From adb8ef3c8a252a37581b9a4fb5427680b68f5585 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?St=C3=A9phane=20Adjemian=20=28Charybdis=29?= <stephane.adjemian@univ-lemans.fr> Date: Fri, 20 Jan 2012 16:40:03 +0100 Subject: [PATCH] Added routine for computing weights and nodes of the Gauss Legendre quadrature. --- matlab/gauss_legendre_weights_and_nodes.m | 132 ++++++++++++++++++++++ 1 file changed, 132 insertions(+) create mode 100644 matlab/gauss_legendre_weights_and_nodes.m diff --git a/matlab/gauss_legendre_weights_and_nodes.m b/matlab/gauss_legendre_weights_and_nodes.m new file mode 100644 index 0000000000..63aae89990 --- /dev/null +++ b/matlab/gauss_legendre_weights_and_nodes.m @@ -0,0 +1,132 @@ +function [nodes,weights] = gauss_legendre_weights_and_nodes(n,a,b) +% Computes the weights and nodes for a Legendre Gaussian quadrature rule. + +%@info: +%! @deftypefn {Function File} {@var{nodes}, @var{weights} =} gauss_hermite_weights_and_nodes (@var{n}) +%! @anchor{gauss_legendre_weights_and_nodes} +%! @sp 1 +%! Computes the weights and nodes for a Legendre Gaussian quadrature rule. designed to approximate integrals +%! on the finite interval (-1,1) of an unweighted smooth function. +%! @sp 2 +%! @strong{Inputs} +%! @sp 1 +%! @table @ @var +%! @item n +%! Positive integer scalar, number of nodes (order of approximation). +%! @item a +%! Double scalar, lower bound. +%! @item b +%! Double scalar, upper bound. +%! @end table +%! @sp 1 +%! @strong{Outputs} +%! @sp 1 +%! @table @ @var +%! @item nodes +%! n*1 vector of doubles, the nodes (roots of an order n Legendre polynomial) +%! @item weights +%! n*1 vector of doubles, the associated weights. +%! @end table +%! @sp 2 +%! @strong{Remarks:} +%! Only the first input argument (the number of nodes) is mandatory. The second and third input arguments +%! are used if a change of variables is necessary (ie if we need nodes over the interval [a,b] instead of +%! of the default interval [-1,1]). +%! @sp 2 +%! @strong{This function is called by:} +%! @sp 2 +%! @strong{This function calls:} +%! @sp 2 +%! @end deftypefn +%@eod: + +% Copyright (C) 2012 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. + +% AUTHOR(S) stephane DOT adjemian AT univ DASH lemans DOT fr + +bb = sqrt(1./(4-(1./transpose(1:n-1)).^2)); +aa = zeros(n,1); +JacobiMatrix = diag(bb,1)+diag(aa)+diag(bb,-1); +[JacobiEigenVectors,JacobiEigenValues] = eig(JacobiMatrix); +[nodes,idx] = sort(diag(JacobiEigenValues)); +JacobiEigenVector = JacobiEigenVectors(1,:); +JacobiEigenVector = transpose(JacobiEigenVector(idx)); +weights = 2*JacobiEigenVector.^2; + +if nargin==3 + weights = .5*(b-a)*weights; + nodes = .5*(nodes+1)*(b-a)+a; +end + +%@test:1 +%$ [n2,w2] = gauss_legendre_weights_and_nodes(2); +%$ [n3,w3] = gauss_legendre_weights_and_nodes(3); +%$ [n4,w4] = gauss_legendre_weights_and_nodes(4); +%$ [n5,w5] = gauss_legendre_weights_and_nodes(5); +%$ [n7,w7] = gauss_legendre_weights_and_nodes(7); +%$ +%$ +%$ % Expected nodes (taken from Judd (1998, table 7.2)). +%$ e2 = .5773502691; e2 = [-e2; e2]; +%$ e3 = .7745966692; e3 = [-e3; 0 ; e3]; +%$ e4 = [.8611363115; .3399810435]; e4 = [-e4; flipud(e4)]; +%$ e5 = [.9061798459; .5384693101]; e5 = [-e5; 0; flipud(e5)]; +%$ e7 = [.9491079123; .7415311855; .4058451513]; e7 = [-e7; 0; flipud(e7)]; +%$ +%$ % Expected weights (taken from Judd (1998, table 7.2) and http://en.wikipedia.org/wiki/Gaussian_quadrature). +%$ f2 = [1; 1]; +%$ f3 = [5; 8; 5]/9; +%$ f4 = [18-sqrt(30); 18+sqrt(30)]; f4 = [f4; flipud(f4)]/36; +%$ f5 = [322-13*sqrt(70); 322+13*sqrt(70)]/900; f5 = [f5; 128/225; flipud(f5)]; +%$ f7 = [.1294849661; .2797053914; .3818300505]; f7 = [f7; .4179591836; flipud(f7)]; +%$ +%$ % Check the results. +%$ t(1) = dyn_assert(e2,n2,1e-9); +%$ t(2) = dyn_assert(e3,n3,1e-9); +%$ t(3) = dyn_assert(e4,n4,1e-9); +%$ t(4) = dyn_assert(e5,n5,1e-9); +%$ t(5) = dyn_assert(e7,n7,1e-9); +%$ t(6) = dyn_assert(w2,f2,1e-9); +%$ t(7) = dyn_assert(w3,f3,1e-9); +%$ t(8) = dyn_assert(w4,f4,1e-9); +%$ t(9) = dyn_assert(w5,f5,1e-9); +%$ t(10) = dyn_assert(w7,f7,1e-9); +%$ T = all(t); +%@eof:1 + +%@test:2 +%$ nmax = 50; +%$ +%$ t = zeros(nmax,1); +%$ +%$ for i=1:nmax +%$ [n,w] = gauss_legendre_weights_and_nodes(i); +%$ t(i) = dyn_assert(sum(w),2,1e-12); +%$ end +%$ +%$ T = all(t); +%@eof:2 + +%@test:3 +%$ [n,w] = gauss_legendre_weights_and_nodes(9,pi,2*pi); +%$ % Check that the +%$ t(1) = all(n>pi); +%$ t(2) = all(n<2*pi); +%$ t(3) = dyn_assert(sum(w),pi,1e-12); +%$ T = all(t); +%@eof:3 \ No newline at end of file -- GitLab