diff --git a/doc/dynare.texi b/doc/dynare.texi index a02967042ad35eb5bcc976a701b340ebb5bd6b2d..7814224a1cc652f2c7e6bf270633527c8e3bf740 100644 --- a/doc/dynare.texi +++ b/doc/dynare.texi @@ -2666,6 +2666,7 @@ command. @end defvr @deffn Command model_info ; +@deffnx Command model_info (@var{OPTIONS}@dots{}); @descriptionhead @@ -2730,6 +2731,22 @@ to @samp{SIMPLE} if the block has only one equation. If several equation appears in the block, @var{x} is equal to @samp{COMPLETE}. @end table +@optionshead + +@table @code + +@item 'static' +Prints out the block decomposition of the static model. +Without 'static' option model_info displays the block decomposition +of the dynamic model. + +@item 'incidence' +Displays the gross incidence matrix and the reordered incidence matrix +of the block decomposed model. + +@end table + + @end deffn @deffn Command print_bytecode_dynamic_model ; diff --git a/matlab/model_info.m b/matlab/model_info.m index e67923b0045993df7f4466f6ddb82202cf532864..d6065b00d4c7b0187932ddb67fb275537df64dcc 100644 --- a/matlab/model_info.m +++ b/matlab/model_info.m @@ -19,39 +19,53 @@ function model_info(varargin); % along with Dynare. If not, see <http://www.gnu.org/licenses/>. global M_; -fprintf(' Informations about %s\n',M_.fname); +if sum(strcmp(varargin,'static')) > 0 + static = 1; +else + static = 0; +end; +if sum(strcmp(varargin,'incidence')) > 0 + incidence = 1; +else + incidence = 0; +end; +if static + fprintf(' Informations about %s (static model)\n',M_.fname); + block_structre_str = 'block_structure_stat'; + block_structure = M_.block_structure_stat; + nb_leadlag = 1; +else + fprintf(' Informations about %s (dynamic model)\n',M_.fname); + block_structre_str = 'block_structure'; + block_structure = M_.block_structure; + nb_leadlag = 3; +end; fprintf(strcat(' ===================',char(ones(1,length(M_.fname))*'='),'\n\n')); -if(isfield(M_,'block_structure')) - nb_blocks=length(M_.block_structure.block); +if(isfield(M_,block_structre_str)) + nb_blocks=length(block_structure.block); fprintf('The model has %d equations and is decomposed in %d blocks as follow:\n',M_.endo_nbr,nb_blocks); fprintf('===============================================================================================================\n'); fprintf('| %10s | %10s | %30s | %14s | %31s |\n','Block no','Size','Block Type',' Equation','Dependent variable'); fprintf('|============|============|================================|================|=================================|\n'); for i=1:nb_blocks - size_block=length(M_.block_structure.block(i).equation); + size_block=length(block_structure.block(i).equation); if(i>1) fprintf('|------------|------------|--------------------------------|----------------|---------------------------------|\n'); end; for j=1:size_block if(j==1) - fprintf('| %10d | %10d | %30s | %14d | %-6d %24s |\n',i,size_block,Sym_type(M_.block_structure.block(i).Simulation_Type),M_.block_structure.block(i).equation(j),M_.block_structure.block(i).variable(j),M_.endo_names(M_.block_structure.block(i).variable(j),:)); + fprintf('| %10d | %10d | %30s | %14d | %-6d %24s |\n',i,size_block,Sym_type(block_structure.block(i).Simulation_Type),block_structure.block(i).equation(j),block_structure.block(i).variable(j),M_.endo_names(block_structure.block(i).variable(j),:)); else - fprintf('| %10s | %10s | %30s | %14d | %-6d %24s |\n','','','',M_.block_structure.block(i).equation(j),M_.block_structure.block(i).variable(j),M_.endo_names(M_.block_structure.block(i).variable(j),:)); + fprintf('| %10s | %10s | %30s | %14d | %-6d %24s |\n','','','',block_structure.block(i).equation(j),block_structure.block(i).variable(j),M_.endo_names(block_structure.block(i).variable(j),:)); end; end; end; fprintf('===============================================================================================================\n'); fprintf('\n'); - for k=1:M_.maximum_endo_lag+M_.maximum_endo_lead+1 - if(k==M_.maximum_endo_lag+1) - fprintf('%-30s %s','the variable','is used in equations Contemporaneously'); - elseif(k<M_.maximum_endo_lag+1) - fprintf('%-30s %s %d','the variable','is used in equations with lag ',M_.maximum_endo_lag+1-k); - else - fprintf('%-30s %s %d','the variable','is used in equations with lead ',k-(M_.maximum_endo_lag+1)); - end; - if(size(M_.block_structure.incidence(k).sparse_IM,1)>0) - IM=sortrows(M_.block_structure.incidence(k).sparse_IM,2); + if static + fprintf('%-30s %s','the variable','is used in equations Contemporaneously'); + if(size(block_structure.incidence.sparse_IM,1)>0) + IM=sortrows(block_structure.incidence.sparse_IM,2); else IM=[]; end; @@ -65,17 +79,42 @@ if(isfield(M_,'block_structure')) last=IM(i,2); end; fprintf('\n\n'); + else + for k=1:M_.maximum_endo_lag+M_.maximum_endo_lead+1 + if(k==M_.maximum_endo_lag+1) + fprintf('%-30s %s','the variable','is used in equations Contemporaneously'); + elseif(k<M_.maximum_endo_lag+1) + fprintf('%-30s %s %d','the variable','is used in equations with lag ',M_.maximum_endo_lag+1-k); + else + fprintf('%-30s %s %d','the variable','is used in equations with lead ',k-(M_.maximum_endo_lag+1)); + end; + if(size(block_structure.incidence(k).sparse_IM,1)>0) + IM=sortrows(block_structure.incidence(k).sparse_IM,2); + else + IM=[]; + end; + size_IM=size(IM,1); + last=99999999; + for i=1:size_IM + if(last~=IM(i,2)) + fprintf('\n%-30s',M_.endo_names(IM(i,2),:)); + end; + fprintf(' %5d',IM(i,1)); + last=IM(i,2); + end; + fprintf('\n\n'); + end; end; %printing the gross incidence matrix IM_star = char([kron(ones(M_.endo_nbr, M_.endo_nbr-1), double(blanks(3))) double(blanks(M_.endo_nbr)')]); - for i = 1:3 - n = size(M_.block_structure.incidence(i).sparse_IM,1); + for i = 1:nb_leadlag + n = size(block_structure.incidence(i).sparse_IM,1); for j = 1:n - if ismember(M_.block_structure.incidence(i).sparse_IM(j,2), M_.state_var) - IM_star(M_.block_structure.incidence(i).sparse_IM(j,1), 3 * (M_.block_structure.incidence(i).sparse_IM(j,2) - 1) + 1) = 'X'; + if ismember(block_structure.incidence(i).sparse_IM(j,2), M_.state_var) + IM_star(block_structure.incidence(i).sparse_IM(j,1), 3 * (block_structure.incidence(i).sparse_IM(j,2) - 1) + 1) = 'X'; else - IM_star(M_.block_structure.incidence(i).sparse_IM(j,1), 3 * (M_.block_structure.incidence(i).sparse_IM(j,2) - 1) + 1) = '1'; + IM_star(block_structure.incidence(i).sparse_IM(j,1), 3 * (block_structure.incidence(i).sparse_IM(j,2) - 1) + 1) = '1'; end; end; end; @@ -88,7 +127,7 @@ if(isfield(M_,'block_structure')) var_names = [var_names; blank; M_.endo_names(i,:)]; end; end; - if nargin == 1 && strcmp(varargin{1},'incidence') + if incidence topp = [char(kron(double(blanks(ceil(log10(M_.endo_nbr)))),ones(size(M_.endo_names,2),1))) var_names' ]; bott = [int2str(seq') blanks(M_.endo_nbr)' blanks(M_.endo_nbr)' IM_star]; fprintf('\n Gross incidence matrix\n'); @@ -97,42 +136,42 @@ if(isfield(M_,'block_structure')) %printing the reordered incidence matrix IM_star_reordered = char([kron(ones(M_.endo_nbr, M_.endo_nbr-1), double(blanks(3))) double(blanks(M_.endo_nbr)')]); - eq(M_.block_structure.equation_reordered) = seq; - va(M_.block_structure.variable_reordered) = seq; + eq(block_structure.equation_reordered) = seq; + va(block_structure.variable_reordered) = seq; barre_blank = [ barre(size(M_.endo_names,2)); blanks(size(M_.endo_names,2))]; cur_block = 1; for i = 1:M_.endo_nbr past_block = cur_block; - while ismember(M_.block_structure.variable_reordered(i), M_.block_structure.block(cur_block).variable) == 0; + while ismember(block_structure.variable_reordered(i), block_structure.block(cur_block).variable) == 0; cur_block = cur_block + 1; end; if i == 1 - var_names = [blank; M_.endo_names(M_.block_structure.variable_reordered(i),:)]; + var_names = [blank; M_.endo_names(block_structure.variable_reordered(i),:)]; else if past_block ~= cur_block - var_names = [var_names; barre_blank; M_.endo_names(M_.block_structure.variable_reordered(i),:)]; + var_names = [var_names; barre_blank; M_.endo_names(block_structure.variable_reordered(i),:)]; else - var_names = [var_names; blank; M_.endo_names(M_.block_structure.variable_reordered(i),:)]; + var_names = [var_names; blank; M_.endo_names(block_structure.variable_reordered(i),:)]; end end; end; topp = [char(kron(double(blanks(ceil(log10(M_.endo_nbr)))),ones(size(M_.endo_names,2),1))) var_names' ]; n_state_var = length(M_.state_var); IM_state_var = zeros(n_state_var, n_state_var); - inv_variable_reordered(M_.block_structure.variable_reordered) = 1:M_.endo_nbr; - state_equation = M_.block_structure.equation_reordered(inv_variable_reordered(M_.state_var)); - for i = 1:3 - n = size(M_.block_structure.incidence(i).sparse_IM,1); + inv_variable_reordered(block_structure.variable_reordered) = 1:M_.endo_nbr; + state_equation = block_structure.equation_reordered(inv_variable_reordered(M_.state_var)); + for i = 1:nb_leadlag + n = size(block_structure.incidence(i).sparse_IM,1); for j = 1:n - [tf, loc] = ismember(M_.block_structure.incidence(i).sparse_IM(j,2), M_.state_var); + [tf, loc] = ismember(block_structure.incidence(i).sparse_IM(j,2), M_.state_var); if tf - IM_star_reordered(eq(M_.block_structure.incidence(i).sparse_IM(j,1)), 3 * (va(M_.block_structure.incidence(i).sparse_IM(j,2)) - 1) + 1) = 'X'; - [tfi, loci] = ismember(M_.block_structure.incidence(i).sparse_IM(j,1), state_equation); + IM_star_reordered(eq(block_structure.incidence(i).sparse_IM(j,1)), 3 * (va(block_structure.incidence(i).sparse_IM(j,2)) - 1) + 1) = 'X'; + [tfi, loci] = ismember(block_structure.incidence(i).sparse_IM(j,1), state_equation); if tfi IM_state_var(loci, loc) = 1; end; else - IM_star_reordered(eq(M_.block_structure.incidence(i).sparse_IM(j,1)), 3 * (va(M_.block_structure.incidence(i).sparse_IM(j,2)) - 1) + 1) = '1'; + IM_star_reordered(eq(block_structure.incidence(i).sparse_IM(j,1)), 3 * (va(block_structure.incidence(i).sparse_IM(j,2)) - 1) + 1) = '1'; end; end; end; @@ -143,7 +182,7 @@ if(isfield(M_,'block_structure')) block = {}; for i = 1:n_state_var; past_block = cur_block; - while ismember(M_.state_var(i), M_.block_structure.block(cur_block).variable) == 0; + while ismember(M_.state_var(i), block_structure.block(cur_block).variable) == 0; cur_block = cur_block + 1; end; if (past_block ~= cur_block) || (past_block == cur_block && i == n_state_var) @@ -154,7 +193,7 @@ if(isfield(M_,'block_structure')) cur_block = 1; for i = 1:M_.endo_nbr past_block = cur_block; - while ismember(M_.block_structure.variable_reordered(i), M_.block_structure.block(cur_block).variable) == 0; + while ismember(block_structure.variable_reordered(i), block_structure.block(cur_block).variable) == 0; cur_block = cur_block + 1; end; if past_block ~= cur_block @@ -164,7 +203,7 @@ if(isfield(M_,'block_structure')) end; end - bott = [int2str(M_.block_structure.equation_reordered') blanks(M_.endo_nbr)' blanks(M_.endo_nbr)' IM_star_reordered]; + bott = [int2str(block_structure.equation_reordered') blanks(M_.endo_nbr)' blanks(M_.endo_nbr)' IM_star_reordered]; fprintf('\n Reordered incidence matrix\n'); fprintf(' ==========================\n'); disp([topp; bott]); diff --git a/preprocessor/StaticModel.cc b/preprocessor/StaticModel.cc index 2c495c2b430431e85398906c99502d67bca24b21..9b8319ca9392ab0bb6e46eb1070b022c5da4d7c5 100644 --- a/preprocessor/StaticModel.cc +++ b/preprocessor/StaticModel.cc @@ -1511,6 +1511,58 @@ StaticModel::writeOutput(ostream &output, bool block) const output << getBlockEquationID(b, i)+1 << "; "; output << "];" << endl; } + for (int b = 0; b < (int) nb_blocks; b++) + { + BlockSimulationType simulation_type = getBlockSimulationType(b); + unsigned int block_size = getBlockSize(b); + unsigned int block_mfs = getBlockMfs(b); + unsigned int block_recursive = block_size - block_mfs; + ostringstream tmp_s, tmp_s_eq; + tmp_s.str(""); + tmp_s_eq.str(""); + for (int i = 0; i < block_size; i++) + { + tmp_s << " " << getBlockVariableID(b, i)+1; + tmp_s_eq << " " << getBlockEquationID(b, i)+1; + } + output << "block_structure_stat.block(" << b+1 << ").Simulation_Type = " << simulation_type << ";\n"; + output << "block_structure_stat.block(" << b+1 << ").endo_nbr = " << block_size << ";\n"; + output << "block_structure_stat.block(" << b+1 << ").mfs = " << getBlockMfs(block) << ";\n"; + output << "block_structure_stat.block(" << b+1 << ").equation = [" << tmp_s_eq.str() << "];\n"; + output << "block_structure_stat.block(" << b+1 << ").variable = [" << tmp_s.str() << "];\n"; + } + output << "M_.block_structure_stat.block = block_structure_stat.block;\n"; + string cst_s; + int nb_endo = symbol_table.endo_nbr(); + output << "M_.block_structure_stat.variable_reordered = ["; + for (int i = 0; i < nb_endo; i++) + output << " " << variable_reordered[i]+1; + output << "];\n"; + output << "M_.block_structure_stat.equation_reordered = ["; + for (int i = 0; i < nb_endo; i++) + output << " " << equation_reordered[i]+1; + output << "];\n"; + + map<pair<int, int>, int> row_incidence; + for (first_derivatives_t::const_iterator it = first_derivatives.begin(); + it != first_derivatives.end(); it++) + { + int deriv_id = it->first.second; + if (getTypeByDerivID(deriv_id) == eEndogenous) + { + int eq = it->first.first; + int symb = getSymbIDByDerivID(deriv_id); + int var = symbol_table.getTypeSpecificID(symb); + //int lag = getLagByDerivID(deriv_id); + row_incidence[make_pair(eq, var)] = 1; + } + } + output << "M_.block_structure_stat.incidence.sparse_IM = ["; + for (map<pair< int, int >, int>::const_iterator it = row_incidence.begin(); it != row_incidence.end(); it++) + { + output << it->first.first+1 << " " << it->first.second+1 << ";\n"; + } + output << "];\n"; } SymbolType