diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_M0.mod b/tests/estimation/method_of_moments/AFVRR/AFVRR_M0.mod
index 4bb485c8de0607a2f9551e0f0d49dfe9d4cd3a6c..c1282a7d11fbad55a43385706b579937a52a0621 100644
--- a/tests/estimation/method_of_moments/AFVRR/AFVRR_M0.mod
+++ b/tests/estimation/method_of_moments/AFVRR/AFVRR_M0.mod
@@ -1,302 +1,302 @@
-% DSGE model based on replication files of
-% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49
-% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021
-% =========================================================================
-% Copyright (C) 2021 Dynare Team
-%
-% This file is part of Dynare.
-%
-% Dynare is free software: you can redistribute it and/or modify
-% it under the terms of the GNU General Public License as published by
-% the Free Software Foundation, either version 3 of the License, or
-% (at your option) any later version.
-%
-% Dynare is distributed in the hope that it will be useful,
-% but WITHOUT ANY WARRANTY; without even the implied warranty of
-% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-% GNU General Public License for more details.
-%
-% You should have received a copy of the GNU General Public License
-% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
-% =========================================================================
-
-% This is the benchmark model with no feedback M_0
-% Original code RunGMM_standardModel_RRA.m by Martin M. Andreasen, Jan 2016
-
-@#include "AFVRR_common.inc"
-
-%--------------------------------------------------------------------------
-% Parameter calibration taken from RunGMM_standardModel_RRA.m
-%--------------------------------------------------------------------------
-% fixed parameters
-INHABIT   = 1;
-PHI1      = 4;
-PHI4      = 1;
-KAPAone   = 0;
-DELTA     = 0.025;
-THETA     = 0.36;
-ETA       = 6;
-CHI       = 0;
-CONSxhr40 = 0;
-BETTAxhr  = 0;
-BETTAxhr40= 0;
-RHOD      = 0;
-GAMA      = 0.9999;
-CONSxhr20 = 0;
-
-% estimated parameters
-BETTA    = 0.999544966118000;
-B        = 0.668859504661000;
-H        = 0.342483445196000;
-PHI2     = 0.997924964981000;
-RRA      = 662.7953149595370;
-KAPAtwo  = 5.516226495551000;
-ALFA     = 0.809462321180000;
-RHOR     = 0.643873352513000;
-BETTAPAI = 1.270087844103000;
-BETTAY   = 0.031812764291000;
-MYYPS    = 1.001189151180000;
-MYZ      = 1.005286347928000;
-RHOA     = 0.743239127127000;
-RHOG     = 0.793929380230000;
-PAI      = 1.012163659169000;
-GoY      = 0.206594858866000;
-STDA     = 0.016586292524000;
-STDG     = 0.041220613851000;
-STDD     = 0.013534473123000;
-
-% endogenous parameters set via steady state, no need to initialize
-%PHIzero  = ;
-%AA       = ;
-%PHI3     = ;
-%negVf    = ;
-
-model_diagnostics;
-% Model diagnostics show that some parameters are endogenously determined
-% via the steady state, so we run steady to calibrate all parameters
-steady;
-model_diagnostics;
-% Now all parameters are determined
-
-resid;
-check;
-
-%--------------------------------------------------------------------------
-% Shock distribution
-%--------------------------------------------------------------------------
-shocks;
-var eps_a = STDA^2;
-var eps_d = STDD^2;
-var eps_g = STDG^2;
-end;
-
-%--------------------------------------------------------------------------
-% Estimated Params block - these parameters will be estimated, we
-% initialize at calibrated values
-%--------------------------------------------------------------------------
-estimated_params;
-BETTA;
-B;
-H;
-PHI2;
-RRA;
-KAPAtwo;
-ALFA;
-RHOR;
-BETTAPAI;
-BETTAY;
-MYYPS;
-MYZ;
-RHOA;
-RHOG;
-PAI;
-GoY;
-stderr eps_a;
-stderr eps_g;
-stderr eps_d;
-end;
-
-estimated_params_init(use_calibration);
-end;
-
-%--------------------------------------------------------------------------
-% Compare whether toolbox yields equivalent moments at second order
-%--------------------------------------------------------------------------
-% Note that we compare results for orderApp=1|2 and not for orderApp=3, because
-% there is a small error in the replication files of the original article in the 
-% computation of the covariance matrix of the extended innovations vector.
-% The authors have been contacted, fixed it, and report that the results 
-% change only slightly at orderApp=3 to what they report in the paper. At
-% orderApp=2 all is correct and so the following part tests whether we get 
-% the same model moments at the calibrated parameters (we do not optimize).
-% We compare it to the replication file RunGMM_standardModel_RRA.m with the
-% following settings: orderApp=1|2, seOn=0, q_lag=10, weighting=1;
-% scaled=0; optimizer=0; estimator=1; momentSet=2;
-%
-% Output of the replication files for orderApp=1
-AndreasenEtAl.Q1 = 23893.072;
-AndreasenEtAl.moments1 =[ % note that we reshuffeled to be compatible with our matched moments block
-    {[ 1]}    {'Ex'  }    {'Gr_C   '}    {'     '  }    {'0.024388'   }    {'0.023764'   }
-    {[ 2]}    {'Ex'  }    {'Gr_I   '}    {'     '  }    {'0.031046'   }    {'0.028517'   }
-    {[ 3]}    {'Ex'  }    {'Infl  ' }    {'     '  }    {'0.03757'    }    {'0.048361'   }
-    {[ 4]}    {'Ex'  }    {'r1    ' }    {'     '  }    {'0.056048'   }    {'0.073945'   }
-    {[ 5]}    {'Ex'  }    {'r40   ' }    {'     '  }    {'0.069929'   }    {'0.073945'   }
-    {[ 6]}    {'Ex'  }    {'xhr40  '}    {'     '  }    {'0.017237'   }    {'0'          }
-    {[ 7]}    {'Ex'  }    {'GoY    '}    {'     '  }    {'-1.5745'    }    {'-1.577'     }
-    {[ 8]}    {'Ex'  }    {'hours  '}    {'     '  }    {'-0.043353'  }    {'-0.042861'  }
-    {[ 9]}    {'Exx' }    {'Gr_C   '}    {'Gr_C   '}    {'0.0013159'  }    {'0.0011816'  }
-    {[10]}    {'Exx' }    {'Gr_C   '}    {'Gr_I   '}    {'0.0021789'  }    {'0.0016052'  }
-    {[11]}    {'Exx' }    {'Gr_C   '}    {'Infl  ' }    {'0.00067495' }    {'0.00090947' }
-    {[12]}    {'Exx' }    {'Gr_C   '}    {'r1    ' }    {'0.0011655'  }    {'0.0016016'  }
-    {[13]}    {'Exx' }    {'Gr_C   '}    {'r40   ' }    {'0.0015906'  }    {'0.0017076'  }
-    {[14]}    {'Exx' }    {'Gr_C   '}    {'xhr40  '}    {'0.0020911'  }    {'0.0013997'  }
-    {[15]}    {'Exx' }    {'Gr_I   '}    {'Gr_I   '}    {'0.0089104'  }    {'0.0055317'  }
-    {[16]}    {'Exx' }    {'Gr_I   '}    {'Infl  ' }    {'0.00063139' }    {'0.00050106' }
-    {[17]}    {'Exx' }    {'Gr_I   '}    {'r1    ' }    {'0.0011031'  }    {'0.0018178'  }
-    {[18]}    {'Exx' }    {'Gr_I   '}    {'r40   ' }    {'0.0018445'  }    {'0.0020186'  }
-    {[19]}    {'Exx' }    {'Gr_I   '}    {'xhr40  '}    {'0.00095556' }    {'0.0064471'  }
-    {[20]}    {'Exx' }    {'Infl  ' }    {'Infl  ' }    {'0.0020268'  }    {'0.0030519'  }
-    {[21]}    {'Exx' }    {'Infl  ' }    {'r1    ' }    {'0.0025263'  }    {'0.0042181'  }
-    {[22]}    {'Exx' }    {'Infl  ' }    {'r40   ' }    {'0.0029126'  }    {'0.0039217'  }
-    {[23]}    {'Exx' }    {'Infl  ' }    {'xhr40  '}    {'-0.00077101'}    {'-0.0019975' }
-    {[24]}    {'Exx' }    {'r1    ' }    {'r1    ' }    {'0.0038708'  }    {'0.0061403'  }
-    {[25]}    {'Exx' }    {'r1    ' }    {'r40   ' }    {'0.0044773'  }    {'0.0058343'  }
-    {[26]}    {'Exx' }    {'r1    ' }    {'xhr40  '}    {'-0.00048202'}    {'-0.00089501'}
-    {[27]}    {'Exx' }    {'r40   ' }    {'r40   ' }    {'0.0054664'  }    {'0.0056883'  }
-    {[28]}    {'Exx' }    {'r40   ' }    {'xhr40  '}    {'0.00053864' }    {'-0.00041184'}
-    {[29]}    {'Exx' }    {'xhr40  '}    {'xhr40  '}    {'0.053097'   }    {'0.016255'   }
-    {[30]}    {'Exx' }    {'GoY    '}    {'GoY    '}    {'2.4863'     }    {'2.4919'     }
-    {[31]}    {'Exx' }    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018384'  }
-    {[32]}    {'Exx1'}    {'Gr_C   '}    {'Gr_C   '}    {'0.00077917' }    {'0.00065543' }
-    {[33]}    {'Exx1'}    {'Gr_I   '}    {'Gr_I   '}    {'0.0050104'  }    {'0.0033626'  }
-    {[34]}    {'Exx1'}    {'Infl  ' }    {'Infl  ' }    {'0.0019503'  }    {'0.0029033'  }
-    {[35]}    {'Exx1'}    {'r1    ' }    {'r1    ' }    {'0.0038509'  }    {'0.006112'   }
-    {[36]}    {'Exx1'}    {'r40   ' }    {'r40   ' }    {'0.0054699'  }    {'0.005683'   }
-    {[37]}    {'Exx1'}    {'xhr40  '}    {'xhr40  '}    {'-0.00098295'}    {'3.3307e-16' }
-    {[38]}    {'Exx1'}    {'GoY    '}    {'GoY    '}    {'2.4868'     }    {'2.4912'     }
-    {[39]}    {'Exx1'}    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018378'  }
-];
-
-% Output of the replication files for orderApp=2
-AndreasenEtAl.Q2 = 65.8269;
-AndreasenEtAl.moments2 =[ % note that we reshuffeled to be compatible with our matched moments block
-    {[ 1]}    {'Ex'  }    {'Gr_C   '}    {'     '  }    {'0.024388'   }    {'0.023764'  }
-    {[ 2]}    {'Ex'  }    {'Gr_I   '}    {'     '  }    {'0.031046'   }    {'0.028517'  }
-    {[ 3]}    {'Ex'  }    {'Infl  ' }    {'     '  }    {'0.03757'    }    {'0.034882'  }
-    {[ 4]}    {'Ex'  }    {'r1    ' }    {'     '  }    {'0.056048'   }    {'0.056542'  }
-    {[ 5]}    {'Ex'  }    {'r40   ' }    {'     '  }    {'0.069929'   }    {'0.070145'  }
-    {[ 6]}    {'Ex'  }    {'xhr40  '}    {'     '  }    {'0.017237'   }    {'0.020825'  }
-    {[ 7]}    {'Ex'  }    {'GoY    '}    {'     '  }    {'-1.5745'    }    {'-1.5748'   }
-    {[ 8]}    {'Ex'  }    {'hours  '}    {'     '  }    {'-0.043353'  }    {'-0.04335'  }
-    {[ 9]}    {'Exx' }    {'Gr_C   '}    {'Gr_C   '}    {'0.0013159'  }    {'0.001205'  }
-    {[10]}    {'Exx' }    {'Gr_C   '}    {'Gr_I   '}    {'0.0021789'  }    {'0.0016067' }
-    {[11]}    {'Exx' }    {'Gr_C   '}    {'Infl  ' }    {'0.00067495' }    {'0.00059406'}
-    {[12]}    {'Exx' }    {'Gr_C   '}    {'r1    ' }    {'0.0011655'  }    {'0.0011949' }
-    {[13]}    {'Exx' }    {'Gr_C   '}    {'r40   ' }    {'0.0015906'  }    {'0.0016104' }
-    {[14]}    {'Exx' }    {'Gr_C   '}    {'xhr40  '}    {'0.0020911'  }    {'0.0020245' }
-    {[15]}    {'Exx' }    {'Gr_I   '}    {'Gr_I   '}    {'0.0089104'  }    {'0.0060254' }
-    {[16]}    {'Exx' }    {'Gr_I   '}    {'Infl  ' }    {'0.00063139' }    {'8.3563e-05'}
-    {[17]}    {'Exx' }    {'Gr_I   '}    {'r1    ' }    {'0.0011031'  }    {'0.0013176' }
-    {[18]}    {'Exx' }    {'Gr_I   '}    {'r40   ' }    {'0.0018445'  }    {'0.0019042' }
-    {[19]}    {'Exx' }    {'Gr_I   '}    {'xhr40  '}    {'0.00095556' }    {'0.0064261' }
-    {[20]}    {'Exx' }    {'Infl  ' }    {'Infl  ' }    {'0.0020268'  }    {'0.0020735' }
-    {[21]}    {'Exx' }    {'Infl  ' }    {'r1    ' }    {'0.0025263'  }    {'0.0027621' }
-    {[22]}    {'Exx' }    {'Infl  ' }    {'r40   ' }    {'0.0029126'  }    {'0.0029257' }
-    {[23]}    {'Exx' }    {'Infl  ' }    {'xhr40  '}    {'-0.00077101'}    {'-0.0012165'}
-    {[24]}    {'Exx' }    {'r1    ' }    {'r1    ' }    {'0.0038708'  }    {'0.0040235' }
-    {[25]}    {'Exx' }    {'r1    ' }    {'r40   ' }    {'0.0044773'  }    {'0.0044702' }
-    {[26]}    {'Exx' }    {'r1    ' }    {'xhr40  '}    {'-0.00048202'}    {'0.00030542'}
-    {[27]}    {'Exx' }    {'r40   ' }    {'r40   ' }    {'0.0054664'  }    {'0.0052718' }
-    {[28]}    {'Exx' }    {'r40   ' }    {'xhr40  '}    {'0.00053864' }    {'0.0010045' }
-    {[29]}    {'Exx' }    {'xhr40  '}    {'xhr40  '}    {'0.053097'   }    {'0.018416'  }
-    {[30]}    {'Exx' }    {'GoY    '}    {'GoY    '}    {'2.4863'     }    {'2.4853'    }
-    {[31]}    {'Exx' }    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018806' }
-    {[32]}    {'Exx1'}    {'Gr_C   '}    {'Gr_C   '}    {'0.00077917' }    {'0.00067309'}
-    {[33]}    {'Exx1'}    {'Gr_I   '}    {'Gr_I   '}    {'0.0050104'  }    {'0.0033293' }
-    {[34]}    {'Exx1'}    {'Infl  ' }    {'Infl  ' }    {'0.0019503'  }    {'0.0019223' }
-    {[35]}    {'Exx1'}    {'r1    ' }    {'r1    ' }    {'0.0038509'  }    {'0.0039949' }
-    {[36]}    {'Exx1'}    {'r40   ' }    {'r40   ' }    {'0.0054699'  }    {'0.0052659' }
-    {[37]}    {'Exx1'}    {'xhr40  '}    {'xhr40  '}    {'-0.00098295'}    {'0.0004337' }
-    {[38]}    {'Exx1'}    {'GoY    '}    {'GoY    '}    {'2.4868'     }    {'2.4846'    }
-    {[39]}    {'Exx1'}    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.00188'   }
-];
-
-@#for orderApp in 1:2
-
-method_of_moments(
-          mom_method = GMM                    % method of moments method; possible values: GMM|SMM
-        , datafile   = 'AFVRR_data.mat'       % name of filename with data
-        , bartlett_kernel_lag = 10          % bandwith in optimal weighting matrix
-        , order = @{orderApp}                 % order of Taylor approximation in perturbation
-        , pruning                             % use pruned state space system at higher-order
-        % , verbose                           % display and store intermediate estimation results
-        , weighting_matrix = ['DIAGONAL']      % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename        
-        % , TeX                               % print TeX tables and graphics
-        % Optimization options that can be set by the user in the mod file, otherwise default values are provided        
-        %, huge_number=1D10                   % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons
-        , mode_compute = 0                    % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer        
-        , optim = ('TolFun', 1e-6
-                   ,'TolX', 1e-6
-                   ,'MaxIter', 3000
-                   ,'MaxFunEvals', 1D6
-                   ,'UseParallel' , 1
-                   %,'Jacobian' , 'on'
-                  )    % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute
-        %, silent_optimizer                  % run minimization of moments distance silently without displaying results or saving files in between
-        %, analytic_standard_errors
-        , se_tolx=1e-10
-);
-
-% Check results
-
-fprintf('****************************************************************\n')
-fprintf('Compare Results for perturbation order @{orderApp}\n')
-fprintf('****************************************************************\n')
-dev_Q            = AndreasenEtAl.Q@{orderApp} - oo_.mom.Q;
-dev_datamoments  = str2double(AndreasenEtAl.moments@{orderApp}(:,5)) - oo_.mom.data_moments;
-dev_modelmoments = str2double(AndreasenEtAl.moments@{orderApp}(:,6)) - oo_.mom.model_moments;
-
-% There is no table command in Octave
-% The table command also crashes on MATLAB R2014a because it does not like variable names
-if ~isoctave && ~matlab_ver_less_than('8.4')
-table([AndreasenEtAl.Q@{orderApp} ; str2double(AndreasenEtAl.moments@{orderApp}(:,5)) ; str2double(AndreasenEtAl.moments@{orderApp}(:,6))],...
-      [oo_.mom.Q                  ; oo_.mom.data_moments                              ; oo_.mom.model_moments                            ],...
-      [dev_Q                      ; dev_datamoments                                   ; dev_modelmoments                                 ],...
-      'VariableNames', {'Andreasen et al', 'Dynare', 'dev'})
-end
-
-if norm(dev_modelmoments)> 1e-4
-    error('Something wrong in the computation of moments at order @{orderApp}')
-end
-
-@#endfor
-
-%--------------------------------------------------------------------------
-% Replicate estimation at orderApp=3
-%--------------------------------------------------------------------------
-@#ifdef DoEstimation
-method_of_moments(
-          mom_method = GMM                    % method of moments method; possible values: GMM|SMM
-        , datafile   = 'AFVRR_data.mat'       % name of filename with data
-        , bartlett_kernel_lag = 10            % bandwith in optimal weighting matrix
-        , order = 3                           % order of Taylor approximation in perturbation
-        , pruning                             % use pruned state space system at higher-order
-        % , verbose                           % display and store intermediate estimation results
-        , weighting_matrix = ['DIAGONAL', 'OPTIMAL']      % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename        
-        % , TeX                               % print TeX tables and graphics
-        % Optimization options that can be set by the user in the mod file, otherwise default values are provided        
-        %, huge_number=1D10                   % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons
-        , mode_compute = 13                   % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer
-        , additional_optimizer_steps = [13]
-        , optim = ('TolFun', 1e-6
-                   ,'TolX', 1e-6
-                   ,'MaxIter', 3000
-                   ,'MaxFunEvals', 1D6
-                   ,'UseParallel' , 1
-                   %,'Jacobian' , 'on'
-                  )    % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute
-        %, silent_optimizer                  % run minimization of moments distance silently without displaying results or saving files in between
-        %, analytic_standard_errors
-        , se_tolx=1e-10
-);
-@#endif
+% DSGE model based on replication files of
+% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49
+% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021
+% =========================================================================
+% Copyright (C) 2021 Dynare Team
+%
+% This file is part of Dynare.
+%
+% Dynare is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% Dynare is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
+% =========================================================================
+
+% This is the benchmark model with no feedback M_0
+% Original code RunGMM_standardModel_RRA.m by Martin M. Andreasen, Jan 2016
+
+@#include "AFVRR_common.inc"
+
+%--------------------------------------------------------------------------
+% Parameter calibration taken from RunGMM_standardModel_RRA.m
+%--------------------------------------------------------------------------
+% fixed parameters
+INHABIT   = 1;
+PHI1      = 4;
+PHI4      = 1;
+KAPAone   = 0;
+DELTA     = 0.025;
+THETA     = 0.36;
+ETA       = 6;
+CHI       = 0;
+CONSxhr40 = 0;
+BETTAxhr  = 0;
+BETTAxhr40= 0;
+RHOD      = 0;
+GAMA      = 0.9999;
+CONSxhr20 = 0;
+
+% estimated parameters
+BETTA    = 0.999544966118000;
+B        = 0.668859504661000;
+H        = 0.342483445196000;
+PHI2     = 0.997924964981000;
+RRA      = 662.7953149595370;
+KAPAtwo  = 5.516226495551000;
+ALFA     = 0.809462321180000;
+RHOR     = 0.643873352513000;
+BETTAPAI = 1.270087844103000;
+BETTAY   = 0.031812764291000;
+MYYPS    = 1.001189151180000;
+MYZ      = 1.005286347928000;
+RHOA     = 0.743239127127000;
+RHOG     = 0.793929380230000;
+PAI      = 1.012163659169000;
+GoY      = 0.206594858866000;
+STDA     = 0.016586292524000;
+STDG     = 0.041220613851000;
+STDD     = 0.013534473123000;
+
+% endogenous parameters set via steady state, no need to initialize
+%PHIzero  = ;
+%AA       = ;
+%PHI3     = ;
+%negVf    = ;
+
+model_diagnostics;
+% Model diagnostics show that some parameters are endogenously determined
+% via the steady state, so we run steady to calibrate all parameters
+steady;
+model_diagnostics;
+% Now all parameters are determined
+
+resid;
+check;
+
+%--------------------------------------------------------------------------
+% Shock distribution
+%--------------------------------------------------------------------------
+shocks;
+var eps_a = STDA^2;
+var eps_d = STDD^2;
+var eps_g = STDG^2;
+end;
+
+%--------------------------------------------------------------------------
+% Estimated Params block - these parameters will be estimated, we
+% initialize at calibrated values
+%--------------------------------------------------------------------------
+estimated_params;
+BETTA;
+B;
+H;
+PHI2;
+RRA;
+KAPAtwo;
+ALFA;
+RHOR;
+BETTAPAI;
+BETTAY;
+MYYPS;
+MYZ;
+RHOA;
+RHOG;
+PAI;
+GoY;
+stderr eps_a;
+stderr eps_g;
+stderr eps_d;
+end;
+
+estimated_params_init(use_calibration);
+end;
+
+%--------------------------------------------------------------------------
+% Compare whether toolbox yields equivalent moments at second order
+%--------------------------------------------------------------------------
+% Note that we compare results for orderApp=1|2 and not for orderApp=3, because
+% there is a small error in the replication files of the original article in the 
+% computation of the covariance matrix of the extended innovations vector.
+% The authors have been contacted, fixed it, and report that the results 
+% change only slightly at orderApp=3 to what they report in the paper. At
+% orderApp=2 all is correct and so the following part tests whether we get 
+% the same model moments at the calibrated parameters (we do not optimize).
+% We compare it to the replication file RunGMM_standardModel_RRA.m with the
+% following settings: orderApp=1|2, seOn=0, q_lag=10, weighting=1;
+% scaled=0; optimizer=0; estimator=1; momentSet=2;
+%
+% Output of the replication files for orderApp=1
+AndreasenEtAl.Q1 = 23893.072;
+AndreasenEtAl.moments1 =[ % note that we reshuffeled to be compatible with our matched moments block
+    {[ 1]}    {'Ex'  }    {'Gr_C   '}    {'     '  }    {'0.024388'   }    {'0.023764'   }
+    {[ 2]}    {'Ex'  }    {'Gr_I   '}    {'     '  }    {'0.031046'   }    {'0.028517'   }
+    {[ 3]}    {'Ex'  }    {'Infl  ' }    {'     '  }    {'0.03757'    }    {'0.048361'   }
+    {[ 4]}    {'Ex'  }    {'r1    ' }    {'     '  }    {'0.056048'   }    {'0.073945'   }
+    {[ 5]}    {'Ex'  }    {'r40   ' }    {'     '  }    {'0.069929'   }    {'0.073945'   }
+    {[ 6]}    {'Ex'  }    {'xhr40  '}    {'     '  }    {'0.017237'   }    {'0'          }
+    {[ 7]}    {'Ex'  }    {'GoY    '}    {'     '  }    {'-1.5745'    }    {'-1.577'     }
+    {[ 8]}    {'Ex'  }    {'hours  '}    {'     '  }    {'-0.043353'  }    {'-0.042861'  }
+    {[ 9]}    {'Exx' }    {'Gr_C   '}    {'Gr_C   '}    {'0.0013159'  }    {'0.0011816'  }
+    {[10]}    {'Exx' }    {'Gr_C   '}    {'Gr_I   '}    {'0.0021789'  }    {'0.0016052'  }
+    {[11]}    {'Exx' }    {'Gr_C   '}    {'Infl  ' }    {'0.00067495' }    {'0.00090947' }
+    {[12]}    {'Exx' }    {'Gr_C   '}    {'r1    ' }    {'0.0011655'  }    {'0.0016016'  }
+    {[13]}    {'Exx' }    {'Gr_C   '}    {'r40   ' }    {'0.0015906'  }    {'0.0017076'  }
+    {[14]}    {'Exx' }    {'Gr_C   '}    {'xhr40  '}    {'0.0020911'  }    {'0.0013997'  }
+    {[15]}    {'Exx' }    {'Gr_I   '}    {'Gr_I   '}    {'0.0089104'  }    {'0.0055317'  }
+    {[16]}    {'Exx' }    {'Gr_I   '}    {'Infl  ' }    {'0.00063139' }    {'0.00050106' }
+    {[17]}    {'Exx' }    {'Gr_I   '}    {'r1    ' }    {'0.0011031'  }    {'0.0018178'  }
+    {[18]}    {'Exx' }    {'Gr_I   '}    {'r40   ' }    {'0.0018445'  }    {'0.0020186'  }
+    {[19]}    {'Exx' }    {'Gr_I   '}    {'xhr40  '}    {'0.00095556' }    {'0.0064471'  }
+    {[20]}    {'Exx' }    {'Infl  ' }    {'Infl  ' }    {'0.0020268'  }    {'0.0030519'  }
+    {[21]}    {'Exx' }    {'Infl  ' }    {'r1    ' }    {'0.0025263'  }    {'0.0042181'  }
+    {[22]}    {'Exx' }    {'Infl  ' }    {'r40   ' }    {'0.0029126'  }    {'0.0039217'  }
+    {[23]}    {'Exx' }    {'Infl  ' }    {'xhr40  '}    {'-0.00077101'}    {'-0.0019975' }
+    {[24]}    {'Exx' }    {'r1    ' }    {'r1    ' }    {'0.0038708'  }    {'0.0061403'  }
+    {[25]}    {'Exx' }    {'r1    ' }    {'r40   ' }    {'0.0044773'  }    {'0.0058343'  }
+    {[26]}    {'Exx' }    {'r1    ' }    {'xhr40  '}    {'-0.00048202'}    {'-0.00089501'}
+    {[27]}    {'Exx' }    {'r40   ' }    {'r40   ' }    {'0.0054664'  }    {'0.0056883'  }
+    {[28]}    {'Exx' }    {'r40   ' }    {'xhr40  '}    {'0.00053864' }    {'-0.00041184'}
+    {[29]}    {'Exx' }    {'xhr40  '}    {'xhr40  '}    {'0.053097'   }    {'0.016255'   }
+    {[30]}    {'Exx' }    {'GoY    '}    {'GoY    '}    {'2.4863'     }    {'2.4919'     }
+    {[31]}    {'Exx' }    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018384'  }
+    {[32]}    {'Exx1'}    {'Gr_C   '}    {'Gr_C   '}    {'0.00077917' }    {'0.00065543' }
+    {[33]}    {'Exx1'}    {'Gr_I   '}    {'Gr_I   '}    {'0.0050104'  }    {'0.0033626'  }
+    {[34]}    {'Exx1'}    {'Infl  ' }    {'Infl  ' }    {'0.0019503'  }    {'0.0029033'  }
+    {[35]}    {'Exx1'}    {'r1    ' }    {'r1    ' }    {'0.0038509'  }    {'0.006112'   }
+    {[36]}    {'Exx1'}    {'r40   ' }    {'r40   ' }    {'0.0054699'  }    {'0.005683'   }
+    {[37]}    {'Exx1'}    {'xhr40  '}    {'xhr40  '}    {'-0.00098295'}    {'3.3307e-16' }
+    {[38]}    {'Exx1'}    {'GoY    '}    {'GoY    '}    {'2.4868'     }    {'2.4912'     }
+    {[39]}    {'Exx1'}    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018378'  }
+];
+
+% Output of the replication files for orderApp=2
+AndreasenEtAl.Q2 = 65.8269;
+AndreasenEtAl.moments2 =[ % note that we reshuffeled to be compatible with our matched moments block
+    {[ 1]}    {'Ex'  }    {'Gr_C   '}    {'     '  }    {'0.024388'   }    {'0.023764'  }
+    {[ 2]}    {'Ex'  }    {'Gr_I   '}    {'     '  }    {'0.031046'   }    {'0.028517'  }
+    {[ 3]}    {'Ex'  }    {'Infl  ' }    {'     '  }    {'0.03757'    }    {'0.034882'  }
+    {[ 4]}    {'Ex'  }    {'r1    ' }    {'     '  }    {'0.056048'   }    {'0.056542'  }
+    {[ 5]}    {'Ex'  }    {'r40   ' }    {'     '  }    {'0.069929'   }    {'0.070145'  }
+    {[ 6]}    {'Ex'  }    {'xhr40  '}    {'     '  }    {'0.017237'   }    {'0.020825'  }
+    {[ 7]}    {'Ex'  }    {'GoY    '}    {'     '  }    {'-1.5745'    }    {'-1.5748'   }
+    {[ 8]}    {'Ex'  }    {'hours  '}    {'     '  }    {'-0.043353'  }    {'-0.04335'  }
+    {[ 9]}    {'Exx' }    {'Gr_C   '}    {'Gr_C   '}    {'0.0013159'  }    {'0.001205'  }
+    {[10]}    {'Exx' }    {'Gr_C   '}    {'Gr_I   '}    {'0.0021789'  }    {'0.0016067' }
+    {[11]}    {'Exx' }    {'Gr_C   '}    {'Infl  ' }    {'0.00067495' }    {'0.00059406'}
+    {[12]}    {'Exx' }    {'Gr_C   '}    {'r1    ' }    {'0.0011655'  }    {'0.0011949' }
+    {[13]}    {'Exx' }    {'Gr_C   '}    {'r40   ' }    {'0.0015906'  }    {'0.0016104' }
+    {[14]}    {'Exx' }    {'Gr_C   '}    {'xhr40  '}    {'0.0020911'  }    {'0.0020245' }
+    {[15]}    {'Exx' }    {'Gr_I   '}    {'Gr_I   '}    {'0.0089104'  }    {'0.0060254' }
+    {[16]}    {'Exx' }    {'Gr_I   '}    {'Infl  ' }    {'0.00063139' }    {'8.3563e-05'}
+    {[17]}    {'Exx' }    {'Gr_I   '}    {'r1    ' }    {'0.0011031'  }    {'0.0013176' }
+    {[18]}    {'Exx' }    {'Gr_I   '}    {'r40   ' }    {'0.0018445'  }    {'0.0019042' }
+    {[19]}    {'Exx' }    {'Gr_I   '}    {'xhr40  '}    {'0.00095556' }    {'0.0064261' }
+    {[20]}    {'Exx' }    {'Infl  ' }    {'Infl  ' }    {'0.0020268'  }    {'0.0020735' }
+    {[21]}    {'Exx' }    {'Infl  ' }    {'r1    ' }    {'0.0025263'  }    {'0.0027621' }
+    {[22]}    {'Exx' }    {'Infl  ' }    {'r40   ' }    {'0.0029126'  }    {'0.0029257' }
+    {[23]}    {'Exx' }    {'Infl  ' }    {'xhr40  '}    {'-0.00077101'}    {'-0.0012165'}
+    {[24]}    {'Exx' }    {'r1    ' }    {'r1    ' }    {'0.0038708'  }    {'0.0040235' }
+    {[25]}    {'Exx' }    {'r1    ' }    {'r40   ' }    {'0.0044773'  }    {'0.0044702' }
+    {[26]}    {'Exx' }    {'r1    ' }    {'xhr40  '}    {'-0.00048202'}    {'0.00030542'}
+    {[27]}    {'Exx' }    {'r40   ' }    {'r40   ' }    {'0.0054664'  }    {'0.0052718' }
+    {[28]}    {'Exx' }    {'r40   ' }    {'xhr40  '}    {'0.00053864' }    {'0.0010045' }
+    {[29]}    {'Exx' }    {'xhr40  '}    {'xhr40  '}    {'0.053097'   }    {'0.018416'  }
+    {[30]}    {'Exx' }    {'GoY    '}    {'GoY    '}    {'2.4863'     }    {'2.4853'    }
+    {[31]}    {'Exx' }    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018806' }
+    {[32]}    {'Exx1'}    {'Gr_C   '}    {'Gr_C   '}    {'0.00077917' }    {'0.00067309'}
+    {[33]}    {'Exx1'}    {'Gr_I   '}    {'Gr_I   '}    {'0.0050104'  }    {'0.0033293' }
+    {[34]}    {'Exx1'}    {'Infl  ' }    {'Infl  ' }    {'0.0019503'  }    {'0.0019223' }
+    {[35]}    {'Exx1'}    {'r1    ' }    {'r1    ' }    {'0.0038509'  }    {'0.0039949' }
+    {[36]}    {'Exx1'}    {'r40   ' }    {'r40   ' }    {'0.0054699'  }    {'0.0052659' }
+    {[37]}    {'Exx1'}    {'xhr40  '}    {'xhr40  '}    {'-0.00098295'}    {'0.0004337' }
+    {[38]}    {'Exx1'}    {'GoY    '}    {'GoY    '}    {'2.4868'     }    {'2.4846'    }
+    {[39]}    {'Exx1'}    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.00188'   }
+];
+
+@#for orderApp in 1:2
+
+method_of_moments(
+          mom_method = GMM                    % method of moments method; possible values: GMM|SMM
+        , datafile   = 'AFVRR_data.mat'       % name of filename with data
+        , bartlett_kernel_lag = 10          % bandwith in optimal weighting matrix
+        , order = @{orderApp}                 % order of Taylor approximation in perturbation
+        , pruning                             % use pruned state space system at higher-order
+        % , verbose                           % display and store intermediate estimation results
+        , weighting_matrix = ['DIAGONAL']      % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename        
+        % , TeX                               % print TeX tables and graphics
+        % Optimization options that can be set by the user in the mod file, otherwise default values are provided        
+        %, huge_number=1D10                   % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons
+        , mode_compute = 0                    % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer        
+        , optim = ('TolFun', 1e-6
+                   ,'TolX', 1e-6
+                   ,'MaxIter', 3000
+                   ,'MaxFunEvals', 1D6
+                   ,'UseParallel' , 1
+                   %,'Jacobian' , 'on'
+                  )    % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute
+        %, silent_optimizer                  % run minimization of moments distance silently without displaying results or saving files in between
+        %, analytic_standard_errors
+        , se_tolx=1e-10
+);
+
+% Check results
+
+fprintf('****************************************************************\n')
+fprintf('Compare Results for perturbation order @{orderApp}\n')
+fprintf('****************************************************************\n')
+dev_Q            = AndreasenEtAl.Q@{orderApp} - oo_.mom.Q;
+dev_datamoments  = str2double(AndreasenEtAl.moments@{orderApp}(:,5)) - oo_.mom.data_moments;
+dev_modelmoments = str2double(AndreasenEtAl.moments@{orderApp}(:,6)) - oo_.mom.model_moments;
+
+% There is no table command in Octave
+% The table command also crashes on MATLAB R2014a because it does not like variable names
+if ~isoctave && ~matlab_ver_less_than('8.4')
+table([AndreasenEtAl.Q@{orderApp} ; str2double(AndreasenEtAl.moments@{orderApp}(:,5)) ; str2double(AndreasenEtAl.moments@{orderApp}(:,6))],...
+      [oo_.mom.Q                  ; oo_.mom.data_moments                              ; oo_.mom.model_moments                            ],...
+      [dev_Q                      ; dev_datamoments                                   ; dev_modelmoments                                 ],...
+      'VariableNames', {'Andreasen et al', 'Dynare', 'dev'})
+end
+
+if norm(dev_modelmoments)> 1e-4
+    error('Something wrong in the computation of moments at order @{orderApp}')
+end
+
+@#endfor
+
+%--------------------------------------------------------------------------
+% Replicate estimation at orderApp=3
+%--------------------------------------------------------------------------
+@#ifdef DoEstimation
+method_of_moments(
+          mom_method = GMM                    % method of moments method; possible values: GMM|SMM
+        , datafile   = 'AFVRR_data.mat'       % name of filename with data
+        , bartlett_kernel_lag = 10            % bandwith in optimal weighting matrix
+        , order = 3                           % order of Taylor approximation in perturbation
+        , pruning                             % use pruned state space system at higher-order
+        % , verbose                           % display and store intermediate estimation results
+        , weighting_matrix = ['DIAGONAL', 'OPTIMAL']      % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename        
+        % , TeX                               % print TeX tables and graphics
+        % Optimization options that can be set by the user in the mod file, otherwise default values are provided        
+        %, huge_number=1D10                   % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons
+        , mode_compute = 13                   % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer
+        , additional_optimizer_steps = [13]
+        , optim = ('TolFun', 1e-6
+                   ,'TolX', 1e-6
+                   ,'MaxIter', 3000
+                   ,'MaxFunEvals', 1D6
+                   ,'UseParallel' , 1
+                   %,'Jacobian' , 'on'
+                  )    % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute
+        %, silent_optimizer                  % run minimization of moments distance silently without displaying results or saving files in between
+        %, analytic_standard_errors
+        , se_tolx=1e-10
+);
+@#endif
diff --git a/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB.mod b/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB.mod
index 80d0a77f314ff31aa4d8701a3bc813f8e2cff877..3d98e486b0bca7293286d50495374bc24bdca1dc 100644
--- a/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB.mod
+++ b/tests/estimation/method_of_moments/AFVRR/AFVRR_MFB.mod
@@ -1,303 +1,303 @@
-% DSGE model based on replication files of
-% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49
-% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021
-% =========================================================================
-% Copyright (C) 2021 Dynare Team
-%
-% This file is part of Dynare.
-%
-% Dynare is free software: you can redistribute it and/or modify
-% it under the terms of the GNU General Public License as published by
-% the Free Software Foundation, either version 3 of the License, or
-% (at your option) any later version.
-%
-% Dynare is distributed in the hope that it will be useful,
-% but WITHOUT ANY WARRANTY; without even the implied warranty of
-% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-% GNU General Public License for more details.
-%
-% You should have received a copy of the GNU General Public License
-% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
-% =========================================================================
-
-% This is the model with Feedback M_FB
-% Original code RunGMM_Feedback_estim_RRA.m by Martin M. Andreasen, Jan 2016
-
-@#include "AFVRR_common.inc"
-
-%--------------------------------------------------------------------------
-% Parameter calibration taken from RunGMM_Feedback_estim_RRA.m
-%--------------------------------------------------------------------------
-% fixed parameters
-INHABIT   = 1;
-PHI1      = 4;
-PHI4      = 1;
-KAPAone   = 0;
-DELTA     = 0.025;
-THETA     = 0.36;
-ETA       = 6;
-CHI       = 0;
-BETTAxhr  = 0;
-BETTAxhr40= 0;
-RHOD      = 0;
-GAMA      = 0.9999;
-CONSxhr20 = 0;
-
-% estimated parameters
-BETTA     = 0.997007023687000;
-B         = 0.692501768577000;
-H         = 0.339214495653000;
-PHI2      = 0.688555040951000;
-RRA       = 24.346514272871001;
-KAPAtwo   = 10.018421876923000;
-ALFA      = 0.792507553312000;
-RHOR      = 0.849194030384000;
-BETTAPAI  = 2.060579322980000;
-BETTAY    = 0.220573712342000;
-MYYPS     = 1.001016690133000;
-MYZ       = 1.005356313981000;
-RHOA      = 0.784141391843000;
-RHOG      = 0.816924540497000;
-PAI       = 1.011924196487000;
-CONSxhr40 = 0.878774662208000;
-GoY       = 0.207110300602000;
-STDA      = 0.013024450606000;
-STDG      = 0.051049871928000;
-STDD      = 0.008877423780000;
-
-% endogenous parameters set via steady state, no need to initialize
-%PHIzero  = ;
-%AA       = ;
-%PHI3     = ;
-%negVf    = ;
-
-model_diagnostics;
-% Model diagnostics show that some parameters are endogenously determined
-% via the steady state, so we run steady to calibrate all parameters
-steady;
-model_diagnostics;
-% Now all parameters are determined
-
-resid;
-check;
-
-%--------------------------------------------------------------------------
-% Shock distribution
-%--------------------------------------------------------------------------
-shocks;
-var eps_a = STDA^2;
-var eps_d = STDD^2;
-var eps_g = STDG^2;
-end;
-
-%--------------------------------------------------------------------------
-% Estimated Params block - these parameters will be estimated, we
-% initialize at calibrated values
-%--------------------------------------------------------------------------
-estimated_params;
-BETTA;
-B;
-H;
-PHI2;
-RRA;
-KAPAtwo;
-ALFA;
-RHOR;
-BETTAPAI;
-BETTAY;
-MYYPS;
-MYZ;
-RHOA;
-RHOG;
-PAI;
-CONSxhr40;
-GoY;
-stderr eps_a;
-stderr eps_g;
-stderr eps_d;
-end;
-
-estimated_params_init(use_calibration);
-end;
-
-%--------------------------------------------------------------------------
-% Compare whether toolbox yields equivalent moments at second order
-%--------------------------------------------------------------------------
-% Note that we compare results for orderApp=1|2 and not for orderApp=3, because
-% there is a small error in the replication files of the original article in the 
-% computation of the covariance matrix of the extended innovations vector.
-% The authors have been contacted, fixed it, and report that the results 
-% change only slightly at orderApp=3 to what they report in the paper. At
-% orderApp=2 all is correct and so the following part tests whether we get 
-% the same model moments at the calibrated parameters (we do not optimize).
-% We compare it to the replication file RunGMM_Feedback_estim_RRA.m with the
-% following settings: orderApp=1|2, seOn=0, q_lag=10, weighting=1;
-% scaled=0; optimizer=0; estimator=1; momentSet=2;
-%
-% Output of the replication files for orderApp=1
-AndreasenEtAl.Q1 = 201778.9697;
-AndreasenEtAl.moments1 =[ % note that we reshuffeled to be compatible with our matched moments block
-    {[ 1]}    {'Ex'  }    {'Gr_C   '}    {'     '  }    {'0.024388'   }    {'0.023654'   }
-    {[ 2]}    {'Ex'  }    {'Gr_I   '}    {'     '  }    {'0.031046'   }    {'0.027719'   }
-    {[ 3]}    {'Ex'  }    {'Infl  ' }    {'     '  }    {'0.03757'    }    {'0.047415'   }
-    {[ 4]}    {'Ex'  }    {'r1    ' }    {'     '  }    {'0.056048'   }    {'0.083059'   }
-    {[ 5]}    {'Ex'  }    {'r40   ' }    {'     '  }    {'0.069929'   }    {'0.083059'   }
-    {[ 6]}    {'Ex'  }    {'xhr40  '}    {'     '  }    {'0.017237'   }    {'0'          }
-    {[ 7]}    {'Ex'  }    {'GoY    '}    {'     '  }    {'-1.5745'    }    {'-1.5745'    }
-    {[ 8]}    {'Ex'  }    {'hours  '}    {'     '  }    {'-0.043353'  }    {'-0.043245'  }
-    {[ 9]}    {'Exx' }    {'Gr_C   '}    {'Gr_C   '}    {'0.0013159'  }    {'0.0012253'  }
-    {[10]}    {'Exx' }    {'Gr_C   '}    {'Gr_I   '}    {'0.0021789'  }    {'0.0015117'  }
-    {[11]}    {'Exx' }    {'Gr_C   '}    {'Infl  ' }    {'0.00067495' }    {'0.00080078' }
-    {[12]}    {'Exx' }    {'Gr_C   '}    {'r1    ' }    {'0.0011655'  }    {'0.00182'    }
-    {[13]}    {'Exx' }    {'Gr_C   '}    {'r40   ' }    {'0.0015906'  }    {'0.001913'   }
-    {[14]}    {'Exx' }    {'Gr_C   '}    {'xhr40  '}    {'0.0020911'  }    {'0.0016326'  }
-    {[15]}    {'Exx' }    {'Gr_I   '}    {'Gr_I   '}    {'0.0089104'  }    {'0.0040112'  }
-    {[16]}    {'Exx' }    {'Gr_I   '}    {'Infl  ' }    {'0.00063139' }    {'0.00060604' }
-    {[17]}    {'Exx' }    {'Gr_I   '}    {'r1    ' }    {'0.0011031'  }    {'0.0021426'  }
-    {[18]}    {'Exx' }    {'Gr_I   '}    {'r40   ' }    {'0.0018445'  }    {'0.0022348'  }
-    {[19]}    {'Exx' }    {'Gr_I   '}    {'xhr40  '}    {'0.00095556' }    {'0.0039852'  }
-    {[20]}    {'Exx' }    {'Infl  ' }    {'Infl  ' }    {'0.0020268'  }    {'0.0030058'  }
-    {[21]}    {'Exx' }    {'Infl  ' }    {'r1    ' }    {'0.0025263'  }    {'0.0044951'  }
-    {[22]}    {'Exx' }    {'Infl  ' }    {'r40   ' }    {'0.0029126'  }    {'0.0042225'  }
-    {[23]}    {'Exx' }    {'Infl  ' }    {'xhr40  '}    {'-0.00077101'}    {'-0.0021222' }
-    {[24]}    {'Exx' }    {'r1    ' }    {'r1    ' }    {'0.0038708'  }    {'0.0074776'  }
-    {[25]}    {'Exx' }    {'r1    ' }    {'r40   ' }    {'0.0044773'  }    {'0.0071906'  }
-    {[26]}    {'Exx' }    {'r1    ' }    {'xhr40  '}    {'-0.00048202'}    {'-0.0006736' }
-    {[27]}    {'Exx' }    {'r40   ' }    {'r40   ' }    {'0.0054664'  }    {'0.0070599'  }
-    {[28]}    {'Exx' }    {'r40   ' }    {'xhr40  '}    {'0.00053864' }    {'-0.00036735'}
-    {[29]}    {'Exx' }    {'xhr40  '}    {'xhr40  '}    {'0.053097'   }    {'0.014516'   }
-    {[30]}    {'Exx' }    {'GoY    '}    {'GoY    '}    {'2.4863'     }    {'2.4866'     }
-    {[31]}    {'Exx' }    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018713'  }
-    {[32]}    {'Exx1'}    {'Gr_C   '}    {'Gr_C   '}    {'0.00077917' }    {'0.00076856' }
-    {[33]}    {'Exx1'}    {'Gr_I   '}    {'Gr_I   '}    {'0.0050104'  }    {'0.002163'   }
-    {[34]}    {'Exx1'}    {'Infl  ' }    {'Infl  ' }    {'0.0019503'  }    {'0.0028078'  }
-    {[35]}    {'Exx1'}    {'r1    ' }    {'r1    ' }    {'0.0038509'  }    {'0.0074583'  }
-    {[36]}    {'Exx1'}    {'r40   ' }    {'r40   ' }    {'0.0054699'  }    {'0.0070551'  }
-    {[37]}    {'Exx1'}    {'xhr40  '}    {'xhr40  '}    {'-0.00098295'}    {'7.2164e-16' }
-    {[38]}    {'Exx1'}    {'GoY    '}    {'GoY    '}    {'2.4868'     }    {'2.4856'     }
-    {[39]}    {'Exx1'}    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018708'  }
-];
-
-% Output of the replication files for orderApp=2
-AndreasenEtAl.Q2 = 59.3323;
-AndreasenEtAl.moments2 =[ % note that we reshuffeled to be compatible with our matched moments block
-    {[ 1]}    {'Ex'  }    {'Gr_C   '}    {'     '  }    {'0.024388'   }    {'0.023654'  }
-    {[ 2]}    {'Ex'  }    {'Gr_I   '}    {'     '  }    {'0.031046'   }    {'0.027719'  }
-    {[ 3]}    {'Ex'  }    {'Infl  ' }    {'     '  }    {'0.03757'    }    {'0.034565'  }
-    {[ 4]}    {'Ex'  }    {'r1    ' }    {'     '  }    {'0.056048'   }    {'0.056419'  }
-    {[ 5]}    {'Ex'  }    {'r40   ' }    {'     '  }    {'0.069929'   }    {'0.07087'   }
-    {[ 6]}    {'Ex'  }    {'xhr40  '}    {'     '  }    {'0.017237'   }    {'0.01517'   }
-    {[ 7]}    {'Ex'  }    {'GoY    '}    {'     '  }    {'-1.5745'    }    {'-1.5743'   }
-    {[ 8]}    {'Ex'  }    {'hours  '}    {'     '  }    {'-0.043353'  }    {'-0.043352' }
-    {[ 9]}    {'Exx' }    {'Gr_C   '}    {'Gr_C   '}    {'0.0013159'  }    {'0.0012464' }
-    {[10]}    {'Exx' }    {'Gr_C   '}    {'Gr_I   '}    {'0.0021789'  }    {'0.0015247' }
-    {[11]}    {'Exx' }    {'Gr_C   '}    {'Infl  ' }    {'0.00067495' }    {'0.0004867' }
-    {[12]}    {'Exx' }    {'Gr_C   '}    {'r1    ' }    {'0.0011655'  }    {'0.0011867' }
-    {[13]}    {'Exx' }    {'Gr_C   '}    {'r40   ' }    {'0.0015906'  }    {'0.0016146' }
-    {[14]}    {'Exx' }    {'Gr_C   '}    {'xhr40  '}    {'0.0020911'  }    {'0.0021395' }
-    {[15]}    {'Exx' }    {'Gr_I   '}    {'Gr_I   '}    {'0.0089104'  }    {'0.0043272' }
-    {[16]}    {'Exx' }    {'Gr_I   '}    {'Infl  ' }    {'0.00063139' }    {'0.00021752'}
-    {[17]}    {'Exx' }    {'Gr_I   '}    {'r1    ' }    {'0.0011031'  }    {'0.0013919' }
-    {[18]}    {'Exx' }    {'Gr_I   '}    {'r40   ' }    {'0.0018445'  }    {'0.0018899' }
-    {[19]}    {'Exx' }    {'Gr_I   '}    {'xhr40  '}    {'0.00095556' }    {'0.0037854' }
-    {[20]}    {'Exx' }    {'Infl  ' }    {'Infl  ' }    {'0.0020268'  }    {'0.0021043' }
-    {[21]}    {'Exx' }    {'Infl  ' }    {'r1    ' }    {'0.0025263'  }    {'0.0026571' }
-    {[22]}    {'Exx' }    {'Infl  ' }    {'r40   ' }    {'0.0029126'  }    {'0.0028566' }
-    {[23]}    {'Exx' }    {'Infl  ' }    {'xhr40  '}    {'-0.00077101'}    {'-0.0016279'}
-    {[24]}    {'Exx' }    {'r1    ' }    {'r1    ' }    {'0.0038708'  }    {'0.0039136' }
-    {[25]}    {'Exx' }    {'r1    ' }    {'r40   ' }    {'0.0044773'  }    {'0.0044118' }
-    {[26]}    {'Exx' }    {'r1    ' }    {'xhr40  '}    {'-0.00048202'}    {'0.00016791'}
-    {[27]}    {'Exx' }    {'r40   ' }    {'r40   ' }    {'0.0054664'  }    {'0.0052851' }
-    {[28]}    {'Exx' }    {'r40   ' }    {'xhr40  '}    {'0.00053864' }    {'0.00062143'}
-    {[29]}    {'Exx' }    {'xhr40  '}    {'xhr40  '}    {'0.053097'   }    {'0.018126'  }
-    {[30]}    {'Exx' }    {'GoY    '}    {'GoY    '}    {'2.4863'     }    {'2.4863'    }
-    {[31]}    {'Exx' }    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018806' }
-    {[32]}    {'Exx1'}    {'Gr_C   '}    {'Gr_C   '}    {'0.00077917' }    {'0.00078586'}
-    {[33]}    {'Exx1'}    {'Gr_I   '}    {'Gr_I   '}    {'0.0050104'  }    {'0.0021519' }
-    {[34]}    {'Exx1'}    {'Infl  ' }    {'Infl  ' }    {'0.0019503'  }    {'0.0019046' }
-    {[35]}    {'Exx1'}    {'r1    ' }    {'r1    ' }    {'0.0038509'  }    {'0.0038939' }
-    {[36]}    {'Exx1'}    {'r40   ' }    {'r40   ' }    {'0.0054699'  }    {'0.0052792' }
-    {[37]}    {'Exx1'}    {'xhr40  '}    {'xhr40  '}    {'-0.00098295'}    {'0.00023012'}
-    {[38]}    {'Exx1'}    {'GoY    '}    {'GoY    '}    {'2.4868'     }    {'2.4852'    }
-    {[39]}    {'Exx1'}    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018801' }
-];
-
-@#for orderApp in 1:2
-
-method_of_moments(
-          mom_method = GMM                    % method of moments method; possible values: GMM|SMM
-        , datafile   = 'AFVRR_data.mat'       % name of filename with data
-        , bartlett_kernel_lag = 10          % bandwith in optimal weighting matrix
-        , order = @{orderApp}                 % order of Taylor approximation in perturbation
-        , pruning                             % use pruned state space system at higher-order
-        % , verbose                           % display and store intermediate estimation results
-        , weighting_matrix = ['DIAGONAL']      % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename        
-        % , TeX                               % print TeX tables and graphics
-        % Optimization options that can be set by the user in the mod file, otherwise default values are provided        
-        %, huge_number=1D10                   % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons
-        , mode_compute = 0                    % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer        
-        , optim = ('TolFun', 1e-6
-                   ,'TolX', 1e-6
-                   ,'MaxIter', 3000
-                   ,'MaxFunEvals', 1D6
-                   ,'UseParallel' , 1
-                   %,'Jacobian' , 'on'
-                  )    % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute
-        %, silent_optimizer                  % run minimization of moments distance silently without displaying results or saving files in between
-        %, analytic_standard_errors
-        , se_tolx=1e-10
-);
-
-% Check results
-
-fprintf('****************************************************************\n')
-fprintf('Compare Results for perturbation order @{orderApp}\n')
-fprintf('****************************************************************\n')
-dev_Q            = AndreasenEtAl.Q@{orderApp} - oo_.mom.Q;
-dev_datamoments  = str2double(AndreasenEtAl.moments@{orderApp}(:,5)) - oo_.mom.data_moments;
-dev_modelmoments = str2double(AndreasenEtAl.moments@{orderApp}(:,6)) - oo_.mom.model_moments;
-
-% There is no table command in Octave
-% The table command also crashes on MATLAB R2014a because it does not like variable names
-if ~isoctave && ~matlab_ver_less_than('8.4')
-table([AndreasenEtAl.Q@{orderApp} ; str2double(AndreasenEtAl.moments@{orderApp}(:,5)) ; str2double(AndreasenEtAl.moments@{orderApp}(:,6))],...
-      [oo_.mom.Q                  ; oo_.mom.data_moments                              ; oo_.mom.model_moments                            ],...
-      [dev_Q                      ; dev_datamoments                                   ; dev_modelmoments                                 ],...
-      'VariableNames', {'Andreasen et al', 'Dynare', 'dev'})
-end
-
-if norm(dev_modelmoments)> 1e-4
-    warning('Something wrong in the computation of moments at order @{orderApp}')
-end
-
-@#endfor
-
-%--------------------------------------------------------------------------
-% Replicate estimation at orderApp=3
-%--------------------------------------------------------------------------
-@#ifdef DoEstimation
-method_of_moments(
-          mom_method = GMM                    % method of moments method; possible values: GMM|SMM
-        , datafile   = 'AFVRR_data.mat'       % name of filename with data
-        , bartlett_kernel_lag = 10            % bandwith in optimal weighting matrix
-        , order = 3                           % order of Taylor approximation in perturbation
-        , pruning                             % use pruned state space system at higher-order
-        % , verbose                           % display and store intermediate estimation results
-        , weighting_matrix = ['DIAGONAL', 'Optimal']      % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename        
-        % , TeX                               % print TeX tables and graphics
-        % Optimization options that can be set by the user in the mod file, otherwise default values are provided        
-        %, huge_number=1D10                   % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons
-        , mode_compute = 13                   % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer
-        , additional_optimizer_steps = [13]
-        , optim = ('TolFun', 1e-6
-                   ,'TolX', 1e-6
-                   ,'MaxIter', 3000
-                   ,'MaxFunEvals', 1D6
-                   ,'UseParallel' , 1
-                   %,'Jacobian' , 'on'
-                  )    % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute
-        %, silent_optimizer                  % run minimization of moments distance silently without displaying results or saving files in between
-        %, analytic_standard_errors
-        , se_tolx=1e-10
-);
-@#endif
+% DSGE model based on replication files of
+% Andreasen, Fernandez-Villaverde, Rubio-Ramirez (2018), The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications, Review of Economic Studies, 85, p. 1-49
+% Adapted for Dynare by Willi Mutschler (@wmutschl, willi@mutschler.eu), Jan 2021
+% =========================================================================
+% Copyright (C) 2021 Dynare Team
+%
+% This file is part of Dynare.
+%
+% Dynare is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% Dynare is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
+% =========================================================================
+
+% This is the model with Feedback M_FB
+% Original code RunGMM_Feedback_estim_RRA.m by Martin M. Andreasen, Jan 2016
+
+@#include "AFVRR_common.inc"
+
+%--------------------------------------------------------------------------
+% Parameter calibration taken from RunGMM_Feedback_estim_RRA.m
+%--------------------------------------------------------------------------
+% fixed parameters
+INHABIT   = 1;
+PHI1      = 4;
+PHI4      = 1;
+KAPAone   = 0;
+DELTA     = 0.025;
+THETA     = 0.36;
+ETA       = 6;
+CHI       = 0;
+BETTAxhr  = 0;
+BETTAxhr40= 0;
+RHOD      = 0;
+GAMA      = 0.9999;
+CONSxhr20 = 0;
+
+% estimated parameters
+BETTA     = 0.997007023687000;
+B         = 0.692501768577000;
+H         = 0.339214495653000;
+PHI2      = 0.688555040951000;
+RRA       = 24.346514272871001;
+KAPAtwo   = 10.018421876923000;
+ALFA      = 0.792507553312000;
+RHOR      = 0.849194030384000;
+BETTAPAI  = 2.060579322980000;
+BETTAY    = 0.220573712342000;
+MYYPS     = 1.001016690133000;
+MYZ       = 1.005356313981000;
+RHOA      = 0.784141391843000;
+RHOG      = 0.816924540497000;
+PAI       = 1.011924196487000;
+CONSxhr40 = 0.878774662208000;
+GoY       = 0.207110300602000;
+STDA      = 0.013024450606000;
+STDG      = 0.051049871928000;
+STDD      = 0.008877423780000;
+
+% endogenous parameters set via steady state, no need to initialize
+%PHIzero  = ;
+%AA       = ;
+%PHI3     = ;
+%negVf    = ;
+
+model_diagnostics;
+% Model diagnostics show that some parameters are endogenously determined
+% via the steady state, so we run steady to calibrate all parameters
+steady;
+model_diagnostics;
+% Now all parameters are determined
+
+resid;
+check;
+
+%--------------------------------------------------------------------------
+% Shock distribution
+%--------------------------------------------------------------------------
+shocks;
+var eps_a = STDA^2;
+var eps_d = STDD^2;
+var eps_g = STDG^2;
+end;
+
+%--------------------------------------------------------------------------
+% Estimated Params block - these parameters will be estimated, we
+% initialize at calibrated values
+%--------------------------------------------------------------------------
+estimated_params;
+BETTA;
+B;
+H;
+PHI2;
+RRA;
+KAPAtwo;
+ALFA;
+RHOR;
+BETTAPAI;
+BETTAY;
+MYYPS;
+MYZ;
+RHOA;
+RHOG;
+PAI;
+CONSxhr40;
+GoY;
+stderr eps_a;
+stderr eps_g;
+stderr eps_d;
+end;
+
+estimated_params_init(use_calibration);
+end;
+
+%--------------------------------------------------------------------------
+% Compare whether toolbox yields equivalent moments at second order
+%--------------------------------------------------------------------------
+% Note that we compare results for orderApp=1|2 and not for orderApp=3, because
+% there is a small error in the replication files of the original article in the 
+% computation of the covariance matrix of the extended innovations vector.
+% The authors have been contacted, fixed it, and report that the results 
+% change only slightly at orderApp=3 to what they report in the paper. At
+% orderApp=2 all is correct and so the following part tests whether we get 
+% the same model moments at the calibrated parameters (we do not optimize).
+% We compare it to the replication file RunGMM_Feedback_estim_RRA.m with the
+% following settings: orderApp=1|2, seOn=0, q_lag=10, weighting=1;
+% scaled=0; optimizer=0; estimator=1; momentSet=2;
+%
+% Output of the replication files for orderApp=1
+AndreasenEtAl.Q1 = 201778.9697;
+AndreasenEtAl.moments1 =[ % note that we reshuffeled to be compatible with our matched moments block
+    {[ 1]}    {'Ex'  }    {'Gr_C   '}    {'     '  }    {'0.024388'   }    {'0.023654'   }
+    {[ 2]}    {'Ex'  }    {'Gr_I   '}    {'     '  }    {'0.031046'   }    {'0.027719'   }
+    {[ 3]}    {'Ex'  }    {'Infl  ' }    {'     '  }    {'0.03757'    }    {'0.047415'   }
+    {[ 4]}    {'Ex'  }    {'r1    ' }    {'     '  }    {'0.056048'   }    {'0.083059'   }
+    {[ 5]}    {'Ex'  }    {'r40   ' }    {'     '  }    {'0.069929'   }    {'0.083059'   }
+    {[ 6]}    {'Ex'  }    {'xhr40  '}    {'     '  }    {'0.017237'   }    {'0'          }
+    {[ 7]}    {'Ex'  }    {'GoY    '}    {'     '  }    {'-1.5745'    }    {'-1.5745'    }
+    {[ 8]}    {'Ex'  }    {'hours  '}    {'     '  }    {'-0.043353'  }    {'-0.043245'  }
+    {[ 9]}    {'Exx' }    {'Gr_C   '}    {'Gr_C   '}    {'0.0013159'  }    {'0.0012253'  }
+    {[10]}    {'Exx' }    {'Gr_C   '}    {'Gr_I   '}    {'0.0021789'  }    {'0.0015117'  }
+    {[11]}    {'Exx' }    {'Gr_C   '}    {'Infl  ' }    {'0.00067495' }    {'0.00080078' }
+    {[12]}    {'Exx' }    {'Gr_C   '}    {'r1    ' }    {'0.0011655'  }    {'0.00182'    }
+    {[13]}    {'Exx' }    {'Gr_C   '}    {'r40   ' }    {'0.0015906'  }    {'0.001913'   }
+    {[14]}    {'Exx' }    {'Gr_C   '}    {'xhr40  '}    {'0.0020911'  }    {'0.0016326'  }
+    {[15]}    {'Exx' }    {'Gr_I   '}    {'Gr_I   '}    {'0.0089104'  }    {'0.0040112'  }
+    {[16]}    {'Exx' }    {'Gr_I   '}    {'Infl  ' }    {'0.00063139' }    {'0.00060604' }
+    {[17]}    {'Exx' }    {'Gr_I   '}    {'r1    ' }    {'0.0011031'  }    {'0.0021426'  }
+    {[18]}    {'Exx' }    {'Gr_I   '}    {'r40   ' }    {'0.0018445'  }    {'0.0022348'  }
+    {[19]}    {'Exx' }    {'Gr_I   '}    {'xhr40  '}    {'0.00095556' }    {'0.0039852'  }
+    {[20]}    {'Exx' }    {'Infl  ' }    {'Infl  ' }    {'0.0020268'  }    {'0.0030058'  }
+    {[21]}    {'Exx' }    {'Infl  ' }    {'r1    ' }    {'0.0025263'  }    {'0.0044951'  }
+    {[22]}    {'Exx' }    {'Infl  ' }    {'r40   ' }    {'0.0029126'  }    {'0.0042225'  }
+    {[23]}    {'Exx' }    {'Infl  ' }    {'xhr40  '}    {'-0.00077101'}    {'-0.0021222' }
+    {[24]}    {'Exx' }    {'r1    ' }    {'r1    ' }    {'0.0038708'  }    {'0.0074776'  }
+    {[25]}    {'Exx' }    {'r1    ' }    {'r40   ' }    {'0.0044773'  }    {'0.0071906'  }
+    {[26]}    {'Exx' }    {'r1    ' }    {'xhr40  '}    {'-0.00048202'}    {'-0.0006736' }
+    {[27]}    {'Exx' }    {'r40   ' }    {'r40   ' }    {'0.0054664'  }    {'0.0070599'  }
+    {[28]}    {'Exx' }    {'r40   ' }    {'xhr40  '}    {'0.00053864' }    {'-0.00036735'}
+    {[29]}    {'Exx' }    {'xhr40  '}    {'xhr40  '}    {'0.053097'   }    {'0.014516'   }
+    {[30]}    {'Exx' }    {'GoY    '}    {'GoY    '}    {'2.4863'     }    {'2.4866'     }
+    {[31]}    {'Exx' }    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018713'  }
+    {[32]}    {'Exx1'}    {'Gr_C   '}    {'Gr_C   '}    {'0.00077917' }    {'0.00076856' }
+    {[33]}    {'Exx1'}    {'Gr_I   '}    {'Gr_I   '}    {'0.0050104'  }    {'0.002163'   }
+    {[34]}    {'Exx1'}    {'Infl  ' }    {'Infl  ' }    {'0.0019503'  }    {'0.0028078'  }
+    {[35]}    {'Exx1'}    {'r1    ' }    {'r1    ' }    {'0.0038509'  }    {'0.0074583'  }
+    {[36]}    {'Exx1'}    {'r40   ' }    {'r40   ' }    {'0.0054699'  }    {'0.0070551'  }
+    {[37]}    {'Exx1'}    {'xhr40  '}    {'xhr40  '}    {'-0.00098295'}    {'7.2164e-16' }
+    {[38]}    {'Exx1'}    {'GoY    '}    {'GoY    '}    {'2.4868'     }    {'2.4856'     }
+    {[39]}    {'Exx1'}    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018708'  }
+];
+
+% Output of the replication files for orderApp=2
+AndreasenEtAl.Q2 = 59.3323;
+AndreasenEtAl.moments2 =[ % note that we reshuffeled to be compatible with our matched moments block
+    {[ 1]}    {'Ex'  }    {'Gr_C   '}    {'     '  }    {'0.024388'   }    {'0.023654'  }
+    {[ 2]}    {'Ex'  }    {'Gr_I   '}    {'     '  }    {'0.031046'   }    {'0.027719'  }
+    {[ 3]}    {'Ex'  }    {'Infl  ' }    {'     '  }    {'0.03757'    }    {'0.034565'  }
+    {[ 4]}    {'Ex'  }    {'r1    ' }    {'     '  }    {'0.056048'   }    {'0.056419'  }
+    {[ 5]}    {'Ex'  }    {'r40   ' }    {'     '  }    {'0.069929'   }    {'0.07087'   }
+    {[ 6]}    {'Ex'  }    {'xhr40  '}    {'     '  }    {'0.017237'   }    {'0.01517'   }
+    {[ 7]}    {'Ex'  }    {'GoY    '}    {'     '  }    {'-1.5745'    }    {'-1.5743'   }
+    {[ 8]}    {'Ex'  }    {'hours  '}    {'     '  }    {'-0.043353'  }    {'-0.043352' }
+    {[ 9]}    {'Exx' }    {'Gr_C   '}    {'Gr_C   '}    {'0.0013159'  }    {'0.0012464' }
+    {[10]}    {'Exx' }    {'Gr_C   '}    {'Gr_I   '}    {'0.0021789'  }    {'0.0015247' }
+    {[11]}    {'Exx' }    {'Gr_C   '}    {'Infl  ' }    {'0.00067495' }    {'0.0004867' }
+    {[12]}    {'Exx' }    {'Gr_C   '}    {'r1    ' }    {'0.0011655'  }    {'0.0011867' }
+    {[13]}    {'Exx' }    {'Gr_C   '}    {'r40   ' }    {'0.0015906'  }    {'0.0016146' }
+    {[14]}    {'Exx' }    {'Gr_C   '}    {'xhr40  '}    {'0.0020911'  }    {'0.0021395' }
+    {[15]}    {'Exx' }    {'Gr_I   '}    {'Gr_I   '}    {'0.0089104'  }    {'0.0043272' }
+    {[16]}    {'Exx' }    {'Gr_I   '}    {'Infl  ' }    {'0.00063139' }    {'0.00021752'}
+    {[17]}    {'Exx' }    {'Gr_I   '}    {'r1    ' }    {'0.0011031'  }    {'0.0013919' }
+    {[18]}    {'Exx' }    {'Gr_I   '}    {'r40   ' }    {'0.0018445'  }    {'0.0018899' }
+    {[19]}    {'Exx' }    {'Gr_I   '}    {'xhr40  '}    {'0.00095556' }    {'0.0037854' }
+    {[20]}    {'Exx' }    {'Infl  ' }    {'Infl  ' }    {'0.0020268'  }    {'0.0021043' }
+    {[21]}    {'Exx' }    {'Infl  ' }    {'r1    ' }    {'0.0025263'  }    {'0.0026571' }
+    {[22]}    {'Exx' }    {'Infl  ' }    {'r40   ' }    {'0.0029126'  }    {'0.0028566' }
+    {[23]}    {'Exx' }    {'Infl  ' }    {'xhr40  '}    {'-0.00077101'}    {'-0.0016279'}
+    {[24]}    {'Exx' }    {'r1    ' }    {'r1    ' }    {'0.0038708'  }    {'0.0039136' }
+    {[25]}    {'Exx' }    {'r1    ' }    {'r40   ' }    {'0.0044773'  }    {'0.0044118' }
+    {[26]}    {'Exx' }    {'r1    ' }    {'xhr40  '}    {'-0.00048202'}    {'0.00016791'}
+    {[27]}    {'Exx' }    {'r40   ' }    {'r40   ' }    {'0.0054664'  }    {'0.0052851' }
+    {[28]}    {'Exx' }    {'r40   ' }    {'xhr40  '}    {'0.00053864' }    {'0.00062143'}
+    {[29]}    {'Exx' }    {'xhr40  '}    {'xhr40  '}    {'0.053097'   }    {'0.018126'  }
+    {[30]}    {'Exx' }    {'GoY    '}    {'GoY    '}    {'2.4863'     }    {'2.4863'    }
+    {[31]}    {'Exx' }    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018806' }
+    {[32]}    {'Exx1'}    {'Gr_C   '}    {'Gr_C   '}    {'0.00077917' }    {'0.00078586'}
+    {[33]}    {'Exx1'}    {'Gr_I   '}    {'Gr_I   '}    {'0.0050104'  }    {'0.0021519' }
+    {[34]}    {'Exx1'}    {'Infl  ' }    {'Infl  ' }    {'0.0019503'  }    {'0.0019046' }
+    {[35]}    {'Exx1'}    {'r1    ' }    {'r1    ' }    {'0.0038509'  }    {'0.0038939' }
+    {[36]}    {'Exx1'}    {'r40   ' }    {'r40   ' }    {'0.0054699'  }    {'0.0052792' }
+    {[37]}    {'Exx1'}    {'xhr40  '}    {'xhr40  '}    {'-0.00098295'}    {'0.00023012'}
+    {[38]}    {'Exx1'}    {'GoY    '}    {'GoY    '}    {'2.4868'     }    {'2.4852'    }
+    {[39]}    {'Exx1'}    {'hours  '}    {'hours  '}    {'0.0018799'  }    {'0.0018801' }
+];
+
+@#for orderApp in 1:2
+
+method_of_moments(
+          mom_method = GMM                    % method of moments method; possible values: GMM|SMM
+        , datafile   = 'AFVRR_data.mat'       % name of filename with data
+        , bartlett_kernel_lag = 10          % bandwith in optimal weighting matrix
+        , order = @{orderApp}                 % order of Taylor approximation in perturbation
+        , pruning                             % use pruned state space system at higher-order
+        % , verbose                           % display and store intermediate estimation results
+        , weighting_matrix = ['DIAGONAL']      % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename        
+        % , TeX                               % print TeX tables and graphics
+        % Optimization options that can be set by the user in the mod file, otherwise default values are provided        
+        %, huge_number=1D10                   % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons
+        , mode_compute = 0                    % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer        
+        , optim = ('TolFun', 1e-6
+                   ,'TolX', 1e-6
+                   ,'MaxIter', 3000
+                   ,'MaxFunEvals', 1D6
+                   ,'UseParallel' , 1
+                   %,'Jacobian' , 'on'
+                  )    % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute
+        %, silent_optimizer                  % run minimization of moments distance silently without displaying results or saving files in between
+        %, analytic_standard_errors
+        , se_tolx=1e-10
+);
+
+% Check results
+
+fprintf('****************************************************************\n')
+fprintf('Compare Results for perturbation order @{orderApp}\n')
+fprintf('****************************************************************\n')
+dev_Q            = AndreasenEtAl.Q@{orderApp} - oo_.mom.Q;
+dev_datamoments  = str2double(AndreasenEtAl.moments@{orderApp}(:,5)) - oo_.mom.data_moments;
+dev_modelmoments = str2double(AndreasenEtAl.moments@{orderApp}(:,6)) - oo_.mom.model_moments;
+
+% There is no table command in Octave
+% The table command also crashes on MATLAB R2014a because it does not like variable names
+if ~isoctave && ~matlab_ver_less_than('8.4')
+table([AndreasenEtAl.Q@{orderApp} ; str2double(AndreasenEtAl.moments@{orderApp}(:,5)) ; str2double(AndreasenEtAl.moments@{orderApp}(:,6))],...
+      [oo_.mom.Q                  ; oo_.mom.data_moments                              ; oo_.mom.model_moments                            ],...
+      [dev_Q                      ; dev_datamoments                                   ; dev_modelmoments                                 ],...
+      'VariableNames', {'Andreasen et al', 'Dynare', 'dev'})
+end
+
+if norm(dev_modelmoments)> 1e-4
+    warning('Something wrong in the computation of moments at order @{orderApp}')
+end
+
+@#endfor
+
+%--------------------------------------------------------------------------
+% Replicate estimation at orderApp=3
+%--------------------------------------------------------------------------
+@#ifdef DoEstimation
+method_of_moments(
+          mom_method = GMM                    % method of moments method; possible values: GMM|SMM
+        , datafile   = 'AFVRR_data.mat'       % name of filename with data
+        , bartlett_kernel_lag = 10            % bandwith in optimal weighting matrix
+        , order = 3                           % order of Taylor approximation in perturbation
+        , pruning                             % use pruned state space system at higher-order
+        % , verbose                           % display and store intermediate estimation results
+        , weighting_matrix = ['DIAGONAL', 'Optimal']      % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename        
+        % , TeX                               % print TeX tables and graphics
+        % Optimization options that can be set by the user in the mod file, otherwise default values are provided        
+        %, huge_number=1D10                   % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons
+        , mode_compute = 13                   % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer
+        , additional_optimizer_steps = [13]
+        , optim = ('TolFun', 1e-6
+                   ,'TolX', 1e-6
+                   ,'MaxIter', 3000
+                   ,'MaxFunEvals', 1D6
+                   ,'UseParallel' , 1
+                   %,'Jacobian' , 'on'
+                  )    % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute
+        %, silent_optimizer                  % run minimization of moments distance silently without displaying results or saving files in between
+        %, analytic_standard_errors
+        , se_tolx=1e-10
+);
+@#endif