'0.0011031' } {'0.0018178' } + {[24]} {'Exx' } {'Gr_I '} {'r40 ' } {'0.0018445' } {'0.0020186' } + {[25]} {'Exx' } {'Gr_I '} {'xhr40 '} {'0.00095556' } {'0.0064471' } + {[11]} {'Exx' } {'Infl ' } {'Infl ' } {'0.0020268' } {'0.0030519' } + {[26]} {'Exx' } {'Infl ' } {'r1 ' } {'0.0025263' } {'0.0042181' } + {[27]} {'Exx' } {'Infl ' } {'r40 ' } {'0.0029126' } {'0.0039217' } + {[28]} {'Exx' } {'Infl ' } {'xhr40 '} {'-0.00077101'} {'-0.0019975' } + {[12]} {'Exx' } {'r1 ' } {'r1 ' } {'0.0038708' } {'0.0061403' } + {[29]} {'Exx' } {'r1 ' } {'r40 ' } {'0.0044773' } {'0.0058343' } + {[30]} {'Exx' } {'r1 ' } {'xhr40 '} {'-0.00048202'} {'-0.00089501'} + {[13]} {'Exx' } {'r40 ' } {'r40 ' } {'0.0054664' } {'0.0056883' } + {[31]} {'Exx' } {'r40 ' } {'xhr40 '} {'0.00053864' } {'-0.00041184'} + {[14]} {'Exx' } {'xhr40 '} {'xhr40 '} {'0.053097' } {'0.016255' } + {[15]} {'Exx' } {'GoY '} {'GoY '} {'2.4863' } {'2.4919' } + {[16]} {'Exx' } {'hours '} {'hours '} {'0.0018799' } {'0.0018384' } + {[32]} {'Exx1'} {'Gr_C '} {'Gr_C '} {'0.00077917' } {'0.00065543' } + {[33]} {'Exx1'} {'Gr_I '} {'Gr_I '} {'0.0050104' } {'0.0033626' } + {[34]} {'Exx1'} {'Infl ' } {'Infl ' } {'0.0019503' } {'0.0029033' } + {[35]} {'Exx1'} {'r1 ' } {'r1 ' } {'0.0038509' } {'0.006112' } + {[36]} {'Exx1'} {'r40 ' } {'r40 ' } {'0.0054699' } {'0.005683' } + {[37]} {'Exx1'} {'xhr40 '} {'xhr40 '} {'-0.00098295'} {'3.3307e-16' } + {[38]} {'Exx1'} {'GoY '} {'GoY '} {'2.4868' } {'2.4912' } + {[39]} {'Exx1'} {'hours '} {'hours '} {'0.0018799' } {'0.0018378' } +]; + +% Output of the replication files for orderApp=2 +AndreasenEtAl.Q2 = 65.8269; +AndreasenEtAl.moments2 =[ % note that we reshuffeled to be compatible with our matched moments block + {[ 1]} {'Ex' } {'Gr_C '} {' ' } {'0.024388' } {'0.023764' } + {[ 2]} {'Ex' } {'Gr_I '} {' ' } {'0.031046' } {'0.028517' } + {[ 3]} {'Ex' } {'Infl ' } {' ' } {'0.03757' } {'0.034882' } + {[ 4]} {'Ex' } {'r1 ' } {' ' } {'0.056048' } {'0.056542' } + {[ 5]} {'Ex' } {'r40 ' } {' ' } {'0.069929' } {'0.070145' } + {[ 6]} {'Ex' } {'xhr40 '} {' ' } {'0.017237' } {'0.020825' } + {[ 7]} {'Ex' } {'GoY '} {' ' } {'-1.5745' } {'-1.5748' } + {[ 8]} {'Ex' } {'hours '} {' ' } {'-0.043353' } {'-0.04335' } + {[ 9]} {'Exx' } {'Gr_C '} {'Gr_C '} {'0.0013159' } {'0.001205' } + {[17]} {'Exx' } {'Gr_C '} {'Gr_I '} {'0.0021789' } {'0.0016067' } + {[18]} {'Exx' } {'Gr_C '} {'Infl ' } {'0.00067495' } {'0.00059406'} + {[19]} {'Exx' } {'Gr_C '} {'r1 ' } {'0.0011655' } {'0.0011949' } + {[20]} {'Exx' } {'Gr_C '} {'r40 ' } {'0.0015906' } {'0.0016104' } + {[21]} {'Exx' } {'Gr_C '} {'xhr40 '} {'0.0020911' } {'0.0020245' } + {[10]} {'Exx' } {'Gr_I '} {'Gr_I '} {'0.0089104' } {'0.0060254' } + {[22]} {'Exx' } {'Gr_I '} {'Infl ' } {'0.00063139' } {'8.3563e-05'} + {[23]} {'Exx' } {'Gr_I '} {'r1 ' } {'0.0011031' } {'0.0013176' } + {[24]} {'Exx' } {'Gr_I '} {'r40 ' } {'0.0018445' } {'0.0019042' } + {[25]} {'Exx' } {'Gr_I '} {'xhr40 '} {'0.00095556' } {'0.0064261' } + {[11]} {'Exx' } {'Infl ' } {'Infl ' } {'0.0020268' } {'0.0020735' } + {[26]} {'Exx' } {'Infl ' } {'r1 ' } {'0.0025263' } {'0.0027621' } + {[27]} {'Exx' } {'Infl ' } {'r40 ' } {'0.0029126' } {'0.0029257' } + {[28]} {'Exx' } {'Infl ' } {'xhr40 '} {'-0.00077101'} {'-0.0012165'} + {[12]} {'Exx' } {'r1 ' } {'r1 ' } {'0.0038708' } {'0.0040235' } + {[29]} {'Exx' } {'r1 ' } {'r40 ' } {'0.0044773' } {'0.0044702' } + {[30]} {'Exx' } {'r1 ' } {'xhr40 '} {'-0.00048202'} {'0.00030542'} + {[13]} {'Exx' } {'r40 ' } {'r40 ' } {'0.0054664' } {'0.0052718' } + {[31]} {'Exx' } {'r40 ' } {'xhr40 '} {'0.00053864' } {'0.0010045' } + {[14]} {'Exx' } {'xhr40 '} {'xhr40 '} {'0.053097' } {'0.018416' } + {[15]} {'Exx' } {'GoY '} {'GoY '} {'2.4863' } {'2.4853' } + {[16]} {'Exx' } {'hours '} {'hours '} {'0.0018799' } {'0.0018806' } + {[32]} {'Exx1'} {'Gr_C '} {'Gr_C '} {'0.00077917' } {'0.00067309'} + {[33]} {'Exx1'} {'Gr_I '} {'Gr_I '} {'0.0050104' } {'0.0033293' } + {[34]} {'Exx1'} {'Infl ' } {'Infl ' } {'0.0019503' } {'0.0019223' } + {[35]} {'Exx1'} {'r1 ' } {'r1 ' } {'0.0038509' } {'0.0039949' } + {[36]} {'Exx1'} {'r40 ' } {'r40 ' } {'0.0054699' } {'0.0052659' } + {[37]} {'Exx1'} {'xhr40 '} {'xhr40 '} {'-0.00098295'} {'0.0004337' } + {[38]} {'Exx1'} {'GoY '} {'GoY '} {'2.4868' } {'2.4846' } + {[39]} {'Exx1'} {'hours '} {'hours '} {'0.0018799' } {'0.00188' } +]; + +@#for orderApp in 1:2 + +method_of_moments( + mom_method = GMM % method of moments method; possible values: GMM|SMM + , datafile = 'AFVRR_data.mat' % name of filename with data + , bartlett_kernel_lag = 10 % bandwith in optimal weighting matrix + , order = @{orderApp} % order of Taylor approximation in perturbation + , pruning % use pruned state space system at higher-order + % , verbose % display and store intermediate estimation results + , weighting_matrix = ['DIAGONAL'] % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename + % , TeX % print TeX tables and graphics + % Optimization options that can be set by the user in the mod file, otherwise default values are provided + %, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons + , mode_compute = 0 % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer + , optim = ('TolFun', 1e-6 + ,'TolX', 1e-6 + ,'MaxIter', 3000 + ,'MaxFunEvals', 1D6 + ,'UseParallel' , 1 + %,'Jacobian' , 'on' + ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute + %, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between + %, analytic_standard_errors + , se_tolx=1e-10 +); + +% Check results + +fprintf('****************************************************************\n') +fprintf('Compare Results for perturbation order @{orderApp}\n') +fprintf('****************************************************************\n') +dev_Q = AndreasenEtAl.Q@{orderApp} - oo_.mom.Q; +dev_datamoments = str2double(AndreasenEtAl.moments@{orderApp}(:,5)) - oo_.mom.data_moments; +dev_modelmoments = str2double(AndreasenEtAl.moments@{orderApp}(:,6)) - oo_.mom.model_moments; + +table([AndreasenEtAl.Q@{orderApp} ; str2double(AndreasenEtAl.moments@{orderApp}(:,5)) ; str2double(AndreasenEtAl.moments@{orderApp}(:,6))],... + [oo_.mom.Q ; oo_.mom.data_moments ; oo_.mom.model_moments ],... + [dev_Q ; dev_datamoments ; dev_modelmoments ],... + 'VariableNames', {'Andreasen et al', 'Dynare', 'dev'},... + 'RowNames', ['Q'; strcat('Data_', M_.matched_moments(:,4)); strcat('Model_', M_.matched_moments(:,4))]) + +if norm(dev_modelmoments)> 1e-4 + error('Something wrong in the computation of moments at order @{orderApp}') +end + +@#endfor + +%-------------------------------------------------------------------------- +% Replicate estimation at orderApp=3 +%-------------------------------------------------------------------------- +@#ifdef DoEstimation +method_of_moments( + mom_method = GMM % method of moments method; possible values: GMM|SMM + , datafile = 'AFVRR_data.mat' % name of filename with data + , bartlett_kernel_lag = 10 % bandwith in optimal weighting matrix + , order = 3 % order of Taylor approximation in perturbation + , pruning % use pruned state space system at higher-order + % , verbose % display and store intermediate estimation results + , weighting_matrix = ['DIAGONAL', 'OPTIMAL'] % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename + % , TeX % print TeX tables and graphics + % Optimization options that can be set by the user in the mod file, otherwise default values are provided + %, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons + , mode_compute = 13 % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer + , additional_optimizer_steps = [13] + , optim = ('TolFun', 1e-6 + ,'TolX', 1e-6 + ,'MaxIter', 3000 + ,'MaxFunEvals', 1D6 + ,'UseParallel' , 1 + %,'Jacobian' , 'on' + ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute + %, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between + %, analytic_standard_errors + , se_tolx=1e-10 +); +@#endif \ No newline at end of file diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB.mod b/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB.mod new file mode 100644 index 0000000000..450739ad3b --- /dev/null +++ b/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB.mod @@ -0,0 +1,300 @@ +% DSGE model based on replication files of +% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49 +% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021 +% ========================================================================= +% Copyright (C) 2021 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. +% ========================================================================= + +% This is the model with Feedback M_FB +% Original code RunGMM_Feedback_estim_RRA.m by Martin M. Andreasen, Jan 2016 + +@#include "AFVRR_common.inc" + +%-------------------------------------------------------------------------- +% Parameter calibration taken from RunGMM_Feedback_estim_RRA.m +%-------------------------------------------------------------------------- +% fixed parameters +INHABIT = 1; +PHI1 = 4; +PHI4 = 1; +KAPAone = 0; +DELTA = 0.025; +THETA = 0.36; +ETA = 6; +CHI = 0; +BETTAxhr = 0; +BETTAxhr40= 0; +RHOD = 0; +GAMA = 0.9999; +CONSxhr20 = 0; + +% estimated parameters +BETTA = 0.997007023687000; +B = 0.692501768577000; +H = 0.339214495653000; +PHI2 = 0.688555040951000; +RRA = 24.346514272871001; +KAPAtwo = 10.018421876923000; +ALFA = 0.792507553312000; +RHOR = 0.849194030384000; +BETTAPAI = 2.060579322980000; +BETTAY = 0.220573712342000; +MYYPS = 1.001016690133000; +MYZ = 1.005356313981000; +RHOA = 0.784141391843000; +RHOG = 0.816924540497000; +PAI = 1.011924196487000; +CONSxhr40 = 0.878774662208000; +GoY = 0.207110300602000; +STDA = 0.013024450606000; +STDG = 0.051049871928000; +STDD = 0.008877423780000; + +% endogenous parameters set via steady state, no need to initialize +%PHIzero = ; +%AA = ; +%PHI3 = ; +%negVf = ; + +model_diagnostics; +% Model diagnostics show that some parameters are endogenously determined +% via the steady state, so we run steady to calibrate all parameters +steady; +model_diagnostics; +% Now all parameters are determined + +resid; +check; + +%-------------------------------------------------------------------------- +% Shock distribution +%-------------------------------------------------------------------------- +shocks; +var eps_a = STDA^2; +var eps_d = STDD^2; +var eps_g = STDG^2; +end; + +%-------------------------------------------------------------------------- +% Estimated Params block - these parameters will be estimated, we +% initialize at calibrated values +%-------------------------------------------------------------------------- +estimated_params; +BETTA; +B; +H; +PHI2; +RRA; +KAPAtwo; +ALFA; +RHOR; +BETTAPAI; +BETTAY; +MYYPS; +MYZ; +RHOA; +RHOG; +PAI; +CONSxhr40; +GoY; +stderr eps_a; +stderr eps_g; +stderr eps_d; +end; + +estimated_params_init(use_calibration); +end; + +%-------------------------------------------------------------------------- +% Compare whether toolbox yields equivalent moments at second order +%-------------------------------------------------------------------------- +% Note that we compare results for orderApp=1|2 and not for orderApp=3, because +% there is a small error in the replication files of the original article in the +% computation of the covariance matrix of the extended innovations vector. +% The authors have been contacted, fixed it, and report that the results +% change only slightly at orderApp=3 to what they report in the paper. At +% orderApp=2 all is correct and so the following part tests whether we get +% the same model moments at the calibrated parameters (we do not optimize). +% We compare it to the replication file RunGMM_Feedback_estim_RRA.m with the +% following settings: orderApp=1|2, seOn=0, q_lag=10, weighting=1; +% scaled=0; optimizer=0; estimator=1; momentSet=2; +% +% Output of the replication files for orderApp=1 +AndreasenEtAl.Q1 = 201778.9697; +AndreasenEtAl.moments1 =[ % note that we reshuffeled to be compatible with our matched moments block + {[ 1]} {'Ex' } {'Gr_C '} {' ' } {'0.024388' } {'0.023654' } + {[ 2]} {'Ex' } {'Gr_I '} {' ' } {'0.031046' } {'0.027719' } + {[ 3]} {'Ex' } {'Infl ' } {' ' } {'0.03757' } {'0.047415' } + {[ 4]} {'Ex' } {'r1 ' } {' ' } {'0.056048' } {'0.083059' } + {[ 5]} {'Ex' } {'r40 ' } {' ' } {'0.069929' } {'0.083059' } + {[ 6]} {'Ex' } {'xhr40 '} {' ' } {'0.017237' } {'0' } + {[ 7]} {'Ex' } {'GoY '} {' ' } {'-1.5745' } {'-1.5745' } + {[ 8]} {'Ex' } {'hours '} {' ' } {'-0.043353' } {'-0.043245' } + {[ 9]} {'Exx' } {'Gr_C '} {'Gr_C '} {'0.0013159' } {'0.0012253' } + {[17]} {'Exx' } {'Gr_C '} {'Gr_I '} {'0.0021789' } {'0.0015117' } + {[18]} {'Exx' } {'Gr_C '} {'Infl ' } {'0.00067495' } {'0.00080078' } + {[19]} {'Exx' } {'Gr_C '} {'r1 ' } {'0.0011655' } {'0.00182' } + {[20]} {'Exx' } {'Gr_C '} {'r40 ' } {'0.0015906' } {'0.001913' } + {[21]} {'Exx' } {'Gr_C '} {'xhr40 '} {'0.0020911' } {'0.0016326' } + {[10]} {'Exx' } {'Gr_I '} {'Gr_I '} {'0.0089104' } {'0.0040112' } + {[22]} {'Exx' } {'Gr_I '} {'Infl ' } {'0.00063139' } {'0.00060604' } + {[23]} {'Exx' } {'Gr_I '} {'r1 ' } {'0.0011031' } {'0.0021426' } + {[24]} {'Exx' } {'Gr_I '} {'r40 ' } {'0.0018445' } {'0.0022348' } + {[25]} {'Exx' } {'Gr_I '} {'xhr40 '} {'0.00095556' } {'0.0039852' } + {[11]} {'Exx' } {'Infl ' } {'Infl ' } {'0.0020268' } {'0.0030058' } + {[26]} {'Exx' } {'Infl ' } {'r1 ' } {'0.0025263' } {'0.0044951' } + {[27]} {'Exx' } {'Infl ' } {'r40 ' } {'0.0029126' } {'0.0042225' } + {[28]} {'Exx' } {'Infl ' } {'xhr40 '} {'-0.00077101'} {'-0.0021222' } + {[12]} {'Exx' } {'r1 ' } {'r1 ' } {'0.0038708' } {'0.0074776' } + {[29]} {'Exx' } {'r1 ' } {'r40 ' } {'0.0044773' } {'0.0071906' } + {[30]} {'Exx' } {'r1 ' } {'xhr40 '} {'-0.00048202'} {'-0.0006736' } + {[13]} {'Exx' } {'r40 ' } {'r40 ' } {'0.0054664' } {'0.0070599' } + {[31]} {'Exx' } {'r40 ' } {'xhr40 '} {'0.00053864' } {'-0.00036735'} + {[14]} {'Exx' } {'xhr40 '} {'xhr40 '} {'0.053097' } {'0.014516' } + {[15]} {'Exx' } {'GoY '} {'GoY '} {'2.4863' } {'2.4866' } + {[16]} {'Exx' } {'hours '} {'hours '} {'0.0018799' } {'0.0018713' } + {[32]} {'Exx1'} {'Gr_C '} {'Gr_C '} {'0.00077917' } {'0.00076856' } + {[33]} {'Exx1'} {'Gr_I '} {'Gr_I '} {'0.0050104' } {'0.002163' } + {[34]} {'Exx1'} {'Infl ' } {'Infl ' } {'0.0019503' } {'0.0028078' } + {[35]} {'Exx1'} {'r1 ' } {'r1 ' } {'0.0038509' } {'0.0074583' } + {[36]} {'Exx1'} {'r40 ' } {'r40 ' } {'0.0054699' } {'0.0070551' } + {[37]} {'Exx1'} {'xhr40 '} {'xhr40 '} {'-0.00098295'} {'7.2164e-16' } + {[38]} {'Exx1'} {'GoY '} {'GoY '} {'2.4868' } {'2.4856' } + {[39]} {'Exx1'} {'hours '} {'hours '} {'0.0018799' } {'0.0018708' } +]; + +% Output of the replication files for orderApp=2 +AndreasenEtAl.Q2 = 59.3323; +AndreasenEtAl.moments2 =[ % note that we reshuffeled to be compatible with our matched moments block + {[ 1]} {'Ex' } {'Gr_C '} {' ' } {'0.024388' } {'0.023654' } + {[ 2]} {'Ex' } {'Gr_I '} {' ' } {'0.031046' } {'0.027719' } + {[ 3]} {'Ex' } {'Infl ' } {' ' } {'0.03757' } {'0.034565' } + {[ 4]} {'Ex' } {'r1 ' } {' ' } {'0.056048' } {'0.056419' } + {[ 5]} {'Ex' } {'r40 ' } {' ' } {'0.069929' } {'0.07087' } + {[ 6]} {'Ex' } {'xhr40 '} {' ' } {'0.017237' } {'0.01517' } + {[ 7]} {'Ex' } {'GoY '} {' ' } {'-1.5745' } {'-1.5743' } + {[ 8]} {'Ex' } {'hours '} {' ' } {'-0.043353' } {'-0.043352' } + {[ 9]} {'Exx' } {'Gr_C '} {'Gr_C '} {'0.0013159' } {'0.0012464' } + {[17]} {'Exx' } {'Gr_C '} {'Gr_I '} {'0.0021789' } {'0.0015247' } + {[18]} {'Exx' } {'Gr_C '} {'Infl ' } {'0.00067495' } {'0.0004867' } + {[19]} {'Exx' } {'Gr_C '} {'r1 ' } {'0.0011655' } {'0.0011867' } + {[20]} {'Exx' } {'Gr_C '} {'r40 ' } {'0.0015906' } {'0.0016146' } + {[21]} {'Exx' } {'Gr_C '} {'xhr40 '} {'0.0020911' } {'0.0021395' } + {[10]} {'Exx' } {'Gr_I '} {'Gr_I '} {'0.0089104' } {'0.0043272' } + {[22]} {'Exx' } {'Gr_I '} {'Infl ' } {'0.00063139' } {'0.00021752'} + {[23]} {'Exx' } {'Gr_I '} {'r1 ' } {'0.0011031' } {'0.0013919' } + {[24]} {'Exx' } {'Gr_I '} {'r40 ' } {'0.0018445' } {'0.0018899' } + {[25]} {'Exx' } {'Gr_I '} {'xhr40 '} {'0.00095556' } {'0.0037854' } + {[11]} {'Exx' } {'Infl ' } {'Infl ' } {'0.0020268' } {'0.0021043' } + {[26]} {'Exx' } {'Infl ' } {'r1 ' } {'0.0025263' } {'0.0026571' } + {[27]} {'Exx' } {'Infl ' } {'r40 ' } {'0.0029126' } {'0.0028566' } + {[28]} {'Exx' } {'Infl ' } {'xhr40 '} {'-0.00077101'} {'-0.0016279'} + {[12]} {'Exx' } {'r1 ' } {'r1 ' } {'0.0038708' } {'0.0039136' } + {[29]} {'Exx' } {'r1 ' } {'r40 ' } {'0.0044773' } {'0.0044118' } + {[30]} {'Exx' } {'r1 ' } {'xhr40 '} {'-0.00048202'} {'0.00016791'} + {[13]} {'Exx' } {'r40 ' } {'r40 ' } {'0.0054664' } {'0.0052851' } + {[31]} {'Exx' } {'r40 ' } {'xhr40 '} {'0.00053864' } {'0.00062143'} + {[14]} {'Exx' } {'xhr40 '} {'xhr40 '} {'0.053097' } {'0.018126' } + {[15]} {'Exx' } {'GoY '} {'GoY '} {'2.4863' } {'2.4863' } + {[16]} {'Exx' } {'hours '} {'hours '} {'0.0018799' } {'0.0018806' } + {[32]} {'Exx1'} {'Gr_C '} {'Gr_C '} {'0.00077917' } {'0.00078586'} + {[33]} {'Exx1'} {'Gr_I '} {'Gr_I '} {'0.0050104' } {'0.0021519' } + {[34]} {'Exx1'} {'Infl ' } {'Infl ' } {'0.0019503' } {'0.0019046' } + {[35]} {'Exx1'} {'r1 ' } {'r1 ' } {'0.0038509' } {'0.0038939' } + {[36]} {'Exx1'} {'r40 ' } {'r40 ' } {'0.0054699' } {'0.0052792' } + {[37]} {'Exx1'} {'xhr40 '} {'xhr40 '} {'-0.00098295'} {'0.00023012'} + {[38]} {'Exx1'} {'GoY '} {'GoY '} {'2.4868' } {'2.4852' } + {[39]} {'Exx1'} {'hours '} {'hours '} {'0.0018799' } {'0.0018801' } +]; + +@#for orderApp in 1:2 + +method_of_moments( + mom_method = GMM % method of moments method; possible values: GMM|SMM + , datafile = 'AFVRR_data.mat' % name of filename with data + , bartlett_kernel_lag = 10 % bandwith in optimal weighting matrix + , order = @{orderApp} % order of Taylor approximation in perturbation + , pruning % use pruned state space system at higher-order + % , verbose % display and store intermediate estimation results + , weighting_matrix = ['DIAGONAL'] % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename + % , TeX % print TeX tables and graphics + % Optimization options that can be set by the user in the mod file, otherwise default values are provided + %, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons + , mode_compute = 0 % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer + , optim = ('TolFun', 1e-6 + ,'TolX', 1e-6 + ,'MaxIter', 3000 + ,'MaxFunEvals', 1D6 + ,'UseParallel' , 1 + %,'Jacobian' , 'on' + ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute + %, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between + %, analytic_standard_errors + , se_tolx=1e-10 +); + +% Check results + +fprintf('****************************************************************\n') +fprintf('Compare Results for perturbation order @{orderApp}\n') +fprintf('****************************************************************\n') +dev_Q = AndreasenEtAl.Q@{orderApp} - oo_.mom.Q; +dev_datamoments = str2double(AndreasenEtAl.moments@{orderApp}(:,5)) - oo_.mom.data_moments; +dev_modelmoments = str2double(AndreasenEtAl.moments@{orderApp}(:,6)) - oo_.mom.model_moments; + +table([AndreasenEtAl.Q@{orderApp} ; str2double(AndreasenEtAl.moments@{orderApp}(:,5)) ; str2double(AndreasenEtAl.moments@{orderApp}(:,6))],... + [oo_.mom.Q ; oo_.mom.data_moments ; oo_.mom.model_moments ],... + [dev_Q ; dev_datamoments ; dev_modelmoments ],... + 'VariableNames', {'Andreasen et al', 'Dynare', 'dev'},... + 'RowNames', ['Q'; strcat('Data_', M_.matched_moments(:,4)); strcat('Model_', M_.matched_moments(:,4))]) + +if norm(dev_modelmoments)> 1e-4 + warning('Something wrong in the computation of moments at order @{orderApp}') +end + +@#endfor + +%-------------------------------------------------------------------------- +% Replicate estimation at orderApp=3 +%-------------------------------------------------------------------------- +@#ifdef DoEstimation +method_of_moments( + mom_method = GMM % method of moments method; possible values: GMM|SMM + , datafile = 'AFVRR_data.mat' % name of filename with data + , bartlett_kernel_lag = 10 % bandwith in optimal weighting matrix + , order = 3 % order of Taylor approximation in perturbation + , pruning % use pruned state space system at higher-order + % , verbose % display and store intermediate estimation results + , weighting_matrix = ['DIAGONAL', 'Optimal'] % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename + % , TeX % print TeX tables and graphics + % Optimization options that can be set by the user in the mod file, otherwise default values are provided + %, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons + , mode_compute = 13 % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer + , additional_optimizer_steps = [13] + , optim = ('TolFun', 1e-6 + ,'TolX', 1e-6 + ,'MaxIter', 3000 + ,'MaxFunEvals', 1D6 + ,'UseParallel' , 1 + %,'Jacobian' , 'on' + ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute + %, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between + %, analytic_standard_errors + , se_tolx=1e-10 +); +@#endif \ No newline at end of file diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB_RRA.mod b/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB_RRA.mod new file mode 100644 index 0000000000..9c069d3a3d --- /dev/null +++ b/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB_RRA.mod @@ -0,0 +1,299 @@ +% DSGE model based on replication files of +% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49 +% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021 +% ========================================================================= +% Copyright (C) 2021 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. +% ========================================================================= + +% This is the model with feedback and calibrated RRA +% Original code RunGMM_Feedback_estim_RRA_5.m by Martin M. Andreasen, Jan 2016 + +@#include "AFVRR_common.inc" + +%-------------------------------------------------------------------------- +% Parameter calibration taken from RunGMM_Feedback_estim_RRA_5.m +%-------------------------------------------------------------------------- +% fixed parameters +INHABIT = 1; +PHI1 = 4; +PHI4 = 1; +KAPAone = 0; +DELTA = 0.025; +THETA = 0.36; +ETA = 6; +CHI = 0; +BETTAxhr = 0; +BETTAxhr40= 0; +RHOD = 0; +GAMA = 0.9999; +CONSxhr20 = 0; +RRA = 5; + +% estimated parameters +BETTA = 0.996850651147000; +B = 0.684201133923000; +H = 0.338754441432000; +PHI2 = 0.738293581320000; +KAPAtwo = 11.664785970704999; +ALFA = 0.831836572237000; +RHOR = 0.772754520116000; +BETTAPAI = 3.020381242896000; +BETTAY = 0.288367683973000; +MYYPS = 1.000911709188000; +MYZ = 1.005433723022000; +RHOA = 0.749465413198000; +RHOG = 0.847225569814000; +PAI = 1.010428794858000; +CONSxhr40 = 0.992863217133000; +GoY = 0.207099399789000; +STDA = 0.015621059978000; +STDG = 0.047539390956000; +STDD = 0.008623441943000; + +% endogenous parameters set via steady state, no need to initialize +%PHIzero = ; +%AA = ; +%PHI3 = ; +%negVf = ; + +model_diagnostics; +% Model diagnostics show that some parameters are endogenously determined +% via the steady state, so we run steady to calibrate all parameters +steady; +model_diagnostics; +% Now all parameters are determined + +resid; +check; + +%-------------------------------------------------------------------------- +% Shock distribution +%-------------------------------------------------------------------------- +shocks; +var eps_a = STDA^2; +var eps_d = STDD^2; +var eps_g = STDG^2; +end; + +%-------------------------------------------------------------------------- +% Estimated Params block - these parameters will be estimated, we +% initialize at calibrated values +%-------------------------------------------------------------------------- +estimated_params; +BETTA; +B; +H; +PHI2; +KAPAtwo; +ALFA; +RHOR; +BETTAPAI; +BETTAY; +MYYPS; +MYZ; +RHOA; +RHOG; +PAI; +CONSxhr40; +GoY; +stderr eps_a; +stderr eps_g; +stderr eps_d; +end; + +estimated_params_init(use_calibration); +end; + +%-------------------------------------------------------------------------- +% Compare whether toolbox yields equivalent moments at second order +%-------------------------------------------------------------------------- +% Note that we compare results for orderApp=1|2 and not for orderApp=3, because +% there is a small error in the replication files of the original article in the +% computation of the covariance matrix of the extended innovations vector. +% The authors have been contacted, fixed it, and report that the results +% change only slightly at orderApp=3 to what they report in the paper. At +% orderApp=2 all is correct and so the following part tests whether we get +% the same model moments at the calibrated parameters (we do not optimize). +% We compare it to the replication file RunGMM_Feedback_estim_RRA.m with the +% following settings: orderApp=1|2, seOn=1, q_lag=10, weighting=1+1; +% scaled=0; optimizer=0; estimator=1; momentSet=2; +% +% Output of the replication files for orderApp=1 +AndreasenEtAl.Q1 = 60275.3715; +AndreasenEtAl.moments1 =[ % note that we reshuffeled to be compatible with our matched moments block + {[ 1]} {'Ex' } {'Gr_C '} {' ' } {'0.024388' } {'0.023726' } + {[ 2]} {'Ex' } {'Gr_I '} {' ' } {'0.031046' } {'0.027372' } + {[ 3]} {'Ex' } {'Infl ' } {' ' } {'0.03757' } {'0.041499' } + {[ 4]} {'Ex' } {'r1 ' } {' ' } {'0.056048' } {'0.077843' } + {[ 5]} {'Ex' } {'r40 ' } {' ' } {'0.069929' } {'0.077843' } + {[ 6]} {'Ex' } {'xhr40 '} {' ' } {'0.017237' } {'0' } + {[ 7]} {'Ex' } {'GoY '} {' ' } {'-1.5745' } {'-1.5746' } + {[ 8]} {'Ex' } {'hours '} {' ' } {'-0.043353' } {'-0.043299' } + {[ 9]} {'Exx' } {'Gr_C '} {'Gr_C '} {'0.0013159' } {'0.0012763' } + {[17]} {'Exx' } {'Gr_C '} {'Gr_I '} {'0.0021789' } {'0.0017759' } + {[18]} {'Exx' } {'Gr_C '} {'Infl ' } {'0.00067495' } {'0.00077354' } + {[19]} {'Exx' } {'Gr_C '} {'r1 ' } {'0.0011655' } {'0.0016538' } + {[20]} {'Exx' } {'Gr_C '} {'r40 ' } {'0.0015906' } {'0.0017949' } + {[21]} {'Exx' } {'Gr_C '} {'xhr40 '} {'0.0020911' } {'0.0017847' } + {[10]} {'Exx' } {'Gr_I '} {'Gr_I '} {'0.0089104' } {'0.0053424' } + {[22]} {'Exx' } {'Gr_I '} {'Infl ' } {'0.00063139' } {'0.00064897' } + {[23]} {'Exx' } {'Gr_I '} {'r1 ' } {'0.0011031' } {'0.0019533' } + {[24]} {'Exx' } {'Gr_I '} {'r40 ' } {'0.0018445' } {'0.0020602' } + {[25]} {'Exx' } {'Gr_I '} {'xhr40 '} {'0.00095556' } {'0.0064856' } + {[11]} {'Exx' } {'Infl ' } {'Infl ' } {'0.0020268' } {'0.0020922' } + {[26]} {'Exx' } {'Infl ' } {'r1 ' } {'0.0025263' } {'0.0036375' } + {[27]} {'Exx' } {'Infl ' } {'r40 ' } {'0.0029126' } {'0.0034139' } + {[28]} {'Exx' } {'Infl ' } {'xhr40 '} {'-0.00077101'} {'-0.0011665' } + {[12]} {'Exx' } {'r1 ' } {'r1 ' } {'0.0038708' } {'0.0066074' } + {[29]} {'Exx' } {'r1 ' } {'r40 ' } {'0.0044773' } {'0.0062959' } + {[30]} {'Exx' } {'r1 ' } {'xhr40 '} {'-0.00048202'} {'-0.00075499'} + {[13]} {'Exx' } {'r40 ' } {'r40 ' } {'0.0054664' } {'0.0061801' } + {[31]} {'Exx' } {'r40 ' } {'xhr40 '} {'0.00053864' } {'-0.00030456'} + {[14]} {'Exx' } {'xhr40 '} {'xhr40 '} {'0.053097' } {'0.012048' } + {[15]} {'Exx' } {'GoY '} {'GoY '} {'2.4863' } {'2.4872' } + {[16]} {'Exx' } {'hours '} {'hours '} {'0.0018799' } {'0.0018759' } + {[32]} {'Exx1'} {'Gr_C '} {'Gr_C '} {'0.00077917' } {'0.00080528' } + {[33]} {'Exx1'} {'Gr_I '} {'Gr_I '} {'0.0050104' } {'0.0017036' } + {[34]} {'Exx1'} {'Infl ' } {'Infl ' } {'0.0019503' } {'0.0020185' } + {[35]} {'Exx1'} {'r1 ' } {'r1 ' } {'0.0038509' } {'0.0065788' } + {[36]} {'Exx1'} {'r40 ' } {'r40 ' } {'0.0054699' } {'0.0061762' } + {[37]} {'Exx1'} {'xhr40 '} {'xhr40 '} {'-0.00098295'} {'-4.5519e-15'} + {[38]} {'Exx1'} {'GoY '} {'GoY '} {'2.4868' } {'2.4863' } + {[39]} {'Exx1'} {'hours '} {'hours '} {'0.0018799' } {'0.0018755' } +]; + +% Output of the replication files for orderApp=2 +AndreasenEtAl.Q2 = 140.8954; +AndreasenEtAl.moments2 =[ % note that we reshuffeled to be compatible with our matched moments block + {[ 1]} {'Ex' } {'Gr_C '} {' ' } {'0.024388' } {'0.023726' } + {[ 2]} {'Ex' } {'Gr_I '} {' ' } {'0.031046' } {'0.027372' } + {[ 3]} {'Ex' } {'Infl ' } {' ' } {'0.03757' } {'0.034618' } + {[ 4]} {'Ex' } {'r1 ' } {' ' } {'0.056048' } {'0.056437' } + {[ 5]} {'Ex' } {'r40 ' } {' ' } {'0.069929' } {'0.07051' } + {[ 6]} {'Ex' } {'xhr40 '} {' ' } {'0.017237' } {'0.014242' } + {[ 7]} {'Ex' } {'GoY '} {' ' } {'-1.5745' } {'-1.574' } + {[ 8]} {'Ex' } {'hours '} {' ' } {'-0.043353' } {'-0.043351' } + {[ 9]} {'Exx' } {'Gr_C '} {'Gr_C '} {'0.0013159' } {'0.0012917' } + {[17]} {'Exx' } {'Gr_C '} {'Gr_I '} {'0.0021789' } {'0.0017862' } + {[18]} {'Exx' } {'Gr_C '} {'Infl ' } {'0.00067495' } {'0.00061078' } + {[19]} {'Exx' } {'Gr_C '} {'r1 ' } {'0.0011655' } {'0.0011494' } + {[20]} {'Exx' } {'Gr_C '} {'r40 ' } {'0.0015906' } {'0.0016149' } + {[21]} {'Exx' } {'Gr_C '} {'xhr40 '} {'0.0020911' } {'0.002203' } + {[10]} {'Exx' } {'Gr_I '} {'Gr_I '} {'0.0089104' } {'0.0054317' } + {[22]} {'Exx' } {'Gr_I '} {'Infl ' } {'0.00063139' } {'0.00045278' } + {[23]} {'Exx' } {'Gr_I '} {'r1 ' } {'0.0011031' } {'0.0013672' } + {[24]} {'Exx' } {'Gr_I '} {'r40 ' } {'0.0018445' } {'0.0018557' } + {[25]} {'Exx' } {'Gr_I '} {'xhr40 '} {'0.00095556' } {'0.0067742' } + {[11]} {'Exx' } {'Infl ' } {'Infl ' } {'0.0020268' } {'0.0016583' } + {[26]} {'Exx' } {'Infl ' } {'r1 ' } {'0.0025263' } {'0.0024521' } + {[27]} {'Exx' } {'Infl ' } {'r40 ' } {'0.0029126' } {'0.002705' } + {[28]} {'Exx' } {'Infl ' } {'xhr40 '} {'-0.00077101'} {'-0.00065007'} + {[12]} {'Exx' } {'r1 ' } {'r1 ' } {'0.0038708' } {'0.0038274' } + {[29]} {'Exx' } {'r1 ' } {'r40 ' } {'0.0044773' } {'0.004297' } + {[30]} {'Exx' } {'r1 ' } {'xhr40 '} {'-0.00048202'} {'6.3243e-05' } + {[13]} {'Exx' } {'r40 ' } {'r40 ' } {'0.0054664' } {'0.0051686' } + {[31]} {'Exx' } {'r40 ' } {'xhr40 '} {'0.00053864' } {'0.00066645' } + {[14]} {'Exx' } {'xhr40 '} {'xhr40 '} {'0.053097' } {'0.013543' } + {[15]} {'Exx' } {'GoY '} {'GoY '} {'2.4863' } {'2.4858' } + {[16]} {'Exx' } {'hours '} {'hours '} {'0.0018799' } {'0.0018804' } + {[32]} {'Exx1'} {'Gr_C '} {'Gr_C '} {'0.00077917' } {'0.00081772' } + {[33]} {'Exx1'} {'Gr_I '} {'Gr_I '} {'0.0050104' } {'0.0017106' } + {[34]} {'Exx1'} {'Infl ' } {'Infl ' } {'0.0019503' } {'0.0015835' } + {[35]} {'Exx1'} {'r1 ' } {'r1 ' } {'0.0038509' } {'0.0037985' } + {[36]} {'Exx1'} {'r40 ' } {'r40 ' } {'0.0054699' } {'0.0051642' } + {[37]} {'Exx1'} {'xhr40 '} {'xhr40 '} {'-0.00098295'} {'0.00020285' } + {[38]} {'Exx1'} {'GoY '} {'GoY '} {'2.4868' } {'2.4848' } + {[39]} {'Exx1'} {'hours '} {'hours '} {'0.0018799' } {'0.0018799' } +]; + +@#for orderApp in 1:2 + +method_of_moments( + mom_method = GMM % method of moments method; possible values: GMM|SMM + , datafile = 'AFVRR_data.mat' % name of filename with data + , bartlett_kernel_lag = 10 % bandwith in optimal weighting matrix + , order = @{orderApp} % order of Taylor approximation in perturbation + , pruning % use pruned state space system at higher-order + % , verbose % display and store intermediate estimation results + , weighting_matrix = ['DIAGONAL'] % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename + % , TeX % print TeX tables and graphics + % Optimization options that can be set by the user in the mod file, otherwise default values are provided + %, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons + , mode_compute = 0 % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer + , optim = ('TolFun', 1e-6 + ,'TolX', 1e-6 + ,'MaxIter', 3000 + ,'MaxFunEvals', 1D6 + ,'UseParallel' , 1 + %,'Jacobian' , 'on' + ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute + %, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between + %, analytic_standard_errors + , se_tolx=1e-10 +); + +% Check results + +fprintf('****************************************************************\n') +fprintf('Compare Results for perturbation order @{orderApp}\n') +fprintf('****************************************************************\n') +dev_Q = AndreasenEtAl.Q@{orderApp} - oo_.mom.Q; +dev_datamoments = str2double(AndreasenEtAl.moments@{orderApp}(:,5)) - oo_.mom.data_moments; +dev_modelmoments = str2double(AndreasenEtAl.moments@{orderApp}(:,6)) - oo_.mom.model_moments; + +table([AndreasenEtAl.Q@{orderApp} ; str2double(AndreasenEtAl.moments@{orderApp}(:,5)) ; str2double(AndreasenEtAl.moments@{orderApp}(:,6))],... + [oo_.mom.Q ; oo_.mom.data_moments ; oo_.mom.model_moments ],... + [dev_Q ; dev_datamoments ; dev_modelmoments ],... + 'VariableNames', {'Andreasen et al', 'Dynare', 'dev'},... + 'RowNames', ['Q'; strcat('Data_', M_.matched_moments(:,4)); strcat('Model_', M_.matched_moments(:,4))]) + +if norm(dev_modelmoments)> 1e-4 + warning('Something wrong in the computation of moments at order @{orderApp}') +end + +@#endfor + +%-------------------------------------------------------------------------- +% Replicate estimation at orderApp=3 +%-------------------------------------------------------------------------- +@#ifdef DoEstimation +method_of_moments( + mom_method = GMM % method of moments method; possible values: GMM|SMM + , datafile = 'AFVRR_data.mat' % name of filename with data + , bartlett_kernel_lag = 10 % bandwith in optimal weighting matrix + , order = 3 % order of Taylor approximation in perturbation + , pruning % use pruned state space system at higher-order + % , verbose % display and store intermediate estimation results + , weighting_matrix = ['DIAGONAL', 'Optimal'] % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename + % , TeX % print TeX tables and graphics + % Optimization options that can be set by the user in the mod file, otherwise default values are provided + %, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons + , mode_compute = 13 % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer + , additional_optimizer_steps = [13] + , optim = ('TolFun', 1e-6 + ,'TolX', 1e-6 + ,'MaxIter', 3000 + ,'MaxFunEvals', 1D6 + ,'UseParallel' , 1 + %,'Jacobian' , 'on' + ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute + %, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between + %, analytic_standard_errors + , se_tolx=1e-10 +); +@#endif \ No newline at end of file diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_common.inc b/tests/estimation/method_of_moments/AFVRR/AFVRR_common.inc new file mode 100644 index 0000000000..76aea9e0b0 --- /dev/null +++ b/tests/estimation/method_of_moments/AFVRR/AFVRR_common.inc @@ -0,0 +1,540 @@ +% DSGE model based on replication files of +% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49 +% Original code by Martin M. Andreasen, Jan 2016 +% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021 +% ========================================================================= +% Copyright (C) 2021 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. +% ========================================================================= + +%-------------------------------------------------------------------------- +% Variable declaration +%-------------------------------------------------------------------------- +var +ln_k +ln_s +ln_a +ln_g +ln_d + +ln_c +ln_r +ln_pai +ln_h +ln_q +ln_evf +ln_iv +ln_x2 +ln_la +ln_goy +ln_Esdf + +xhr20 +xhr40 +Exhr + +@#for i in 1:40 +ln_p@{i} +@#endfor + +Obs_Gr_C +Obs_Gr_I +Obs_Infl +Obs_r1 +Obs_r40 +Obs_xhr40 +Obs_GoY +Obs_hours +; + +predetermined_variables ln_k ln_s; + +varobs Obs_Gr_C Obs_Gr_I Obs_Infl Obs_r1 Obs_r40 Obs_xhr40 Obs_GoY Obs_hours; + +%-------------------------------------------------------------------------- +% Exogenous shocks +%-------------------------------------------------------------------------- +varexo +eps_a +eps_d +eps_g +; + +%-------------------------------------------------------------------------- +% Parameter declaration +%-------------------------------------------------------------------------- +parameters +BETTA +B +INHABIT +H +PHI1 +PHI2 +RRA +PHI4 +KAPAone +KAPAtwo +DELTA +THETA +ETA +ALFA +CHI +RHOR +BETTAPAI +BETTAY +MYYPS +MYZ +RHOA +%STDA +RHOG +%STDG +RHOD +%STDD +CONSxhr40 +BETTAxhr +BETTAxhr40 +CONSxhr20 +PAI +GAMA +GoY + +%auxiliary +PHIzero +AA +PHI3 +negVf +; + + +%-------------------------------------------------------------------------- +% Model equations +%-------------------------------------------------------------------------- +% Based on DSGE_model_NegVf_yieldCurve.m and DSGE_model_PosVf_yieldCurve.m +% Note that we include an auxiliary parameter negVf to distinguish whether +% the steady state value function is positive (negVf=0) or negative (negVf=1). +% This parameter is endogenously determined in the steady_state_model block. + +model; +%-------------------------------------------------------------------------- +% Auxiliary expressions +%-------------------------------------------------------------------------- +% do exp transform such that variables are logged variables +@#for var in [ "k", "s", "c", "r", "a", "g", "d", "pai", "h", "q", "evf", "iv", "x2", "la", "goy", "Esdf" ] +#@{var}_ba1 = exp(ln_@{var}(-1)); +#@{var}_cu = exp(ln_@{var}); +#@{var}_cup = exp(ln_@{var}(+1)); +@#endfor +@#for i in 1:40 +#p@{i}_cu = exp(ln_p@{i}); +#p@{i}_cup = exp(ln_p@{i}(+1)); +@#endfor +% these variables are not transformed +#xhr20_cu = xhr20; +#xhr20_cup = xhr20(+1); +#xhr40_cu = xhr40; +#xhr40_cup = xhr40(+1); +#Exhr_cu = Exhr; +#Exhr_cup = Exhr(+1); + +% auxiliary steady state variables +#K = exp(steady_state(ln_k)); +#IV = exp(steady_state(ln_iv)); +#C = exp(steady_state(ln_c)); +#Y = (C + IV)/(1-GoY); +#R = exp(steady_state(ln_r)); +#G = Y-C-IV; + +#removeMeanXhr = 1; + +% The atemporal relations if possible +% No stochastic trend in investment specific shocks +#myyps_cu = MYYPS; +#myyps_cup = MYYPS; + +% No stochastic trend in non-stationary technology shocks +#myz_cu = MYZ; +#myz_cup = MYZ; + +% Defining myzstar +#MYZSTAR = MYYPS^(THETA/(1-THETA))*MYZ; +#myzstar_cu = myyps_cu ^(THETA/(1-THETA))*myz_cu; +#myzstar_cup= myyps_cup^(THETA/(1-THETA))*myz_cup; + +% The expression for the value function (only valid for deterministic trends!) +% Note that we make use of auxiliary parameter negVf to switch signs +#mvf_cup = -negVf*(d_cup/(1-PHI2)*((c_cup-B*c_cu*MYZSTAR^-1)^(1-PHI2)-1) + d_cup*PHIzero/(1-PHI1)*(1-h_cup)^(1-PHI1) - negVf* BETTA*MYZSTAR^((1-PHI4)*(1-PHI2))*AA*evf_cup^(1/(1-PHI3))); + +% The growth rate in lambda +#myla_cup = (la_cup/la_cu)*(AA*evf_cu^(1/(1-PHI3))/mvf_cup)^PHI3*myzstar_cup^(-PHI2*(1-PHI4)-PHI4); + +% The relation between the optimal price for the firms and the pris and inflation +%ptil_cu = ((1-ALFA*(pai_ba1^CHI/pai_cu )^(1-ETA))/(1-ALFA))^(1/(1-ETA)); +%ptil_cup = ((1-ALFA*(pai_cu ^CHI/pai_cup)^(1-ETA))/(1-ALFA))^(1/(1-ETA)); +#ptil_cu = ((1-ALFA*(1/pai_cu )^(1-ETA))/(1-ALFA))^(1/(1-ETA)); +#ptil_cup = ((1-ALFA*(1/pai_cup)^(1-ETA))/(1-ALFA))^(1/(1-ETA)); + +% From the households' FOC for labor +#w_cu = d_cu*PHIzero*(1-h_cu )^(-PHI1)/la_cu; +#w_cup = d_cu*PHIzero*(1-h_cup)^(-PHI1)/la_cup; +% Shouldn't w_cup include d_cup? Let's stick to the original (wrong) code in the replication files as results don't change dramatically... [@wmutschl] + +% The firms' FOC for labor +#mc_cu = w_cu /((1-THETA)*a_cu *myyps_cu ^(-THETA/(1-THETA))*myz_cu ^-THETA *k_cu ^THETA*h_cu ^(-THETA)); +#mc_cup = w_cup/((1-THETA)*a_cup*myyps_cup^(-THETA/(1-THETA))*myz_cup^-THETA *k_cup^THETA*h_cup^(-THETA)); + +% The firms' FOC for capital +#rk_cu = mc_cu *THETA* a_cu *myyps_cu *myz_cu ^(1-THETA)*k_cu ^(THETA-1)*h_cu ^(1-THETA); +#rk_cup = mc_cup*THETA* a_cup*myyps_cup*myz_cup^(1-THETA)*k_cup^(THETA-1)*h_cup^(1-THETA); + +% The income identity +#y_cu = c_cu + iv_cu + g_cu; + +%-------------------------------------------------------------------------- +% Actual model equations +%-------------------------------------------------------------------------- + +[name='Expected value of the value function'] +0 = -evf_cu + (mvf_cup/AA)^(1-PHI3); + +[name='Households FOC for capital'] +0 = -q_cu+BETTA*myla_cup/myyps_cup*(rk_cup+q_cup*(1-DELTA) -q_cup*KAPAtwo/2*(iv_cup/k_cup*myyps_cup*myzstar_cup - IV/K*MYYPS*MYZSTAR)^2 +q_cup*KAPAtwo*(iv_cup/k_cup*myyps_cup*myzstar_cup - IV/K*MYYPS*MYZSTAR)*iv_cup/k_cup*myyps_cup*myzstar_cup); + +[name='Households FOC for investments'] +0 = -1+q_cu*(1-KAPAone/2*(iv_cu/IV-1)^2-iv_cu/IV*KAPAone*(iv_cu/IV-1)-KAPAtwo*(iv_cu/k_cu*myyps_cu*myzstar_cu - IV/K*MYYPS*MYZSTAR)); + +[name='Euler equation for consumption'] +0 = -1+BETTA*r_cu*exp(CONSxhr40*xhr40_cu + CONSxhr20*xhr20_cu)*myla_cup/pai_cup; + +[name='Households FOC for consumption'] +0 = -la_cu + d_cu*(c_cu -B*c_ba1*myzstar_cu^-1)^(-PHI2) -INHABIT*B*BETTA*d_cup*(AA*evf_cu^(1/(1-PHI3))/mvf_cup)^PHI3*(c_cup -B*c_cu*myzstar_cup^-1)^(-PHI2)*myzstar_cup^(-PHI2*(1-PHI4)-PHI4); + +[name='Nonlinear pricing, relation for x1 = (ETA-1)/ETA*x2'] +0= -(ETA-1)/ETA*x2_cu+y_cu*mc_cu*ptil_cu^(-ETA-1) +ALFA*BETTA*myla_cup*(ptil_cu/ptil_cup)^(-ETA-1)*(1/pai_cup)^(-ETA)*(ETA-1)/ETA*x2_cup*myzstar_cup; + +[name='Nonlinear pricing, relation for x2'] +0=-x2_cu+y_cu*ptil_cu^-ETA +ALFA*BETTA*myla_cup*(ptil_cu/ptil_cup)^(-ETA)*(1/pai_cup)^(1-ETA)*x2_cup*myzstar_cup; + +[name='Nonlinear pricing, relation for s'] +0= -s_cup+(1-ALFA)*ptil_cu^(-ETA)+ALFA*(pai_cu/1)^ETA*s_cu; + +[name='Interest rate rule'] +0 = -log(r_cu/R)+RHOR*log(r_ba1/R)+(1-RHOR)*(BETTAPAI*log(pai_cu/PAI)+BETTAY*log(y_cu/Y) + BETTAxhr*(BETTAxhr40*xhr40_cu - removeMeanXhr*Exhr_cu)); + +[name='Production function'] +0 = -y_cu*s_cup + a_cu *(k_cu *myyps_cu ^(-1/(1-THETA))*myz_cu ^-1)^THETA*h_cu ^(1-THETA); + +[name='Relation for physical capital stock'] +0= -k_cup + (1-DELTA)*k_cu*(myyps_cu*myzstar_cu)^-1 + iv_cu - iv_cu*KAPAone/2*(iv_cu/IV-1)^2 - k_cu*(myyps_cu*myzstar_cu)^-1*KAPAtwo/2*(iv_cu/k_cu*myyps_cu*myzstar_cu - IV/K*MYYPS*MYZSTAR)^2; + +[name='Goverment spending over output'] +0=-goy_cu + g_cu/y_cu; + +[name='The yield curve: p1'] +0= -p1_cu + 1/r_cu; + +@#for i in 2:40 +[name='The yield curve: p@{i}'] +0= -p@{i}_cu + BETTA*myla_cup/pai_cup*p@{i-1}_cup; +@#endfor + +[name='Stochastic discount factor'] +0= -Esdf_cu+ BETTA*myla_cup/pai_cup; + +[name='Expected 5 year excess holding period return'] +0= -xhr20_cu+ log(p19_cup) - log(p20_cu) - log(r_cu); + +[name='Expected 10 year excess holding period return'] +0= -xhr40_cu+ log(p39_cup) - log(p40_cu) - log(r_cu); + +[name='Mean of expected excess holding period return in Taylor rule'] +0= -Exhr_cu + (1-GAMA)*(BETTAxhr40*xhr40_cu) + GAMA*Exhr_cup; + +[name='Exogenous process for productivity'] +0 = -log(a_cu)+RHOA*log(a_ba1) + eps_a; + +[name='Exogenous process for government spending'] +0 = -log(g_cu/G)+RHOG*log(g_ba1/G) + eps_g; + +[name='Exogenous process for discount factor shifter'] +0 = -log(d_cu)+RHOD*log(d_ba1) + eps_d; + +[name='Observable annualized consumption growth'] +Obs_Gr_C = 4*( ln_c -ln_c(-1) + log(MYZSTAR)); + +[name='Observable annualized investment growth'] +Obs_Gr_I = 4*( ln_iv - ln_iv(-1) + log(MYZSTAR)+log(MYYPS)); + +[name='Observable annualized inflation'] +Obs_Infl = 4*( ln_pai); + +[name='Observable annualized one-quarter nominal yield'] +Obs_r1 = 4*( ln_r); + +[name='Observable annualized 10-year nominal yield'] +Obs_r40 = 4*( -1/40*ln_p40); + +[name='Observable annualized 10-year ex post excess holding period return'] +Obs_xhr40 = 4*( ln_p39 - ln_p40(-1) - ln_r(-1) ); + +[name='Observable annualized log ratio of government spending to GDP'] +Obs_GoY = 4*( 1/4*ln_goy); + +[name='Observable annualized log of hours'] +Obs_hours = 4*( 1/100*ln_h); +end; + + +%-------------------------------------------------------------------------- +% Steady State Computations +%-------------------------------------------------------------------------- +% Based on DSGE_model_yieldCurve_ss.m, getPHI3.m, ObjectGMM.m +% Note that we include an auxiliary parameter negVf to distinguish whether +% the steady state value function is positive (negVf=0) or negative (negVf=1). +% This parameter is endogenously determined in the steady_state_model block. + + +steady_state_model; + +% The growth rate in the firms' fixed costs +MYZSTARBAR = MYYPS^(THETA/(1-THETA))*MYZ; + +% The growth rate for lampda +MYLABAR = MYZSTARBAR^(-PHI2*(1-PHI4)-PHI4); + +% The relative optimal price for firms +PTILBAR = ((1-ALFA*PAI^((CHI-1)*(1-ETA)))/(1-ALFA))^(1/(1-ETA)); + +% The state variable s for distortions between output and produktion +SBAR = ((1-ALFA)*PTILBAR^(-ETA))/(1-ALFA*PAI^((1-CHI)*ETA)); + +% The 1-period interest rate +RBAR = PAI/(BETTA*MYLABAR); + +% The market price of capital +QBAR = 1; + +% The real price of renting capital +RKBAR = QBAR*(MYYPS/(BETTA*MYLABAR)-(1-DELTA)); + +% The marginal costs in the firms +MCBAR = (1-ALFA*BETTA*MYLABAR*PAI^((1-CHI)*ETA)*MYZSTARBAR)*(ETA-1)/ETA*PTILBAR/(1-ALFA*BETTA*MYLABAR*PAI^((CHI-1)*(1-ETA))*MYZSTARBAR); + +% The capital stock +KBAR = H*(RKBAR/(MCBAR*THETA*MYYPS*MYZ^(1-THETA)))^(1/(THETA-1)); + +% The wage level +WBAR = MCBAR*(1-THETA)*MYYPS^(-THETA/(1-THETA))*MYZ^-THETA*(KBAR/H)^THETA; + +% The level of investment +IVBAR = KBAR - (1-DELTA)*KBAR*MYYPS^(-1/(1-THETA))*MYZ^-1; + +% The consumption level +CBAR = ((1-GoY)*(KBAR*MYYPS^(-1/(1-THETA))*MYZ^-1)^THETA*H^(1-THETA))/SBAR-IVBAR; + +% The output level +YBAR = (CBAR + IVBAR)/(1-GoY); + +% The value of lambda +LABAR = (CBAR-B*CBAR*MYZSTARBAR^-1)^-PHI2 - INHABIT*B*BETTA*(CBAR-B*CBAR*MYZSTARBAR^-1)^-PHI2*MYZSTARBAR^(-PHI2*(1-PHI4)-PHI4); + +% The value of PHIzero +PHIzero = LABAR*WBAR*(1-H)^PHI1; + +% The level of the value function +VFBAR = 1/(1-BETTA*MYZSTARBAR^((1-PHI4)*(1-PHI2)))*(1/(1-PHI2)*((CBAR-B*CBAR*MYZSTARBAR^-1)^(1-PHI2)-1)+PHIzero/(1-PHI1)*(1-H)^(1-PHI1)); +UBAR = 1/(1-PHI2)*((CBAR-B*CBAR*MYZSTARBAR^-1)^(1-PHI2)-1)+PHIzero/(1-PHI1)*(1-H)^(1-PHI1); +[AA, EVFBAR, PHI3, negVf, info]= AFVRR_steady_helper(VFBAR,RBAR,IVBAR,CBAR,KBAR,LABAR,QBAR,YBAR, BETTA,B,PAI,H,PHIzero,PHI1,PHI2,THETA,MYYPS,MYZ,INHABIT,RRA,CONSxhr40); +% The value of X2 +X2BAR = YBAR*PTILBAR^(-ETA)/(1-BETTA*ALFA*MYLABAR*PAI^((CHI-1)*(1-ETA))*MYZSTARBAR); + +% Government spending +GBAR = GoY*YBAR; +%************************************************************************** + +% map into model variables +ln_k = log(KBAR); +ln_s = log(SBAR); +ln_c_ba1 = log(CBAR); +ln_r_ba1 = log(RBAR); +ln_a = log(1); +ln_g = log(GBAR); +ln_d = log(1); + +ln_c = log(CBAR); +ln_r = log(RBAR); +ln_pai = log(PAI); +ln_h = log(H); +ln_q = log(QBAR); +ln_evf = log(EVFBAR); +ln_iv = log(IVBAR); +ln_x2 = log(X2BAR); +ln_la = log(LABAR); +ln_goy = log(GoY); +ln_Esdf = log(1/RBAR); +xhr20 = 0; +xhr40 = 0; +Exhr = 0; +% The yield curve +ln_p1 = log((1/RBAR)^1); +ln_p2 = log((1/RBAR)^2); +ln_p3 = log((1/RBAR)^3); +ln_p4 = log((1/RBAR)^4); +ln_p5 = log((1/RBAR)^5); +ln_p6 = log((1/RBAR)^6); +ln_p7 = log((1/RBAR)^7); +ln_p8 = log((1/RBAR)^8); +ln_p9 = log((1/RBAR)^9); +ln_p10 = log((1/RBAR)^10); +ln_p11 = log((1/RBAR)^11); +ln_p12 = log((1/RBAR)^12); +ln_p13 = log((1/RBAR)^13); +ln_p14 = log((1/RBAR)^14); +ln_p15 = log((1/RBAR)^15); +ln_p16 = log((1/RBAR)^16); +ln_p17 = log((1/RBAR)^17); +ln_p18 = log((1/RBAR)^18); +ln_p19 = log((1/RBAR)^19); +ln_p20 = log((1/RBAR)^20); +ln_p21 = log((1/RBAR)^21); +ln_p22 = log((1/RBAR)^22); +ln_p23 = log((1/RBAR)^23); +ln_p24 = log((1/RBAR)^24); +ln_p25 = log((1/RBAR)^25); +ln_p26 = log((1/RBAR)^26); +ln_p27 = log((1/RBAR)^27); +ln_p28 = log((1/RBAR)^28); +ln_p29 = log((1/RBAR)^29); +ln_p30 = log((1/RBAR)^30); +ln_p31 = log((1/RBAR)^31); +ln_p32 = log((1/RBAR)^32); +ln_p33 = log((1/RBAR)^33); +ln_p34 = log((1/RBAR)^34); +ln_p35 = log((1/RBAR)^35); +ln_p36 = log((1/RBAR)^36); +ln_p37 = log((1/RBAR)^37); +ln_p38 = log((1/RBAR)^38); +ln_p39 = log((1/RBAR)^39); +ln_p40 = log((1/RBAR)^40); + +Obs_Gr_C = 4*( log(MYZSTARBAR) ); +Obs_Gr_I = 4*( log(MYZSTARBAR)+log(MYYPS) ); +Obs_Infl = 4*( ln_pai ); +Obs_r1 = 4*( ln_r ); +Obs_r40 = 4*( -1/40*ln_p40 ); +Obs_xhr40 = 4*( xhr40 ); +Obs_GoY = 4*( 1/4*ln_goy ); +Obs_hours = 4*( 1/100*ln_h ); +end; + +%-------------------------------------------------------------------------- +% Declare moments to use in estimation +%-------------------------------------------------------------------------- +% These are the moments used in the paper; corresponds to momentSet=2 in the replication files + +matched_moments; +%mean +Obs_Gr_C; +Obs_Gr_I; +Obs_Infl; +Obs_r1; +Obs_r40; +Obs_xhr40; +Obs_GoY; +Obs_hours; + +% all variances +Obs_Gr_C*Obs_Gr_C; +Obs_Gr_I*Obs_Gr_I; +Obs_Infl*Obs_Infl; +Obs_r1*Obs_r1; +Obs_r40*Obs_r40; +Obs_xhr40*Obs_xhr40; +Obs_GoY*Obs_GoY; +Obs_hours*Obs_hours; + +% covariance excluding GoY and hours +Obs_Gr_C*Obs_Gr_I; +Obs_Gr_C*Obs_Infl; +Obs_Gr_C*Obs_r1; +Obs_Gr_C*Obs_r40; +Obs_Gr_C*Obs_xhr40; +%Obs_Gr_C*Obs_GoY; +%Obs_Gr_C*Obs_hours; + +Obs_Gr_I*Obs_Infl; +Obs_Gr_I*Obs_r1; +Obs_Gr_I*Obs_r40; +Obs_Gr_I*Obs_xhr40; +%Obs_Gr_I*Obs_GoY; +%Obs_Gr_I*Obs_hours; + +Obs_Infl*Obs_r1; +Obs_Infl*Obs_r40; +Obs_Infl*Obs_xhr40; +%Obs_Infl*Obs_GoY; +%Obs_Infl*Obs_hours; + +Obs_r1*Obs_r40; +Obs_r1*Obs_xhr40; +%Obs_r1*Obs_GoY; +%Obs_r1*Obs_hours; + +Obs_r40*Obs_xhr40; +%Obs_r40*Obs_GoY; +%Obs_r40*Obs_hours; + +%Obs_xhr40*Obs_GoY; +%Obs_xhr40*Obs_hours; + +%Obs_GoY*Obs_hours; + +%first autocovariance +Obs_Gr_C*Obs_Gr_C(-1); +Obs_Gr_I*Obs_Gr_I(-1); +Obs_Infl*Obs_Infl(-1); +Obs_r1*Obs_r1(-1); +Obs_r40*Obs_r40(-1); +Obs_xhr40*Obs_xhr40(-1); +Obs_GoY*Obs_GoY(-1); +Obs_hours*Obs_hours(-1); +end; + +%-------------------------------------------------------------------------- +% Create Data +%-------------------------------------------------------------------------- +@#ifdef CreateData +verbatim; +% From 1961Q3 to 2007Q4 +DataUS = xlsread('Data_PruningPaper_v5.xlsx','Data_used','E3:M188'); +% ANNUALIZED (except for hours and GoY) +% 1 2 3 4 5 6 7 8 9 +% Lables: Date Gr_C Gr_I GoY hours Infl_C r1 r40 xhr40 +%label_data = {'Gr_C ', 'Gr_I ','Infl ', 'r1 ', 'r40 ', 'xhr40 ','GoY ', 'hours '}; +%DataUS = [DataUS(:,2:3) DataUS(:,6:8) DataUS(:,9) log(DataUS(:,4)) 4*log(DataUS(:,5))/100]; +Obs_Gr_C = DataUS(:,2); +Obs_Gr_I = DataUS(:,3); +Obs_Infl = DataUS(:,6); +Obs_r1 = DataUS(:,7); +Obs_r40 = DataUS(:,8); +Obs_xhr40 = DataUS(:,9); +Obs_GoY = log(DataUS(:,4)); +Obs_hours = 4*log(DataUS(:,5))/100; + +save('AFVRR_data.mat','Obs_Gr_C','Obs_Gr_I','Obs_Infl','Obs_r1','Obs_r40','Obs_xhr40','Obs_GoY','Obs_hours'); +pause(1); +end; +@#endif \ No newline at end of file diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_data.mat b/tests/estimation/method_of_moments/AFVRR/AFVRR_data.mat new file mode 100644 index 0000000000000000000000000000000000000000..f606b2109e2bf61024b860d13000842c27f3d290 GIT binary patch literal 10941 zcmeZu4DoSvQZUssQ1EpO(M`+DN!3vZ$Vn_o%P-2cQgHY2i*PhE(NS<NN=+<DO;O0t zvr-68O;PYl%u`S>Q!q5JGB&X?HCHe)Ffvpi5-`93qo*%F0|UcORtAQOIl2?MO|F$o z9FIS_JHjn>qn=aAl^AU`-_DZ(>kQX+FG`s<C1i@rdX1A_Cyr!iP4(2At2lk%$~|ki zgJ<bI>JWJu^5}2uzo~!Auf3o1yr%xV<@xtNZT7$a-0GqvsXWzV$^Vs4>i@o9QG06j zk$|5f^E)4k?lC=KTC~$8cF%uZv9;S{7EIkcSHb?n^#{KbS@zAgoyT>NWu@?1FRtgp ze+&zb+_^X<q3p&yh1&^C?cGa_&hs=){IE&dt(!CF{*~#k+k`y+7Fk7eAF+Bk>)G3+ zCXK13m%6H&o*mj)W@XFreOIcuT)q3mfG5E(pLz+-KXh&X6PE4zb!8P_xtT7R-C3%) z@PxF~nh+C#8UAmIUq?AlNZsoHZ7ci1V{UizPS5u8G0V8PLU8MgRg>@TJnbd1UUOeS zbyR27<v-=y&uJM>2-@)Qq^)Y2J4>wny;Vn~r)Nqozda?w{&aD8x16K%-jLnLIv%WD zeeB$^k4pQC|D-BwHx)1YEMsKK+4l6|y?tdYimAnQMP`Z~*;9L~{(5oxx_*$oY1PC# zwO#72GH2HDc~Z}(IwV|~tYTk2;XvlOCz)o2EZ_6*e$CTV^>`PO|1ZHq@#E^^+eYn& zZag{|dRJ6L?QJP{@@CCNBG&sh?{U1iWc~YVSA8}bcQ4CYzobBZ>q&**(Oh>I1!}Hd zA`*S|wvY2|&Utz}e=jlVZ3wFhHwzJ#h}&(VkgKL)zUuPKD~=Z)Zd<38Cw6qE&BI@f z9$f-&e^1Iz*T^a1U6$27=ia2=_aeR`t3=n;SviYbHd6lQwLQ_pR>A)3fq98>GY)qB zdoL+8souoEKiOj9{kQUyjwd|HG}GTO>7n>e=dUly*fyozT)gru&*SgsWpgqTUu<0_ z9xrATGNFTSYeC!8?z__Q{Q*9aA1<sa);s)L{?(TG>r-~<Y6nhHHFD8gz4v?E8T}Tk z7gOd7zt)}hZQl0e7i+G@m^iuam%Art{f_tObBT;qJDd%Zo|-<3vpE{w{^8{0O&W1i z|44p#rskS3y{7a+^2FqTsJHtjCuUr!`06(EgtW(|zFS8U#2()W7SsJ?Vxy)JBe5oQ zRrpVxlpFK^1eDGZbDnbf!ujd0=N^jdnfWb}*LRxZtCwYP<67G3vr!tq9&OG2U96Gz ze2RM8^&lJL>(VFJ3V(n0|HLC{R@cOff*H08Z`3KM<<52Zcu`mH@hhITJ<9(+a{0Gy znryGSwl~$H^5pjy1saEE{JXbc=1m@1$=qPBZQY+O6EA+zReB$mn^z~$ym$7)xS1B| z_LI+ci{58XIo7`}=Foz|Pp9}Q^<5jQ&M2}^e7)!S_p@5IB9pgFH!crlJAdWaUB+KL zV$9xWF7ZmR+1*+b`$Fg6<>guNJ?$^L*B`rbhlOoEd%M-=)e_fssb6F7_-$<UtL%dp zyL10PwQdXEz6`a8b=sCo82??oy{#Z6V)oIemW3~-oVoJS`{9di(j}%o4<cfI>^ZMD zYq9BOm#^nE``%yv@<mC$IK<*jUHZjyiT0O&hCHh7J8rkJs=tKwPto>!7piwP804RQ zGxr-)&slbzbvmL8uBXczsrxycJ<PA3{Eb^9y=(hFF2;#h``TVbGIh-sizz%O{2}$F z_3g*$tSWQLH_p+{Dwy|i+KFVQ89x_X@7&9@XVrgCyB)p`=XjbQED~Y-8GP=`N)e75 zA!+hE%)=eRdruYo2xOEGO}lDp#qD9Av(d1o$-@8h)1wo!n5G;)e`)nCi<HgARj>Vv zYeW}+EpnGSzH!NuJ9qBN2(Am97PU`i*`;45yIE!afBD`vbw<&b6>c_4i82eX8PEOm z$ik=VX|>u~@!Dv)70cw0Z1m31zZ7+_Fd%+rTSVV|ndqAvYh|8I&wDjxS(lx8?&Wtv zzs+qocz-|f<i=jZ{8fD`0z2a)!&M9a?6C~jx1M)6HzVoe<+n25s~=B0!~bx@C*v^f zZ;w4D_J1rccyi(MJG-JQEstxP_dah?YpZ8mIXiPVr~rQjDZnRJnoQwlINI)L>3TjY zYKoVw=0~T=RqM=rR)}8;xGAI>-63*vT4DfO@@zx5v^UXP0&05II>Q(By$x(R6x`Xh zsLE=6^||+Vs?YEI9~UXqX%gS%GU?aLCI9~}SE>Ix%koIw$IbEu---=Bmfp~{oj(6u zZ$_%<t;K$+0kx|=R!>cPeDcwbjR7lVI!t3WNQfjSy?p)q^^}R-t-N!V9i6n1qvqbn zcQ20e9BDC`9R2-?)7n>8=W6G53d~<MEwXyEjQ-rXsMYiJ8fO_C>|Yq!wKOVa{+p+E zE*s`tv?<C^b?eukTa$RwdBs()-@Dzr1W)o_*UH=7yWL%^^2_GWhWpM=dM=*c@_g%} zYjNpv$C7U8yR7->;=SkWInOMero5<j?^4c!PcxQ(oA-9&g9|sB*KCw9*(Q^xle@Q3 z>SJZ@)VZw@9+$SM>^Xh$v1(4uBGH~{uHh*=r&<0Ge0u5j(@7ka_YbQ}9XWLIjj={b zjn|>DUvHZG7Fwk6eAhbS%dWh=BTiz^>{ih~y|-?bzHFIqw=iqdCYjJAvm)b_FMr(7 z_MiL7-|fyf<wLpNT>+WZi`s6UZ@+up|JW2((H-LFzur%a<LJEbyE?o->>$(jKgnND zJ$x*xpYyp(>DH^T&hlfw4*L2UE%|HJy~1|$jnJ!34k-a1`$Xd!KLpwd@0}&plRBGE zzQ!iXaYfAQ<UM6R?bGf`ul~14=*!)iX7~SlHH3W@_hP#nvu4lli&rWZF$r}=f62LG znKA49#kEgT4u?vWPn9nIxFz(>qW>#p_GJ4N$j6Cx_x`P7bd$=F_^>}~huhP|cKbW^ zI8q*%+&`w@9n|@`I^8AOkL^%_%IQ4?{zmJ5to?r>RHX5oy>pM9Zm;62FTT<3-!?gh zzX)7<+gh;x_RF$hk;xqu#>+ELZIf!+c|hUeFGIbOna9GrQh!9;d_3u=UpM2ViJsAu zOC<vTzu0mw{dcj!uGuH{=N?zT_Fnn4)laoU3odOqkb2OvM(@Wrx5?9(CLVU`+`ck( z!#;7#2|34DXWvr(pL(^l=l`@TS`+k}kExgQm$xcaD4lxnubbzM{ELuNVY&y-n!m~n zl#VF)tyo@qIMS{zUWI4XS1s53J|6$x*zu`df3wb3Plx^KqRDqlw%UGlDa$#iJHKQ_ zR$kPW#Z%hTzi-)}b4uIwW0}{AH?J%-y3QTjp#F$s-HQG*cjvT6pAS)6|Mla89}hjf z5_U-@t_+x_aa4~nSn<G-Z;o7Rrg6+VxjN#-sag|J(J9T|Cr(8w*UIImtJ|#nD7av< zi0l2wJ2q^neY3TtiZduN^mNbfh>BbOT-Pd}bUe(FoEflB_tF%exy%24?wDlEQ}o_J zDo}Vzo<;C6mX+<xEuzaLgi?HYC%w>``2N1&lFQLOdB0A`&sNrJzEUt(aj!P_Blh6q zcV#Oxe0~+*7r83Ee$v&$GG~k~t_zA4snz9{UZel=%Dkk;n%z~|&vVQ^*_Oy^S<NW; zTjb*Yu~O*LwkxMkpE>XHV1L=V#rjPgK~GXUZ#C<Pa81cDmkK_Zzw5q0wFaX!``Km2 z&&!f8{Ml$at9|BE!Rl9A7jF!x`v1J)gGz*s<f{!;#~M?O@-tfhN9ypeT>H;`odmz> z7s>wGO%F>SePx`kz?Ua2)y{KQqtVPbR^Zko?qyw}AFp@Stg%@2v@EWbS+$b0`1wI6 ziQ<>-a_deszVP+Acl<2Vi^%PDnT47Sbqr_sJ+zR%%rCO3&S!I?y=mpe*FjQWjBjUV z`8jgLXYV}ytWd#+S@P*JU&VlZYZizZeh+@$5gX!ZA0JZsw4VEh&+$KpHhOJ7;WFbo z|EXh__b8^!oPR}sf%DSsMbE2~`OaNXXIuHM(!lff{727xkH7l<$gC_iQX;d@{_DZ1 zjq5IEY|Oe_vPFB9ch#%s3ldap-a8g>?TYMU6p7WFcHOt+^$gWU6|2+MzaB=<J>Ict z+uL%vmY$CHrAIe@h<~=q=ubG)joF7v*0&ZYe3-~DU3R|Zh}FR#e5W{juC0;H*u>3# zw0WJR+XaI-r%=684~2is*F#Uw1C{uHAtnBlS_@$gnd8fy;;Jl*id*N1dTYhZS-JbZ zURj*i(&{%)mhO@{$t$={INMWYY1`A(E0ZRg-0qQ_T_=%u_0+qN;PTi<R{G)E&u7HN zgrC3rz0&Ud_usYi-rv99%EFYmPp~oJ%RSEjKdUAG-M@V=@q_*Q-`n=Gm;Y9M&u36M z-SoZNmE5&)iPpCs=CrA||Jy7v=b*|QpGnSwYajev7iMOYccx}jLvZWDRhMp_5|XQV zV*KT=q$9t8x`^Z9_N5;lPG0<%zgOhLi%o0e5An}6s5O1}Yjda28=FI4I&1>i^QUFX zswDpu*na7j(e>@@Y{|QxzI_zN5hc~<Cx2QY`^cTSTb!BXcCt2aUgNi6OU>8N7m12S zW!c)l9{DA8_W7Ojcz=ZBx^tunyQSFXR(<Iex&j%O4t|te+aRv}UdFgL&|zQUrr3#7 zMciIjEa^Jq^~ctI_xWenQavp8diY#0clPpln>u|_na9F*d5NX6%t~|f-j}@6N(s2f z6L;rI-~FmKxrn`sc*-TON-XQ$@~H2(w~tvhhr_CwH<EX&vghB8Dfn|cRA|A37PlgQ z)qq9L_8MCR9j^-*U!AMftQOAR#<-Q;=hunf`jy;@YF!^wiXXWa{IM#V`Kge<=G6b> zvX?zVN)a#B_Qu6LIDT%))1{)1l{dTG%`TD^k}sOIEIsPuhm)1Lc}JDbNcWk2S&@Gz zXf@ZxZO*kGk{cd~_hoN*@?Jvz_0y!1OY1*H+Fjs@ZPhDtV-Za7xbpLXm8wVXjh)uf z(hkLMO468`*>}h6VAWosb)v|uCh_AQW;^M9Q$F_8GK;CEx<zjdan@XIXn1ff<At!; z(mA0_n(kW-Cmysvxbvk$Y*2#q3o%P+1D4(kS8E$hW}IrQEoT#*c=GBFwfRAx&EhyV z_GSjR>@7WE@J(*9TIa;AM#pDctUX$|`@y%lT6#yGTKY-9f7$d(D>K6{!0^NG=PkK% z35R#E2iDfdn$2>T-Rr(+`r_HIzo$u+vj2OuceCB;@Xlj*V}GuSaCyHZ{?PGHH+I~* zuNAz0a>Fs@Hy#(wV?Xrd7>HlKS}=Fk*{k30vpn?8wg2v8{pDWXguA-oO$}CuOutV* zaJg~9$*63_kkHeo=45$0yv-@Rw0<`K(w9^B&F21Lp%;6-+&q-U_$a5e{fmxc3vXy% zTQQ~gd&<r;E1PZBd==g7FEY1vR^|NP>hq>1t>dliNYib)AJo-mk-}Ls^VOt%3v}4e z%cgEWqdf1BKmV1&Cb<sB&|fa=q&%3J+V@=w3Fj=fkKY)ce5{#c)_wb)HxfA~e0QAN zlGSjg^4;d^$5c<0UJ;*B9(MScJhRc4y}2uP7Wv8V4{O+4%jTTTBKzaA)xBojNH3Ls znaw`C;yc!vv$%frisvb_+~JdU!i8D1GjP$G7GIs{eC2k%ip9_8Zp>WYy0#{~@(Q!% z1^1A5-hJ~Mj;?)u^i?6}8taGGC1)!z81C$OI{h~9E6-Uai>2j_f;#F7InO?by_R1y z`y}gj?Rl-QJS1&m50%8r-eu|B<@K(l*7BC-4tKZBs~^^M?E1aXiRbGT^PZLA@BbzI zd3V6_arT8@or!$sS93bGJ<`^jaiw{0Yu!v`M;^cD?kR_t30YJuyxp$&zD4WQ{B5iU zWio=R_S(hhu?J_T%g^VPH4r-xs9xQrP@A{v$95yj6T6baKlr#N*uRO1@y=rVyYjB| zw>P;>*6W+>PR7pR71Xz$nY#Vfg8R?EUbYktno;kOxIg)c^^LfqsXNkE+Dq6c$?g37 z)b&r^m!N5~n*~dSL*h1n<2vWBCy{eOqhQlgz4->w&HJr>#G1_4JgWUpKQuct=S%F1 z{S^!Q`Zpcd-}iwxS@D1NwcPK=#5(SX7hEsgCfgSJ{l#-nrwL{?dlZcy=-hf<yDjcZ z5TkedEc-dzCLEAozE#flHEY6t`}@}OB6$rj#zmi9)^gy^t|zaejqO<6RNY$Qz1s?A zExvqmquPwk{|}zC|Go3ab%)9a#ft>w{najRyC;w+t@^wzIYRW_wT$WCe-$MLdEB%M zF5@yc)G+lqUDXrwdt1`!wQhgJuXlYE1XThrpp`&%h%gKD(c|9cl^j!7yb$j)@D`Z5 zVM@d7Cp<3Q?yVh6dJ3Nym73J~A5NH_Y?GAC&-Ugdo3w?*85T~VfFnoTnN9z4TyROy z;9;G<MA@eF{Li`7?=8Q-&vsT2=-}pPVa=cOVg3GzN9+F{vQhj0aap~iZy%ROhqceF z^V^@fyElcL`XkQSaqsDK(Y;-rbEMWko#-!V@oJ)xiTOm{u7EwupS+U%Q4w$dTks{1 z2QxR@naM$k&(?kap0c^%!b$C~J2d1w3w_m@mAp3WTl;63tB;zK(CkxZKS_3^ZIquk zZ_(pl>yNSb=YCE|u5x<3X+rN3b*aAX(TsMN_6rLIdbfw33CJj1BETb8zh<dFOVJy1 zmqk$>i?<Z+UFF76`QV)ABs=l8xr;T6>o*<P9+maU#J@@TX8e0CP2t1pW@~3BX*TE0 z++F#9s#nMd&UWs*sVD5j_bq(OZrRt@BKzmcJ|WjiyM0$2RO@6uPFV45)y8dq{{4z@ z6pcC4*_>J$x}!hvqvtA_)rYEX*K|yMq308(V`H-a|Gv=oU-pSC>+0CQhIy5P=Cnz& zJwacV+-Qren)XP0{+i(Vmr^2({=G9WZtgDKW&M`#aZ<)Rw^w{6oeQj{-%DP*&aL+S z-498T%2(!|s(yWg*J5e3p5oVx1j)h`$14M+)8w;Hb}gF!anFfQm$uvKdQ@yNb~%)H zjD20Cm;G<IFZ~<*#A8>w?GM?mpR<i|t!LymA9m9(Yg`*$Wh}ey{@bzhx?fM%TK`D~ zYn<MSJ)ahKylRbkFZVm19EW=EMYTCoq-I)A+P!>LNX56KyS}g2x8`;hsr`1Nz&2|c zYv}%OnH&DTJ(O~vJ!{I*t1aj9@>l}xOmb4Mcif%+cAs?G7Ki;Cv$I#!8nf)?z9~I< zw!rrNYic)#OSi0#lk2)*qWG7ic)s`3N{M%}HpvG0ZXr<*g}**Z`!WB2*SC*8wkG_s z^Yd4)IL>fXV4B^srmgocO}u@VYeMzb{950sPL>s)gu9oQ7AU7)O&2>=7@cbvepX=d zl~SXpw<fS0x0+?TrA*Z-GVWLF!PFU^rLjeKT=<^3_S^o84azt!XRF%B`S4-h?*Cy? znq~Db!?agSc=((<S@Zczrj#%B`%1JM`x`%N%1r9z*s@nT$I34x;nU2miKX5;eI-BM zC(h(_h>Df|Hhm-0lfO@s^QM{Jxc%esu5Z(mQvUdbKV3Ir;mcE8tETB6t2W%_Jv-@0 z!OwHIUK+acMHS@jE9+(A+&7W=ck~jEQl8|g%fk<so--~<a^ZC4_&QyfQ)U9&_N!$z z8cp3x%L;<$bH%+ip82)@bi%VQktZj#3SCYY-~Ri>)Qo!DRXcJ{vrnA4)o^PU`^5SA zAIz*3^L9+$ossSGL8@et&K^~ly7ecXE<aE-XW8oJNqL_GUp=^%zVP|O^8MW3_f|*D z;ObmnwWE0AtAu;ex99S&cFk7)_g{>i|Ag-O=DGDQXNrVRpYF|BlVfXqDO&Z=n%N<j zjwC)zyElzf+MREk|9!n5kHy4y2`M+e2=3YRf2OH$%Fz#U;;~cz9&6pWB*EKeKEG7| zH^r@!IbZK;v5{LUbAFAr^7UPt9`1hjX=}`C8JY9Fa}s=>DO8``%ch^oXy#$g_ExL& z$coRsPl9Iq_}n@-jrE9eg5YHx^Pe;L+)Dl=g~`gkmVGzDmw5+AeZ{#4;)jo2Ey+s? zkYX==Yo&bAnJF&y%etGQK6?ywe#~C<?9rPoKGIRg9l!gYmvM}=Ty*cF+V9Vi74H+T zeo8gs;;Y?x`Cr3BhAmy}ou#$Q4Oa?&l8Y5eN)6!uDjdjJ@@dh^-S>11mLK9yVb^{z zV{`3<O9K7k+Ny4B)BCU0y<Pc7Qmtv<_uLvgv;Wa0%K1f;8LU^79-f)EG{bNA41*vA zrt3e>mYrv|*|JWp&(eJAqtFd6znsjptgF78m~H)E*m!-MwCr}##rw^lHfNhM?b)(8 z^3IO1#)%^P57gFK*WLW{T&8@FchkkD--`}wyI9=%dU>N8r}%fHL*cP!0uoLhk)0L3 zjpaYX`QNwPK;``}M$kBYYe=+)OQ6VJqhrSFg(kK96g(MS`S(P-fbXfA2|-?Vd*pu# z>|1i8U7%C%>|VPkqLMu7z8;g@Pb#ZEWmo*UKw{>}HI`fR%`eXh%f4Ux?Oyi$+P?J) z9RH#mH~eMgf5`vV-kkmZ23_&vpSG-hwCdTZS--9=OKYEhw=Ahx&sHxo!r0@C&hPDa z$~}G3w~EYB_tJTrr+IjivSAH7`=Rq%udCxqg@n&Ed%FA1;g5Bh%hpm*Cq3oD^s3C1 zxSQ`={l9yine8FJ>$aKE>Ex}ZH9faC=5K%fv-sQD6E=L=ysueLStYpdJ+a^Nmub-V z<dA|@!oMdQe=RJ0yhr}?qLt5*+>?@K#IHzeP~O*ketzuJ{BZ5xEPp%ve>=T)u=^rh z8PhGz>?fxpCai1PAvJUB)^Z<rxzB$t*oI108|*n``R%ZLDZ@nh%9V4!Ew?UTwft$@ zYgQ%xU*hkhLMDDXX!(U9(EQch;@MZk_MJFad!c%5sXjN~l)07q`@?;o8eMO<YJBm& zzL>|>f?Z**w$$`<g3p9jq%GIT`>B#v`MDzNJ9p`#^DpK{%{9>zs4P5xpm6`UBdcfL zbFTY;Wx}fiwnuk1D9gDX=`=Vi@>H+*-p(EM)|b|=VPBEP?j-&wXl{wzftN9>_NqIW z)_<A1ul`HTi{Gx#+g`cYzpPxjclmxP<+wsn3YgCVN&&7@xC25$C60%)SNe3V5MCtN zp`_TsrKQ01pF?Ge2uFxgh}<kUMox{XZA_2E^ecH)-lsO+-MxFm>35%uCQM(Esg&5& zp_XhX(HNqlbl}ar(@)FN-_6;Ze!hHPaozv_-(P;Ju*vn6^Pk+a=jBA3;v4Tjf3fba zJy}2RVBl}%wG}q9zskk;p7?)Y8vDGJJ2|erig{FPE`Mk$Z}6XsH6qq)e(JvWRGhcq z%|X_?Oe{L(b&{XF6?sg`UPozhU!1V&r_=qtEbC6j+s$3V5+SZP=c>hWk(!J1R$mim zwb=1w;r&NejCuJrdE37p4%+jq|J&CioD=gzlQVNd+7w>LzCNp|`0M3a^C{B~zAJOT zaV%I#WS&v3wX#s6lGzqRD{mg{+?z)KnS*%F@80ll&dwR##TmaWj$5piG1v7_6Z~{; zV!Kmc(L2G&O(K(|x0ms+om})Wv)`>}m+}*X?dSKDU5f2fd|!3=$ib{Uk)CMVl~GIE zZk6qM+u*{u{>q&Xt(;sclC6JU{&y6e^H@Ia-^b-#Q{L9p2L|jGD7XIq?dRf{uFJ01 zUxtW&5YFGVFLgP?RAI(M+5giH_2mdhuxS@(1x{ZrF*zkl^JvrQ=dXiJMLk|xpXu%h zPS&4kw~l4<zlmH=eb;vT)@B{J{(h<P3J2$Jvy1`?3x682F4dM!;kf-bHZ*sG%rzCA zg<Sp3EGAiodPWXMH12KxHS1m~XV6&=%dW?>4F5+<ubj-mw#=@$Wu{Qc=eqf8C#$gQ z-Cb>2>%=%cwV6M6nwCMTz}3wKOQaTB$1VNovijhPe|z{oXKuZ+?dzMm(u|#2H==&8 z;%r$|{+G2T<#%)OgU4cF;ieLI&iWS2m5|H1d8f~L-F){w9yzR$SGO*beeyc}epuN2 zv=05s3)Wi{thz1Ma^C#o@_%-();062JIXgqvTjsgS@`PQzvOvsTRAR%zP)B&P<PJ_ z&)@5<UOR>qOJyYNyppVNB}wP|KCbtMZ2`(goheIp3eT*W%8{l1U`j`K(P_EMQ<^W> z-i+q7(&(PA(fHWhB~kO9#C|#JTl&ov2WsC+Klbu#e_0(?RG0YSR(SKli%VGw&-!*t znTYGhmfv3@cJ-{YD_`~%gDdJSp?54EH@~b3bZoyF(D^6!=%rKEMH1Rd{OLTW6P$Oy zz0M=KukQ2_9kW)a`}Ru`T5cS$aoUsZ?lC<fPfYav-nA31F6Wr{=}q(fc9BJobr_>~ z-u#>*)A}_~u;cckDzC!Fo1^`mb+rsG?NyFA-+#!sx0gFdMr-Gv9^a@X1<|D?W%IU8 zS-pSe*O`aaH)PIlvA!=Yp2Wbl>ajA{dVQ6IC+`;@*wXI7b$Yk*x9rk?^5-8|c{B!e z6lotmeev!5IU83W*tXTBvFJjYNbDzp!n*zYu0QUYwpc{Zk9qGVPRVd_<F9tba>t&< zI-PmF-A7+ie8az!iM6x)L|yJR@$8wqY3{xvwm#X)b{*E{<R1QIGCn^F6k?5S<~<cX z|80N8k8NEq#U>t@r#^G;`4-O1)wMenwx93TOnAMv<+XT|^Q!bf)2B1u9ari*?DO|s zB9CWb>AMpWPCVSp0y#EXJ;=EopT_!wUpM*A15h#b5ZW=}^tsF~a*VskbB_bNwljB; z#-b$G8Nm;o0}rlDU1V_Xp=rW{8M%zc?7`|jl1zaPHY-G4xboks|8L8%HXvbzkG7n! zh+tyU)Ca9aE1a*VR-e?rUw!hlcig?{=Dkh}Z$t!Yg#FigYX8?<=l^<XpBaDqw{~ur z`-bJ(Ce<k?m+d)xrNsKDW9Cs0(=@Z|drMEPcKh`2K<CaBQ;Y5L+_FuT5B?-AnK^sQ zkHx#z{|qxdu}##+Plta#>xmVi>=hNNyYELVe5yE6%c4<Ej_X<J=k@9z3!fgGaeZ;M zO~sqNmVXX5@>fMYE8qLB=EaT8I!Cg9X1vLH7rA3%zwZ8T-~alE9(WmfZenq#(iXLg z{PurhTD}G^vI&n}<G9gy>NNL>53=qQL{6B^ach-&)c4IyXXg0rXy-V3!uHn7$TU62 zTi>HEt4uU{vq`2%a`oh-nL5XBw}*GPvc3$qx$YgfsXY1oyC6%Q*`>9SKZ|&>&c{BU z8~&j5-&~P)L8eot>CxA3XbV~{@UB%-4){>9?wWPek+ad+?yu`ZnvQOIziOA>@vXk? zZN+v|AOBjoGX9-~&x2#4_xAABTW*S~>W@slzQ{JM_o1OXpY_xu5^{>{Kc@%mf62{y zPwSQV`x)yFbVchKPO9cwu`EXKcbQn@Klw{-TINCmk^L35!X626Id^4_Iji=VHTMU3 zdES_+7ku9!xbd&z0v$`I&Kdq3fo;;AD?&YkpUbIiEO<HT#T7YGH|}4uySY7cDyLLz z;Z#Xm&#~)(uKK|}ucsF#`*d0zXJ?K7A+#c8>r|bLkVThvKYWpYU&}CQnwFBER^sD& z>nnjSN;>C1taRPN<&q{j-6veRS4`c)H8^>De*Envi>2l~lC!9Lxq$8Ngs*)kuO_Uo zEAE)R>Zs(b(D2YOTeoJv$a{hDEx8Boo{nF;iv6kLU-A51eA5>n`D_`juXKCs;)V5| z!pHKa?TNo|y`_28x|XMAx(}k(?bN=rg1xxv=i@(_Re!`PKja(_v;9`O{pR;~*AlO- z|K<3)ns)(j#Kr7qbKO^H*V<pNkgN5%{rp~-)swW#Z)b#;ZZLgyT4sNq%iHVIcerYQ zd7!#8=En0o9SdbImmDp$`jc{8teVsJ^DTCnb!)R3CQD5)ntY$(_Jo!CejB$)r2hH) zlRI2!-<f~BUu{*KRz5w=eKu6%6OUc&-kC0^BVxWq2zM%O7H{LZ{BPf;mhA2&r5(2W zo|`UrZx**qTr+`%H)ig!+H6&+Gj@k0dZ%Y4tdQ8QH*2A5jz|AL=Lurl^;AOarmlYQ zrTEO{Fmcm+GdBK-S>W_z>0Iql=PZ*p@2t;8S9kc-{5P_VYrYe{CFPjA=saV)W$Wca z4sKpqdz$TXEzk37J9)z<L`Wvd&U?4?$O{#AUyXK_-m^Skqg@wS6fL@J-+f^6%iBll zEwvuLx^VE^G_4IkPd!tMcb`08_l*&kWl+c)oh|X7Hi`YRlx-B1Wf9W(w8+@ku6V<{ zDt*xj3Y#zQZd3Qz^Rd$IVceo4>G^NtpIT^sD5=<4zc{e($OGneieW|;^^&jS=Pf+& z=-`is`O}0rI$j!`TPAd&#qxLL1`&@%J4KhxSKsjK%)Z&(JGh=~*_VA+PM<xw`ryQ$ ztVTzE2IK}!KlR|ot*fu)RgX4Jdz$<{xaGz*Sy?s980P-in*26Lu3Z<B8xBu6{QTyk z!sHoD6X#~X^pa{UJs9ko?tl7V-q{NIdN;o2g}d*zMt3g?_}B9!fb-Uq;5}jY#FOh? zY&IW=VmtWlqa?3&wnD{>%{tX>BHztfkLN0-zIda3K4qSO^5wsi&9$3<d{}6)eBW84 zzZ<=~SEajs4t!pI=~bkkY0$fik0g@pqGlaC{eO<?k;|(;^U8Jq<k-8}JTOelX`Sir zr8fQy=l@*Se_hTk@cG=!9;E<|?{`k#J;W*Z?agf6zmI1y+`f0We^m&_fp05s70e22 z-u39>vo71DH<#9?&zBHb^ta*CJSmMs@1H$eCCDxq5~wwA^+q<M+Yed}+9`HDQp=7k zX8FM${q?3ZsG$E1Dd;Cxn}~3T9CP38>8ayer5(AxM^(&ur<C`KWnmsOCtOnO?>KwR z&uvmth*9+HW5sFJ5=YHCr1X+A+$JCMvCjTfclAl2_VVj_8?A1azk6Tv{NCrk<>$9| zI4Hcx6yn(Id_n2Y`}wBdPuJy(_3EFQpXwgrbmF|A``g@oPweieY<~D}(IXA*ONJYi zZ=PF|bdSX?>s;jeXTlaHCMV}u1vDHw_3+1?_H;!ziEE#xpY=`9k5*E*ezI6vZ)ah* z6z`)WOL7IX`xnpNckrG}mB}l=%Q{Q+y(aW5J}2Fr$Fw@j`Jel#Or5;;kKuXk4!X~l z)?e^;IusonqW<e}npfGYCi(ot!dqE0Ctc_gzwy7qL{Q)1jms2A{}kK0Tg5*63SQ~W zI`TC%QcJE$H6ZlA#_NNB0`8t-Tg6mw_Mv!+Q1Qp*Gs^D=wCZM9-Jh)Sb2@vwTp(x4 zEP?emJ?$lqcpk`#yx-Zl@A!^3<C)i=N;5~^ult+xV3NT7O)}S|&AJLR5AJ$*<6h95 zb2(y}s#BWkw|$;=jnyb*cgDI?@wzSSUK6eU#f!GM{q@>q($9bA^ZiRR)~CK;JZZDu zhE=5RhxDcS_Zt1=ir3H0wS2}I7V*V6@4)Zhxoy4SS|1EoZi|liYwfdJ@1F5NfrN;d zQ#+^B9+i-&+VG_BHSZQp`<S{ccG;%Tl}+(RsS@kVy3(pm9u!a7J^$4Y`4dm_KU+9V zcRXI4>$uy|cHIdZqe)*wHM8vBCC_=>Y4|aj_v^%NkrlzoV(e`{3esvr3l68)y=p!F zBWsV#2bCFlE4KwVEc8s_c^f8OR%NXJe?>Gi&+Ue@j%PShRNL!|uH+pPxNgi}zHWDS zV)8joo%?A|@@j60PYC3^+CJCxzmn~d3qoy-^|>;)>K5-ft+l$ne4^L#uNP%ACaasz zk@zKS9DMBlp3724C9ZdhY74nJ=Km{QUc1Hd&lCC2w>Ll4wRrv}e|LnLmr3#If)g93 zEb6zLzNo&ICHbwU%cSEBcV7Ogi@oAtdcx|PRZ&amkCJsuZ#CI)Y05IH+N{?r;7$?w zmbG!h+Znr}#iE;|mh;Y;duWznS<$jhYxc2y{pt0&B*VG-lr+0pney3`huWTZ7-G&9 z)E0hRBEzB5+PT$$ZS(p3n!Pbb43Fkri5JsNNW3Mpe(k;b@6Jh87fyK>&uhHhVV}FZ zT-QuYe|y}EmyEx}wVCXLS{$Cg2#<?D>sWmDXnTEy@$cnZb{>rWU)NP6-JAYb&;P*Q z9FIM_qZzE1yI(Iz4i3EgF)r3sui<vMNd%izOp40#&C_?sx;4eOZa%IgdgSzpd6PCz zwTPUg#Q!S4=~j2Pou1Leg_afKGO8g5PpjSExb<dlhNyX*MePT{mVDWB6NGnem{zBJ zBr90b?c8JTcm5g*+t=tOngp}8rIc@e`z6fA_JGU$6V(b_v88V-{|YC(lGp9X({VX? zPOsSeF`t32wc-62+eDtdeI?T^SI-i6FzwoxF106?EGA(R_KpvK_3c|ytaQcqo587| z;sT4}KO%+O(wBKhhrC%(w!wenrHN`Q8?<M<{B^E}d+(e!(_LzB7i3sG63NnaFA6vr ze$?2sqWVJWJ%?aTp4ETe%IXN{1#nr37e^IN&&<2GY;w|um)GRaNQoa@_jj7E<kPbO ze;(YDT*S<NCgzV>O!7y?pIUFT^8C~Vem~CM*21yz_O<2Ptv1NEu8BLd|5lT{n0nXE z;F={8`=1=|zn<tH5^}?FlE@Y3DUT1&?sH08wD$VHD!T%ct>!|>sR?KQ)E=LrE?(n$ zkF&JQDdZQ6`?N5v1$!+6&j%|U+M|AD)sNH~9zXm2YbWZl@2=irs~`TYp<ikKzlbAk z*9?`7zpvps!5va+mLuLgd0WKHhXMWTF9+A8vDomKzwzI8V&Z`llMeb71xjn(DV;X0 zeT!pD%KWcP$#ODF%5qn|);?s`y-3`hN#%gV#Z|UKmHd*&*PrwF8@s@0fr0PyQtekF zUu`7L?CaLH-?Kv4%|l_o=FuH|>lLmWom{`ojQi3Qb>@RRIro-wr35~A{V@51%N5bh MX+QWmC72Hb0IoC$CIA2c literal 0 HcmV?d00001 diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_steady_helper.m b/tests/estimation/method_of_moments/AFVRR/AFVRR_steady_helper.m new file mode 100644 index 0000000000..b8289d4848 --- /dev/null +++ b/tests/estimation/method_of_moments/AFVRR/AFVRR_steady_helper.m @@ -0,0 +1,80 @@ +% DSGE model based on replication files of +% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49 +% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021 +% ========================================================================= +% Copyright (C) 2021 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. +% ========================================================================= + +% This is a helper function to compute steady state values and endogenous parameters +% Based on DSGE_model_yieldCurve_ss.m, getPHI3.m, ObjectGMM.m + +function [AA, EVFBAR, PHI3, negVf, info]= AFVRR_steady_helper(VFBAR,RBAR,IVBAR,CBAR,KBAR,LABAR,QBAR,YBAR, BETTA,B,PAI,H,PHIzero,PHI1,PHI2,THETA,MYYPS,MYZ,INHABIT,RRA,CONSxhr40) +% We get nice values of EVF by setting AA app. equal to VF. +% The value of the expected value function raised to the power 1-PHI3 +% Also we check bounds on other variables +% % Adding PHI3 to params. Note that PHI3 only affects the value function in +% % steady state, hence the value we assign to PHI3 is irrelevant +% PHI3 = -100; + +info=0; +AA = NaN; +EVFBAR = NaN; +PHI3 = NaN; +negVf = NaN; + +MYZSTAR = MYYPS^(THETA/(1-THETA))*MYZ; +% The wage level +WBAR = PHIzero*(1-H)^(-PHI1)/LABAR; +RRAc = RRA; +if INHABIT == 1 + PHI3 = (RRAc - PHI2/((1-B*MYZSTAR^-1)/(1-BETTA*B)+PHI2/PHI1*WBAR*(1-H)/CBAR))/((1-PHI2)/((1-B*MYZSTAR^-1)/(1-BETTA*B)-(CBAR-B*CBAR*MYZSTAR^-1)^PHI2/((1-BETTA*B)*CBAR)+WBAR*(1-H)/CBAR*(1-PHI2)/(1-PHI1))); +else + PHI3 = (RRAc - PHI2/(1-B*MYZSTAR^-1+PHI2/PHI1*WBAR*(1-H)/CBAR))/((1-PHI2)/(1-B*MYZSTAR^-1-(CBAR-B*CBAR*MYZSTAR^-1)^PHI2/((1-BETTA*B)*CBAR)+WBAR*(1-H)/CBAR*(1-PHI2)/(1-PHI1))); +end +if abs(PHI3) > 30000 + disp('abs of PHI3 exceeds 30000') + info=1; + return +end + +if CONSxhr40 > 1 + info=1; + return +end + + +if VFBAR < 0 + AA = -VFBAR; + EVFBAR = (-VFBAR/AA)^(1-PHI3); + negVf = 1; +else + AA = VFBAR; + EVFBAR = (VFBAR/AA)^(1-PHI3); + negVf = -1; + disp('Positive Value Function'); +end + + +if RBAR < 1 || IVBAR < 0 || CBAR < 0 || KBAR < 0 || PAI < 1 || H < 0 || H > 1 || QBAR < 0 || YBAR < 0 + info = 1; +end + +end + + + diff --git a/tests/estimation/method_of_moments/AnScho_MoM.mod b/tests/estimation/method_of_moments/AnScho/AnScho_MoM.mod similarity index 100% rename from tests/estimation/method_of_moments/AnScho_MoM.mod rename to tests/estimation/method_of_moments/AnScho/AnScho_MoM.mod diff --git a/tests/estimation/method_of_moments/RBC_Andreasen_Data_2.mat b/tests/estimation/method_of_moments/RBC/RBC_Andreasen_Data_2.mat similarity index 100% rename from tests/estimation/method_of_moments/RBC_Andreasen_Data_2.mat rename to tests/estimation/method_of_moments/RBC/RBC_Andreasen_Data_2.mat diff --git a/tests/estimation/method_of_moments/RBC_MoM_Andreasen.mod b/tests/estimation/method_of_moments/RBC/RBC_MoM_Andreasen.mod similarity index 100% rename from tests/estimation/method_of_moments/RBC_MoM_Andreasen.mod rename to tests/estimation/method_of_moments/RBC/RBC_MoM_Andreasen.mod diff --git a/tests/estimation/method_of_moments/RBC_MoM_SMM_ME.mod b/tests/estimation/method_of_moments/RBC/RBC_MoM_SMM_ME.mod similarity index 100% rename from tests/estimation/method_of_moments/RBC_MoM_SMM_ME.mod rename to tests/estimation/method_of_moments/RBC/RBC_MoM_SMM_ME.mod diff --git a/tests/estimation/method_of_moments/RBC_MoM_common.inc b/tests/estimation/method_of_moments/RBC/RBC_MoM_common.inc similarity index 100% rename from tests/estimation/method_of_moments/RBC_MoM_common.inc rename to tests/estimation/method_of_moments/RBC/RBC_MoM_common.inc diff --git a/tests/estimation/method_of_moments/RBC_MoM_prefilter.mod b/tests/estimation/method_of_moments/RBC/RBC_MoM_prefilter.mod similarity index 100% rename from tests/estimation/method_of_moments/RBC_MoM_prefilter.mod rename to tests/estimation/method_of_moments/RBC/RBC_MoM_prefilter.mod diff --git a/tests/estimation/method_of_moments/RBC_MoM_steady_helper.m b/tests/estimation/method_of_moments/RBC/RBC_MoM_steady_helper.m similarity index 100% rename from tests/estimation/method_of_moments/RBC_MoM_steady_helper.m rename to tests/estimation/method_of_moments/RBC/RBC_MoM_steady_helper.m diff --git a/tests/estimation/method_of_moments/RBC_MoM_steadystate.m b/tests/estimation/method_of_moments/RBC_MoM_steadystate.m deleted file mode 100644 index ba4ef9240b..0000000000 --- a/tests/estimation/method_of_moments/RBC_MoM_steadystate.m +++ /dev/null @@ -1,74 +0,0 @@ -% By Willi Mutschler, September 26, 2016. Email: willi@mutschler.eu -function [ys,params,check] = RBCmodel_steadystate(ys,exo,M_,options_) -%% Step 0: initialize indicator and set options for numerical solver -check = 0; -options = optimset('Display','off','TolX',1e-12,'TolFun',1e-12); -params = M_.params; - -%% Step 1: read out parameters to access them with their name -for ii = 1:M_.param_nbr - eval([ M_.param_names{ii} ' = M_.params(' int2str(ii) ');']); -end - -%% Step 2: Check parameter restrictions -if ETAc*ETAl<1 % parameter violates restriction (here it is artifical) - check=1; %set failure indicator - return; %return without updating steady states -end - -%% Step 3: Enter model equations here -A = 1; -RK = 1/BETTA - (1-DELTA); -K_O_N = (RK/(A*(1-ALFA)))^(-1/ALFA); -if K_O_N <= 0 - check = 1; % set failure indicator - return; % return without updating steady states -end -W = A*ALFA*(K_O_N)^(1-ALFA); -IV_O_N = DELTA*K_O_N; -Y_O_N = A*K_O_N^(1-ALFA); -C_O_N = Y_O_N - IV_O_N; -if C_O_N <= 0 - check = 1; % set failure indicator - return; % return without updating steady states -end - -% The labor level -if ETAc == 1 && ETAl == 1 - N = (1-BETTA*B)*(C_O_N*(1-B))^-1*W/THETA/(1+(1-BETTA*B)*(C_O_N*(1-B))^-1*W/THETA); -else - % No closed-form solution use a fixed-point algorithm - N0 = 1/3; - [N,~,exitflag] = fsolve(@(N) THETA*(1-N)^(-ETAl)*N^ETAc - (1-BETTA*B)*(C_O_N*(1-B))^(-ETAc)*W, N0,options); - if exitflag <= 0 - check = 1; % set failure indicator - return % return without updating steady states - end -end - -C=C_O_N*N; -Y=Y_O_N*N; -IV=IV_O_N*N; -K=K_O_N*N; -LA = (C-B*C)^(-ETAc)-BETTA*B*(C-B*C)^(-ETAc); - -k=log(K); -c=log(C); -a=log(A); -iv=log(IV); -y=log(Y); -la=log(LA); -n=log(N); -rk=log(RK); -w=log(W); -%% Step 4: Update parameters and variables -params=NaN(M_.param_nbr,1); -for iter = 1:M_.param_nbr %update parameters set in the file - eval([ 'params(' num2str(iter) ') = ' M_.param_names{iter} ';' ]) -end - -for ii = 1:M_.orig_endo_nbr %auxiliary variables are set automatically - eval(['ys(' int2str(ii) ') = ' M_.endo_names{ii} ';']); -end - -end -- GitLab