diff --git a/matlab/particle/monte_carlo_SIS_particle_filter.m b/matlab/particle/monte_carlo_SIS_particle_filter.m
new file mode 100644
index 0000000000000000000000000000000000000000..d95bf08946242bb600aa465cfd6b1e88a792b799
--- /dev/null
+++ b/matlab/particle/monte_carlo_SIS_particle_filter.m
@@ -0,0 +1,196 @@
+function [LIK,lik] = monte_carlo_SIS_particle_filter(reduced_form_model,Y,start,number_of_particles)
+% hparam,y,nbchocetat,nbchocmesure,smol_prec,nb_part,g,m,choix
+% Evaluates the likelihood of a nonlinear model with a particle filter without systematic resampling. 
+%
+% INPUTS
+%    reduced_form_model     [structure] Matlab's structure describing the reduced form model.
+%                                       reduced_form_model.measurement.H   [double]   (pp x pp) variance matrix of measurement errors.
+%                                       reduced_form_model.state.Q         [double]   (qq x qq) variance matrix of state errors.
+%                                       reduced_form_model.state.dr        [structure] output of resol.m.
+%    Y                      [double]    pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables.
+%    start                  [integer]   scalar, likelihood evaluation starts at 'start'.
+%    mf                     [integer]   pp*1 vector of indices.
+%    number_of_particles    [integer]   scalar.
+%
+% OUTPUTS
+%    LIK        [double]    scalar, likelihood
+%    lik        [double]    vector, density of observations in each period.
+%
+% REFERENCES
+%
+% NOTES
+%   The vector "lik" is used to evaluate the jacobian of the likelihood.
+
+% Copyright (C) 2009 Dynare Team
+%
+% This file is part of Dynare.
+%
+% Dynare is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% Dynare is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
+
+global M_ bayestopt_
+persistent init_flag
+persistent restrict_variables_idx observed_variables_idx state_variables_idx mf0 mf1
+persistent sample_size number_of_state_variables number_of_observed_variables number_of_structural_innovations
+
+% Set defaults.
+if (nargin<4) || (nargin==4 && isempty(number_of_particles))
+  number_of_particles = 1000 ;
+end
+if nargin==2 || isempty(start)
+  start = 1; 
+end
+
+dr = reduced_form_model.state.dr;% Decision rules and transition equations.
+Q  = reduced_form_model.state.Q;% Covariance matrix of the structural innovations.
+H  = reduced_form_model.measurement.H;% Covariance matrix of the measurement errors.
+
+% Set persistent variables.
+if isempty(init_flag)
+    mf0 = bayestopt_.mf0;
+    mf1 = bayestopt_.mf1;
+    restrict_variables_idx  = bayestopt_.restrict_var_list;
+    observed_variables_idx  = restrict_variables_idx(mf1);
+    state_variables_idx     = restrict_variables_idx(mf0);
+    sample_size = size(Y,2);
+    number_of_state_variables = length(mf0);
+    number_of_observed_variables = length(mf1);
+    number_of_structural_innovations = length(Q); 
+    init_flag = 1;
+end
+
+% Set local state space model (second order approximation).
+ghx = dr.ghx(restrict_variables_idx,:);
+ghu = dr.ghu(restrict_variables_idx,:);
+half_ghxx = .5*dr.ghxx(restrict_variables_idx,:);
+half_ghuu = .5*dr.ghuu(restrict_variables_idx,:);
+ghxu = dr.ghxu(restrict_variables_idx,:);
+steadystate = dr.ys(dr.order_var(restrict_variables_idx));
+constant = steadystate + .5*dr.ghs2(restrict_variables_idx);
+state_variables_steady_state = dr.ys(dr.order_var(state_variables_idx));
+
+StateVectorMean = state_variables_steady_state;
+StateVectorVariance = lyapunov_symm(ghx(mf0,:),ghu(mf0,:)*Q*ghu(mf0,:)',1e-12,1e-12);
+StateVectorVarianceSquareRoot = reduced_rank_cholesky(StateVectorVariance)';
+state_variance_rank = size(StateVectorVarianceSquareRoot,2);
+
+%state_idx = 1:state_variance_rank;
+%innovation_idx = 1+state_variance_rank:state_variance_rank+number_of_structural_innovations;
+
+Q_lower_triangular_cholesky = chol(Q)';
+
+% Set seed for randn().
+seed  = [ 362436069 ; 521288629 ];
+randn('state',seed);
+ 
+const_lik = log(2*pi)*number_of_observed_variables; 
+lik = NaN(sample_size,1);
+nb_obs_resamp = 0 ;
+for t=1:sample_size
+    PredictedState = zeros(number_of_particles,number_of_state_variables);
+    PredictionError = zeros(number_of_particles,number_of_observed_variables);
+    %PredictedStateMean = zeros(number_of_state_variables,1);
+    PredictedObservedMean = zeros(number_of_observed_variables,1);
+    %PredictedStateVariance = zeros(number_of_state_variables,number_of_state_variables);
+    PredictedObservedVariance = zeros(number_of_observed_variables,number_of_observed_variables);
+    %PredictedStateAndObservedCovariance = zeros(number_of_state_variables,number_of_observed_variables);
+    for i=1:number_of_particles
+        if t==1
+          StateVector = StateVectorMean + StateVectorVarianceSquareRoot*randn(state_variance_rank,1);
+        else 
+          StateVector = StateUpdated(i,:)' ;  
+        end 
+        yhat = StateVector-state_variables_steady_state;
+        epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,1);
+        tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,half_ghxx,half_ghuu,ghxu);
+        % stockage des particules et des erreurs de pr�visions
+        PredictedState(i,:) = tmp(mf0)' ;
+        PredictionError(i,:) = (Y(:,t) - tmp(mf1))' ; 
+        % calcul des moyennes et des matrices de variances covariances 
+        %PredictedStateMean_old = PredictedStateMean;
+        PredictedObservedMean_old = PredictedObservedMean;
+        %PredictedStateMean = PredictedStateMean + (tmp(mf0)-PredictedStateMean)/i;
+        PredictedObservedMean = PredictedObservedMean + (tmp(mf1)-PredictedObservedMean)/i;
+        %psm = PredictedStateMean*PredictedStateMean';
+        pom = PredictedObservedMean*PredictedObservedMean';
+        %pcm = PredictedStateMean*PredictedObservedMean';
+        %PredictedStateVariance = PredictedStateVariance ...
+        %    + ( (tmp(mf0)*tmp(mf0)'-psm-PredictedStateVariance)+(i-1)*(PredictedStateMean_old*PredictedStateMean_old'-psm) )/i;
+        PredictedObservedVariance = PredictedObservedVariance ...
+            + ( (tmp(mf1)*tmp(mf1)'-pom-PredictedObservedVariance)+(i-1)*(PredictedObservedMean_old*PredictedObservedMean_old'-pom) )/i;
+        %PredictedStateAndObservedCovariance = PredictedStateAndObservedCovariance ...
+        %    + ( (tmp(mf0)*tmp(mf1)'-pcm-PredictedStateAndObservedCovariance)+(i-1)*(PredictedStateMean_old*PredictedObservedMean_old'-pcm) )/i;
+    end
+    PredictedObservedVariance = PredictedObservedVariance + H;
+    iPredictedObservedVariance = inv(PredictedObservedVariance);
+    lnw = - 0.5*(const_lik + log(det(PredictedObservedVariance)) + sum(PredictionError'*iPredictedObservedVariance.*PredictionError',2)) ;
+    %bidouille num�rique Schorfheide
+    dfac = max(lnw);
+    wtilde = w.*exp(lnw - dfac) ;
+    % vraisemblance de l'observation
+    lik(t) = log(mean(wtilde)) + dfac ;
+    clear (PredictionError) ;  
+    clear (lnw) ;
+    % calcul des poids 
+    w = wtilde/sum(wtilde) ;
+    clear (wtilde) ;
+    %update 
+    Neff = 1/sum(w^2) ; 
+    if Neff>number_of_particules                        %no resampling
+        StateUpdated = PredictedState ; 
+        clear (PredictedState) ;
+        w = number_of_particles*w ;
+    else                                                %resampling
+        nb_obs_resamp = nb_obs_resamp+1 ;
+
+        %kill the smallest particles before resampling :! facultatif ? 
+        to_kill = [w PredictedState] ; 
+        to_kill = delif(to_kill,w<(1/number_of_particules)*1E-12);%%
+        [n,m] = size(to_kill) ;
+        w = to_kill(:,1) ;
+        PredictedState = to_kill(:,2:m) ;
+        clear (to_kill) ;
+        if number_of_particles neq n 
+          'Elimination de '; number_of_particles - n ; ' particules � l''observation ';t ;
+        end 
+        %fin de kill
+        %remise � l'�chelle des poids sur les particules restantes 
+        w = cumsum( w/sum(w) );
+        %R��chantillonage syst�matique 
+        rnduvec = ( (1:number_of_particles)-1+rand )/number_of_particles ;
+        selind = (n - sum( w > rnduvec' ) + 1)'; % probl�me de m�moire car w .> rnduvec' tr�s grande !
+        clear (rnduvec) ;
+        StateUpdated = PredictedState(selind,:) ;
+        clear (selind) ;
+
+        % initialize
+        selind = zeros(1,number_of_particles);
+        % construct CDF
+        c = cumsum(w);
+        % draw a starting point
+        rnduvec = ( (1:number_of_particles)-1+rand)/number_of_particles ;
+        % start at the bottom of the CDF
+        j=1;
+        for i=1:number_of_particles
+            % move along the CDF
+            while (rnduvec(i)>c(j))
+                j=j+1;
+            end
+            % assign index
+            selind(i) = j;
+        end
+        StateUpdated = PredictedState(selind,:);
+        w = ones(number_of_particules,1) ;
+    end     
+end
+LIK = -sum(lik(start:end));
\ No newline at end of file