diff --git a/matlab/kordpert/dr1_k_order.m b/matlab/kordpert/dr1_k_order.m
new file mode 100644
index 0000000000000000000000000000000000000000..a4356321e532107cdd5df2605ae53c60804fd642
--- /dev/null
+++ b/matlab/kordpert/dr1_k_order.m
@@ -0,0 +1,507 @@
+function [dr,info,M_,options_,oo_] = dr1(dr,task,M_,options_,oo_)
+% Computes the reduced form solution of a rational expectation model (first or second order
+% approximation of the stochastic model around the deterministic steady state). 
+%
+% INPUTS
+%   dr         [matlab structure] Decision rules for stochastic simulations.
+%   task       [integer]          if task = 0 then dr1 computes decision rules.
+%                                 if task = 1 then dr1 computes eigenvalues.
+%   M_         [matlab structure] Definition of the model.           
+%   options_   [matlab structure] Global options.
+%   oo_        [matlab structure] Results 
+%    
+% OUTPUTS
+%   dr         [matlab structure] Decision rules for stochastic simulations.
+%   info       [integer]          info=1: the model doesn't define current variables uniquely
+%                                 info=2: problem in mjdgges.dll info(2) contains error code. 
+%                                 info=3: BK order condition not satisfied info(2) contains "distance"
+%                                         absence of stable trajectory.
+%                                 info=4: BK order condition not satisfied info(2) contains "distance"
+%                                         indeterminacy.
+%                                 info=5: BK rank condition not satisfied.
+%   M_         [matlab structure]            
+%   options_   [matlab structure]
+%   oo_        [matlab structure]
+%  
+% ALGORITHM
+%   ...
+%    
+% SPECIAL REQUIREMENTS
+%   none.
+%  
+
+% Copyright (C) 1996-2008 Dynare Team
+%
+% This file is part of Dynare.
+%
+% Dynare is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% Dynare is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
+
+    info = 0;
+  
+    options_ = set_default_option(options_,'loglinear',0);
+    options_ = set_default_option(options_,'noprint',0);
+    options_ = set_default_option(options_,'olr',0);
+    options_ = set_default_option(options_,'olr_beta',1);
+    options_ = set_default_option(options_,'qz_criterium',1.000001);
+    
+    xlen = M_.maximum_endo_lead + M_.maximum_endo_lag + 1;
+    klen = M_.maximum_endo_lag + M_.maximum_endo_lead + 1;
+    iyv = M_.lead_lag_incidence';
+    iyv = iyv(:);
+    iyr0 = find(iyv) ;
+    it_ = M_.maximum_lag + 1 ;
+    
+    if M_.exo_nbr == 0
+        oo_.exo_steady_state = [] ;
+    end
+    
+    % expanding system for Optimal Linear Regulator
+    if options_.ramsey_policy
+        if isfield(M_,'orig_model')
+            orig_model = M_.orig_model;
+            M_.endo_nbr = orig_model.endo_nbr;
+            M_.endo_names = orig_model.endo_names;
+            M_.lead_lag_incidence = orig_model.lead_lag_incidence;
+            M_.maximum_lead = orig_model.maximum_lead;
+            M_.maximum_endo_lead = orig_model.maximum_endo_lead;
+            M_.maximum_lag = orig_model.maximum_lag;
+            M_.maximum_endo_lag = orig_model.maximum_endo_lag;
+        end
+        old_solve_algo = options_.solve_algo;
+        %  options_.solve_algo = 1;
+        oo_.steady_state = dynare_solve('ramsey_static',oo_.steady_state,0,M_,options_,oo_,it_);
+        options_.solve_algo = old_solve_algo;
+        [junk,junk,multbar] = ramsey_static(oo_.steady_state,M_,options_,oo_,it_);
+        [jacobia_,M_] = ramsey_dynamic(oo_.steady_state,multbar,M_,options_,oo_,it_);
+        klen = M_.maximum_lag + M_.maximum_lead + 1;
+        dr.ys = [oo_.steady_state;zeros(M_.exo_nbr,1);multbar];
+
+    else
+        klen = M_.maximum_lag + M_.maximum_lead + 1;
+        iyv = M_.lead_lag_incidence';
+        iyv = iyv(:);
+        iyr0 = find(iyv) ;
+        it_ = M_.maximum_lag + 1 ;
+        
+        if M_.exo_nbr == 0
+            oo_.exo_steady_state = [] ;
+        end
+        
+        it_ = M_.maximum_lag + 1;
+        z = repmat(dr.ys,1,klen);
+        z = z(iyr0) ;
+
+    end
+    
+    if options_.debug
+        save([M_.fname '_debug.mat'],'jacobia_')
+    end
+    
+    dr=set_state_space(dr,M_);
+    kstate = dr.kstate;
+    kad = dr.kad;
+    kae = dr.kae;
+    nstatic = dr.nstatic;
+    nfwrd = dr.nfwrd;
+    npred = dr.npred;
+    nboth = dr.nboth;
+    order_var = dr.order_var;
+    nd = size(kstate,1);
+    nz = nnz(M_.lead_lag_incidence);
+    
+    sdyn = M_.endo_nbr - nstatic;
+    
+    k0 = M_.lead_lag_incidence(M_.maximum_endo_lag+1,order_var);
+    k1 = M_.lead_lag_incidence(find([1:klen] ~= M_.maximum_endo_lag+1),:);
+   
+        
+        
+    if options_.order == 1
+        M_.var_order_endo_names=M_.endo_names(dr.order_var,:);
+%            z = repmat(dr.ys,1,klen);
+%            z = z(iyr0) ;
+%            oo_.dyn_ys=z;  % extended ys 
+        try
+            [ysteady, gx, gu]=k_order_perturbation(dr,task,M_,options_, oo_ );
+            load(M_.fname);
+            ghxu = eval([M_.fname '_g_1']);
+            sss= size(ghxu,2);
+            dr.ghx= ghxu(:,1:sss-M_.exo_nbr); 
+            dr.ghu= ghxu(:,sss-M_.exo_nbr+1:end); 
+            dr.ys=eval([M_.fname '_ss']);
+        catch
+            disp('*************************************************************************************');
+%           disp('Problem with using k_order perturbation solver - Using Dynare solver instead');
+%            warning('Problem with using k_order perturbation solver - Using Dynare solver instead');
+            error('Problem with using k_order perturbation solver ');
+            disp('*****************************************************************************');
+            options_.use_k_order=0; % and then try mjdgges instead
+            info(1) = 4;
+            info(2) = 1000;
+            return
+        end
+
+    elseif options_.order > 1
+        error(' can not use order > 1 with K-Order yet!')
+        % or ???
+        disp('********************************************************************');
+        disp(' can not use order > 1 with K-Order yet - Using Dynare solver instead');
+        disp('********************************************************************');
+        options_.use_k_order= 0; % and then try mjdgges instead
+        info(1) = 4;
+        info(2) = 1000;
+        return
+    end
+
+    
+    if M_.maximum_endo_lead == 0;  % backward models
+        % If required, try Gary Anderson and G Moore AIM solver if not
+        % check only and if 1st order (added by GP July'08)
+
+        dr.eigval = eig(transition_matrix(dr));
+        dr.rank = 0;
+        if any(abs(dr.eigval) > options_.qz_criterium)
+            temp = sort(abs(dr.eigval));
+            nba = nnz(abs(dr.eigval) > options_.qz_criterium);
+            temp = temp(nd-nba+1:nd)-1-options_.qz_criterium;
+            info(1) = 3;
+            info(2) = temp'*temp;
+        end
+        return;
+    end
+    
+    %forward--looking models
+        [A,B] =transition_matrix(dr);
+        dr.eigval = eig(A);
+%            if any(abs(dr.eigval) > options_.qz_criterium)
+%                temp = sort(abs(dr.eigval));
+%                nba = nnz(abs(dr.eigval) > options_.qz_criterium);
+%                temp = temp(nd-nba+1:nd)-1-options_.qz_criterium;
+%                info(1) = 3;
+%                info(2) = temp'*temp;
+%                return
+%            end
+        sdim = sum( abs(dr.eigval) < options_.qz_criterium );
+        nba = nd-sdim;
+
+        nyf = sum(kstate(:,2) > M_.maximum_endo_lag+1);
+        if nba ~= nyf
+            temp = sort(abs(dr.eigval));
+            if nba > nyf
+                temp = temp(nd-nba+1:nd-nyf)-1-options_.qz_criterium;
+                info(1) = 3;
+            elseif nba < nyf;
+                temp = temp(nd-nyf+1:nd-nba)-1-options_.qz_criterium;
+                info(1) = 4;
+            end
+            info(2) = temp'*temp;
+            return
+        end
+
+    
+    if options_.loglinear == 1
+        k = find(dr.kstate(:,2) <= M_.maximum_endo_lag+1);
+        klag = dr.kstate(k,[1 2]);
+        k1 = dr.order_var;
+        
+        dr.ghx = repmat(1./dr.ys(k1),1,size(dr.ghx,2)).*dr.ghx.* ...
+                 repmat(dr.ys(k1(klag(:,1)))',size(dr.ghx,1),1);
+        dr.ghu = repmat(1./dr.ys(k1),1,size(dr.ghu,2)).*dr.ghu;
+    end
+    
+    dr.ghx = real(dr.ghx);
+    dr.ghu = real(dr.ghu);
+        
+return
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %exogenous deterministic variables
+    if M_.exo_det_nbr > 0
+        f1 = sparse(jacobia_(:,nonzeros(M_.lead_lag_incidence(M_.maximum_endo_lag+2:end,order_var))));
+        f0 = sparse(jacobia_(:,nonzeros(M_.lead_lag_incidence(M_.maximum_endo_lag+1,order_var))));
+        fudet = sparse(jacobia_(:,nz+M_.exo_nbr+1:end));
+        M1 = inv(f0+[zeros(M_.endo_nbr,nstatic) f1*gx zeros(M_.endo_nbr,nyf-nboth)]);
+        M2 = M1*f1;
+        dr.ghud = cell(M_.exo_det_length,1);
+        dr.ghud{1} = -M1*fudet;
+        for i = 2:M_.exo_det_length
+            dr.ghud{i} = -M2*dr.ghud{i-1}(end-nyf+1:end,:);
+        end
+    end
+    
+    if options_.order == 1
+        return
+    end
+    
+    % Second order
+    %tempex = oo_.exo_simul ;
+        [junk,jacobia_,hessian] = feval([M_.fname '_dynamic'],z,...
+                [oo_.exo_simul ...
+                oo_.exo_det_simul], M_.params, it_);
+    
+    %hessian = real(hessext('ff1_',[z; oo_.exo_steady_state]))' ;
+    kk = flipud(cumsum(flipud(M_.lead_lag_incidence(M_.maximum_endo_lag+1:end,order_var)),1));
+    if M_.maximum_endo_lag > 0
+        kk = [cumsum(M_.lead_lag_incidence(1:M_.maximum_endo_lag,order_var),1); kk];
+    end
+    kk = kk';
+    kk = find(kk(:));
+    nk = size(kk,1) + M_.exo_nbr + M_.exo_det_nbr;
+    k1 = M_.lead_lag_incidence(:,order_var);
+    k1 = k1';
+    k1 = k1(:);
+    k1 = k1(kk);
+    k2 = find(k1);
+    kk1(k1(k2)) = k2;
+    kk1 = [kk1 length(k1)+1:length(k1)+M_.exo_nbr+M_.exo_det_nbr];
+    kk = reshape([1:nk^2],nk,nk);
+    kk1 = kk(kk1,kk1);
+    %[junk,junk,hessian] = feval([M_.fname '_dynamic'],z, oo_.exo_steady_state);
+    hessian(:,kk1(:)) = hessian;
+    
+    %oo_.exo_simul = tempex ;
+    %clear tempex
+    
+    n1 = 0;
+    n2 = np;
+    zx = zeros(np,np);
+    zu=zeros(np,M_.exo_nbr);
+    for i=2:M_.maximum_endo_lag+1
+        k1 = sum(kstate(:,2) == i);
+        zx(n1+1:n1+k1,n2-k1+1:n2)=eye(k1);
+        n1 = n1+k1;
+        n2 = n2-k1;
+    end
+    kk = flipud(cumsum(flipud(M_.lead_lag_incidence(M_.maximum_endo_lag+1:end,order_var)),1));
+    k0 = [1:M_.endo_nbr];
+    gx1 = dr.ghx;
+    hu = dr.ghu(nstatic+[1:npred],:);
+    zx = [zx; gx1];
+    zu = [zu; dr.ghu];
+    for i=1:M_.maximum_endo_lead
+        k1 = find(kk(i+1,k0) > 0);
+        zu = [zu; gx1(k1,1:npred)*hu];
+        gx1 = gx1(k1,:)*hx;
+        zx = [zx; gx1];
+        kk = kk(:,k0);
+        k0 = k1;
+    end
+    zx=[zx; zeros(M_.exo_nbr,np);zeros(M_.exo_det_nbr,np)];
+    zu=[zu; eye(M_.exo_nbr);zeros(M_.exo_det_nbr,M_.exo_nbr)];
+    [nrzx,nczx] = size(zx);
+    
+    rhs = -sparse_hessian_times_B_kronecker_C(hessian,zx);
+    
+    %lhs
+    n = M_.endo_nbr+sum(kstate(:,2) > M_.maximum_endo_lag+1 & kstate(:,2) < M_.maximum_endo_lag+M_.maximum_endo_lead+1);
+    A = zeros(n,n);
+    B = zeros(n,n);
+    A(1:M_.endo_nbr,1:M_.endo_nbr) = jacobia_(:,M_.lead_lag_incidence(M_.maximum_endo_lag+1,order_var));
+    % variables with the highest lead
+    k1 = find(kstate(:,2) == M_.maximum_endo_lag+M_.maximum_endo_lead+1);
+    if M_.maximum_endo_lead > 1
+        k2 = find(kstate(:,2) == M_.maximum_endo_lag+M_.maximum_endo_lead);
+        [junk,junk,k3] = intersect(kstate(k1,1),kstate(k2,1));
+    else
+        k2 = [1:M_.endo_nbr];
+        k3 = kstate(k1,1);
+    end
+    % Jacobian with respect to the variables with the highest lead
+    B(1:M_.endo_nbr,end-length(k2)+k3) = jacobia_(:,kstate(k1,3)+M_.endo_nbr);
+    offset = M_.endo_nbr;
+    k0 = [1:M_.endo_nbr];
+    gx1 = dr.ghx;
+    for i=1:M_.maximum_endo_lead-1
+        k1 = find(kstate(:,2) == M_.maximum_endo_lag+i+1);
+        [k2,junk,k3] = find(kstate(k1,3));
+        A(1:M_.endo_nbr,offset+k2) = jacobia_(:,k3+M_.endo_nbr);
+        n1 = length(k1);
+        A(offset+[1:n1],nstatic+[1:npred]) = -gx1(kstate(k1,1),1:npred);
+        gx1 = gx1*hx;
+        A(offset+[1:n1],offset+[1:n1]) = eye(n1);
+        n0 = length(k0);
+        E = eye(n0);
+        if i == 1
+            [junk,junk,k4]=intersect(kstate(k1,1),[1:M_.endo_nbr]);
+        else
+            [junk,junk,k4]=intersect(kstate(k1,1),kstate(k0,1));
+        end
+        i1 = offset-n0+n1;
+        B(offset+[1:n1],offset-n0+[1:n0]) = -E(k4,:);
+        k0 = k1;
+        offset = offset + n1;
+    end
+    [junk,k1,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+M_.maximum_endo_lead+1,order_var));
+    A(1:M_.endo_nbr,nstatic+1:nstatic+npred)=...
+        A(1:M_.endo_nbr,nstatic+[1:npred])+jacobia_(:,k2)*gx1(k1,1:npred);
+    C = hx;
+    D = [rhs; zeros(n-M_.endo_nbr,size(rhs,2))];
+    
+    
+    dr.ghxx = gensylv(2,A,B,C,D);
+    
+    %ghxu
+    %rhs
+    hu = dr.ghu(nstatic+1:nstatic+npred,:);
+    %kk = reshape([1:np*np],np,np);
+    %kk = kk(1:npred,1:npred);
+    %rhs = -hessian*kron(zx,zu)-f1*dr.ghxx(end-nyf+1:end,kk(:))*kron(hx(1:npred,:),hu(1:npred,:));
+    
+    rhs = sparse_hessian_times_B_kronecker_C(hessian,zx,zu);
+    
+    nyf1 = sum(kstate(:,2) == M_.maximum_endo_lag+2);
+    hu1 = [hu;zeros(np-npred,M_.exo_nbr)];
+    %B1 = [B(1:M_.endo_nbr,:);zeros(size(A,1)-M_.endo_nbr,size(B,2))];
+    [nrhx,nchx] = size(hx);
+    [nrhu1,nchu1] = size(hu1);
+    
+    B1 = B*A_times_B_kronecker_C(dr.ghxx,hx,hu1);
+    rhs = -[rhs; zeros(n-M_.endo_nbr,size(rhs,2))]-B1;
+    
+    
+    %lhs
+    dr.ghxu = A\rhs;
+    
+    %ghuu
+    %rhs
+    kk = reshape([1:np*np],np,np);
+    kk = kk(1:npred,1:npred);
+    
+    rhs = sparse_hessian_times_B_kronecker_C(hessian,zu);
+    
+    
+    B1 = A_times_B_kronecker_C(B*dr.ghxx,hu1);
+    rhs = -[rhs; zeros(n-M_.endo_nbr,size(rhs,2))]-B1;
+    
+    %lhs
+    dr.ghuu = A\rhs;
+    
+    dr.ghxx = dr.ghxx(1:M_.endo_nbr,:);
+    dr.ghxu = dr.ghxu(1:M_.endo_nbr,:);
+    dr.ghuu = dr.ghuu(1:M_.endo_nbr,:);
+    
+    
+    % dr.ghs2
+    % derivatives of F with respect to forward variables
+    % reordering predetermined variables in diminishing lag order
+    O1 = zeros(M_.endo_nbr,nstatic);
+    O2 = zeros(M_.endo_nbr,M_.endo_nbr-nstatic-npred);
+    LHS = jacobia_(:,M_.lead_lag_incidence(M_.maximum_endo_lag+1,order_var));
+    RHS = zeros(M_.endo_nbr,M_.exo_nbr^2);
+    kk = find(kstate(:,2) == M_.maximum_endo_lag+2);
+    gu = dr.ghu; 
+    guu = dr.ghuu; 
+    Gu = [dr.ghu(nstatic+[1:npred],:); zeros(np-npred,M_.exo_nbr)];
+    Guu = [dr.ghuu(nstatic+[1:npred],:); zeros(np-npred,M_.exo_nbr*M_.exo_nbr)];
+    E = eye(M_.endo_nbr);
+    M_.lead_lag_incidenceordered = flipud(cumsum(flipud(M_.lead_lag_incidence(M_.maximum_endo_lag+1:end,order_var)),1));
+    if M_.maximum_endo_lag > 0
+        M_.lead_lag_incidenceordered = [cumsum(M_.lead_lag_incidence(1:M_.maximum_endo_lag,order_var),1); M_.lead_lag_incidenceordered];
+    end
+    M_.lead_lag_incidenceordered = M_.lead_lag_incidenceordered';
+    M_.lead_lag_incidenceordered = M_.lead_lag_incidenceordered(:);
+    k1 = find(M_.lead_lag_incidenceordered);
+    M_.lead_lag_incidenceordered(k1) = [1:length(k1)]';
+    M_.lead_lag_incidenceordered =reshape(M_.lead_lag_incidenceordered,M_.endo_nbr,M_.maximum_endo_lag+M_.maximum_endo_lead+1)';
+    kh = reshape([1:nk^2],nk,nk);
+    kp = sum(kstate(:,2) <= M_.maximum_endo_lag+1);
+    E1 = [eye(npred); zeros(kp-npred,npred)];
+    H = E1;
+    hxx = dr.ghxx(nstatic+[1:npred],:);
+    for i=1:M_.maximum_endo_lead
+        for j=i:M_.maximum_endo_lead
+            [junk,k2a,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+j+1,order_var));
+            [junk,k3a,k3] = ...
+                find(M_.lead_lag_incidenceordered(M_.maximum_endo_lag+j+1,:));
+            nk3a = length(k3a);
+            B1 = sparse_hessian_times_B_kronecker_C(hessian(:,kh(k3,k3)),gu(k3a,:));
+            RHS = RHS + jacobia_(:,k2)*guu(k2a,:)+B1;
+        end
+        % LHS
+        [junk,k2a,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+i+1,order_var));
+        LHS = LHS + jacobia_(:,k2)*(E(k2a,:)+[O1(k2a,:) dr.ghx(k2a,:)*H O2(k2a,:)]);
+        
+        if i == M_.maximum_endo_lead 
+            break
+        end
+        
+        kk = find(kstate(:,2) == M_.maximum_endo_lag+i+1);
+        gu = dr.ghx*Gu;
+        [nrGu,ncGu] = size(Gu);
+        G1 = A_times_B_kronecker_C(dr.ghxx,Gu);
+        G2 = A_times_B_kronecker_C(hxx,Gu);
+        guu = dr.ghx*Guu+G1;
+        Gu = hx*Gu;
+        Guu = hx*Guu;
+        Guu(end-npred+1:end,:) = Guu(end-npred+1:end,:) + G2;
+        H = E1 + hx*H;
+    end
+    RHS = RHS*M_.Sigma_e(:);
+    dr.fuu = RHS;
+    %RHS = -RHS-dr.fbias;
+    RHS = -RHS;
+    dr.ghs2 = LHS\RHS;
+    
+    % deterministic exogenous variables
+    if M_.exo_det_nbr > 0
+        hud = dr.ghud{1}(nstatic+1:nstatic+npred,:);
+        zud=[zeros(np,M_.exo_det_nbr);dr.ghud{1};gx(:,1:npred)*hud;zeros(M_.exo_nbr,M_.exo_det_nbr);eye(M_.exo_det_nbr)];
+        R1 = hessian*kron(zx,zud);
+        dr.ghxud = cell(M_.exo_det_length,1);
+        kf = [M_.endo_nbr-nyf+1:M_.endo_nbr];
+        kp = nstatic+[1:npred];
+        dr.ghxud{1} = -M1*(R1+f1*dr.ghxx(kf,:)*kron(dr.ghx(kp,:),dr.ghud{1}(kp,:)));
+        Eud = eye(M_.exo_det_nbr);
+        for i = 2:M_.exo_det_length
+            hudi = dr.ghud{i}(kp,:);
+            zudi=[zeros(np,M_.exo_det_nbr);dr.ghud{i};gx(:,1:npred)*hudi;zeros(M_.exo_nbr+M_.exo_det_nbr,M_.exo_det_nbr)];
+            R2 = hessian*kron(zx,zudi);
+            dr.ghxud{i} = -M2*(dr.ghxud{i-1}(kf,:)*kron(hx,Eud)+dr.ghxx(kf,:)*kron(dr.ghx(kp,:),dr.ghud{i}(kp,:)))-M1*R2;
+        end
+        R1 = hessian*kron(zu,zud);
+        dr.ghudud = cell(M_.exo_det_length,1);
+        kf = [M_.endo_nbr-nyf+1:M_.endo_nbr];
+        
+        dr.ghuud{1} = -M1*(R1+f1*dr.ghxx(kf,:)*kron(dr.ghu(kp,:),dr.ghud{1}(kp,:)));
+        Eud = eye(M_.exo_det_nbr);
+        for i = 2:M_.exo_det_length
+            hudi = dr.ghud{i}(kp,:);
+            zudi=[zeros(np,M_.exo_det_nbr);dr.ghud{i};gx(:,1:npred)*hudi;zeros(M_.exo_nbr+M_.exo_det_nbr,M_.exo_det_nbr)];
+            R2 = hessian*kron(zu,zudi);
+            dr.ghuud{i} = -M2*dr.ghxud{i-1}(kf,:)*kron(hu,Eud)-M1*R2;
+        end
+        R1 = hessian*kron(zud,zud);
+        dr.ghudud = cell(M_.exo_det_length,M_.exo_det_length);
+        dr.ghudud{1,1} = -M1*R1-M2*dr.ghxx(kf,:)*kron(hud,hud);
+        for i = 2:M_.exo_det_length
+            hudi = dr.ghud{i}(nstatic+1:nstatic+npred,:);
+            zudi=[zeros(np,M_.exo_det_nbr);dr.ghud{i};gx(:,1:npred)*hudi+dr.ghud{i-1}(kf,:);zeros(M_.exo_nbr+M_.exo_det_nbr,M_.exo_det_nbr)];
+            R2 = hessian*kron(zudi,zudi);
+            dr.ghudud{i,i} = -M2*(dr.ghudud{i-1,i-1}(kf,:)+...
+                                  2*dr.ghxud{i-1}(kf,:)*kron(hudi,Eud) ...
+                                  +dr.ghxx(kf,:)*kron(hudi,hudi))-M1*R2;
+            R2 = hessian*kron(zud,zudi);
+            dr.ghudud{1,i} = -M2*(dr.ghxud{i-1}(kf,:)*kron(hud,Eud)+...
+                                  dr.ghxx(kf,:)*kron(hud,hudi))...
+                -M1*R2;
+            for j=2:i-1
+                hudj = dr.ghud{j}(kp,:);
+                zudj=[zeros(np,M_.exo_det_nbr);dr.ghud{j};gx(:,1:npred)*hudj;zeros(M_.exo_nbr+M_.exo_det_nbr,M_.exo_det_nbr)];
+                R2 = hessian*kron(zudj,zudi);
+                dr.ghudud{j,i} = -M2*(dr.ghudud{j-1,i-1}(kf,:)+dr.ghxud{j-1}(kf,:)* ...
+                                      kron(hudi,Eud)+dr.ghxud{i-1}(kf,:)* ...
+                                      kron(hudj,Eud)+dr.ghxx(kf,:)*kron(hudj,hudi))-M1*R2;
+            end
+            
+        end
+    end
\ No newline at end of file