From ad0c29262b3aa8917eb2d7f06ed8483eade12cd7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?St=C3=A9phane=20Adjemian=20=28Charybdis=29?= <stephane.adjemian@univ-lemans.fr> Date: Sat, 16 Nov 2013 23:33:37 +0100 Subject: [PATCH] Cosmetic. Renamed DsgeVarLikelihood as dsge_var_likelihood. --- matlab/PosteriorIRF_core1.m | 2 +- matlab/csminwel1.m | 2 +- matlab/{DsgeVarLikelihood.m => dsge_var_likelihood.m} | 2 +- matlab/dsgevar_posterior_density.m | 2 +- matlab/dynare_estimation_1.m | 2 +- matlab/print_info.m | 2 +- 6 files changed, 6 insertions(+), 6 deletions(-) rename matlab/{DsgeVarLikelihood.m => dsge_var_likelihood.m} (98%) diff --git a/matlab/PosteriorIRF_core1.m b/matlab/PosteriorIRF_core1.m index e2cc4a5209..1eff387ad6 100644 --- a/matlab/PosteriorIRF_core1.m +++ b/matlab/PosteriorIRF_core1.m @@ -189,7 +189,7 @@ while fpar<B end if MAX_nirfs_dsgevar IRUN = IRUN+1; - [fval,junk1,junk2,cost_flag,info,PHI,SIGMAu,iXX] = DsgeVarLikelihood(deep',dataset_,options_,M_,estim_params_,bayestopt_,oo_); + [fval,junk1,junk2,cost_flag,info,PHI,SIGMAu,iXX] = dsge_var_likelihood(deep',dataset_,options_,M_,estim_params_,bayestopt_,oo_); dsge_prior_weight = M_.params(strmatch('dsge_prior_weight',M_.param_names)); DSGE_PRIOR_WEIGHT = floor(dataset_.info.ntobs*(1+dsge_prior_weight)); SIGMA_inv_upper_chol = chol(inv(SIGMAu*dataset_.info.ntobs*(dsge_prior_weight+1))); diff --git a/matlab/csminwel1.m b/matlab/csminwel1.m index 403b9a58ed..b6e38fedc0 100644 --- a/matlab/csminwel1.m +++ b/matlab/csminwel1.m @@ -100,7 +100,7 @@ f=f0; H=H0; cliff=0; while ~done - % penalty for dsge_likelihood and DsgeVarLikelihood + % penalty for dsge_likelihood and dsge_var_likelihood objective_function_penalty_base = f; g1=[]; g2=[]; g3=[]; diff --git a/matlab/DsgeVarLikelihood.m b/matlab/dsge_var_likelihood.m similarity index 98% rename from matlab/DsgeVarLikelihood.m rename to matlab/dsge_var_likelihood.m index 322351a2c1..6c37fd1a46 100644 --- a/matlab/DsgeVarLikelihood.m +++ b/matlab/dsge_var_likelihood.m @@ -1,4 +1,4 @@ -function [fval,grad,hess,exit_flag,info,PHI,SIGMAu,iXX,prior] = DsgeVarLikelihood(xparam1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults) +function [fval,grad,hess,exit_flag,info,PHI,SIGMAu,iXX,prior] = dsge_var_likelihood(xparam1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults) % Evaluates the posterior kernel of the bvar-dsge model. % % INPUTS diff --git a/matlab/dsgevar_posterior_density.m b/matlab/dsgevar_posterior_density.m index 9ff74e1451..eca70f7439 100644 --- a/matlab/dsgevar_posterior_density.m +++ b/matlab/dsgevar_posterior_density.m @@ -47,7 +47,7 @@ if ~options_.noconstant bvar.NumberOfVariables; end -[fval,cost_flag,info,PHI,SIGMAu,iXX,prior] = DsgeVarLikelihood(deep',DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults); +[fval,cost_flag,info,PHI,SIGMAu,iXX,prior] = dsge_var_likelihood(deep',DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults); % Conditionnal posterior density of the lagged matrices (given Sigma) -> % Matric-variate normal distribution. diff --git a/matlab/dynare_estimation_1.m b/matlab/dynare_estimation_1.m index 80dee69cf5..f6df44b87e 100644 --- a/matlab/dynare_estimation_1.m +++ b/matlab/dynare_estimation_1.m @@ -75,7 +75,7 @@ if ~options_.dsge_var objective_function = str2func('dsge_likelihood'); end else - objective_function = str2func('DsgeVarLikelihood'); + objective_function = str2func('dsge_var_likelihood'); end [dataset_,xparam1, hh, M_, options_, oo_, estim_params_,bayestopt_] = dynare_estimation_init(var_list_, dname, [], M_, options_, oo_, estim_params_, bayestopt_); diff --git a/matlab/print_info.m b/matlab/print_info.m index c96910e3c1..ab71479c41 100644 --- a/matlab/print_info.m +++ b/matlab/print_info.m @@ -106,7 +106,7 @@ if ~noprint error('The model violates one (many) endogenous prior restriction(s)') case 51 error('You are estimating a DSGE-VAR model, but the value of the dsge prior weight is too low!') - case 52 %DsgeVarLikelihood + case 52 %dsge_var_likelihood error(''); case 61 %Discretionary policy error(['Discretionary policy: maximum number of iterations has been reached. Procedure failed. ']); -- GitLab