global_check.cc 13.7 KB
Newer Older
1 2
// Copyright 2005, Ondra Kamenik

3
#include "SymSchurDecomp.hh"
4 5 6

#include "global_check.hh"

7 8 9
#include "smolyak.hh"
#include "product.hh"
#include "quasi_mcarlo.hh"
10

11
#include <cmath>
12 13 14 15 16 17 18

/* Here we just set a reference to the approximation, and create a new
   |DynamicModel|. */

ResidFunction::ResidFunction(const Approximation &app)
  : VectorFunction(app.getModel().nexog(), app.getModel().numeq()), approx(app),
    model(app.getModel().clone()),
19
    yplus(nullptr), ystar(nullptr), u(nullptr), hss(nullptr)
20 21 22 23 24
{
}

ResidFunction::ResidFunction(const ResidFunction &rf)
  : VectorFunction(rf), approx(rf.approx), model(rf.model->clone()),
25
    yplus(nullptr), ystar(nullptr), u(nullptr), hss(nullptr)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
{
  if (rf.yplus)
    yplus = new Vector(*(rf.yplus));
  if (rf.ystar)
    ystar = new Vector(*(rf.ystar));
  if (rf.u)
    u = new Vector(*(rf.u));
  if (rf.hss)
    hss = new FTensorPolynomial(*(rf.hss));
}

ResidFunction::~ResidFunction()
{
  delete model;
  // delete |y| and |u| dependent data
  if (yplus)
    delete yplus;
  if (ystar)
    delete ystar;
  if (u)
    delete u;
  if (hss)
    delete hss;
}

/* This sets $y^*$ and $u$. We have to create |ystar|, |u|, |yplus| and
   |hss|. */

void
55
ResidFunction::setYU(const ConstVector &ys, const ConstVector &xx)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
{
  // delete |y| and |u| dependent data
  /* NB: code shared with the destructor */
  if (yplus)
    delete yplus;
  if (ystar)
    delete ystar;
  if (u)
    delete u;
  if (hss)
    delete hss;

  ystar = new Vector(ys);
  u = new Vector(xx);
  yplus = new Vector(model->numeq());
  approx.getFoldDecisionRule().evaluate(DecisionRule::horner,
                                        *yplus, *ystar, *u);

  // make a tensor polynomial of in-place subtensors from decision rule
  /* Here we use a dirty tricky of converting |const| to non-|const| to
     obtain a polynomial of subtensor corresponding to non-predetermined
     variables. However, this new non-|const| polynomial will be used for a
     construction of |hss| and will be used in |const| context. So this
     dirty thing is safe.

     Note, that there is always a folded decision rule in |Approximation|. */
  union {const FoldDecisionRule *c; FoldDecisionRule *n;} dr;
  dr.c = &(approx.getFoldDecisionRule());
  FTensorPolynomial dr_ss(model->nstat()+model->npred(), model->nboth()+model->nforw(),
                          *(dr.n));

  // make |ytmp_star| be a difference of |yplus| from steady
  Vector ytmp_star(ConstVector(*yplus, model->nstat(), model->npred()+model->nboth()));
  ConstVector ysteady_star(dr.c->getSteady(), model->nstat(),
                           model->npred()+model->nboth());
  ytmp_star.add(-1.0, ysteady_star);

  // make |hss| and add steady to it
  /* Here is the |const| context of |dr_ss|. */
  hss = new FTensorPolynomial(dr_ss, ytmp_star);
  ConstVector ysteady_ss(dr.c->getSteady(), model->nstat()+model->npred(),
                         model->nboth()+model->nforw());
98
  if (hss->check(Symmetry{0}))
99
    {
100
      hss->get(Symmetry{0})->getData().add(1.0, ysteady_ss);
101 102 103
    }
  else
    {
104
      auto *ten = new FFSTensor(hss->nrows(), hss->nvars(), 0);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
      ten->getData() = ysteady_ss;
      hss->insert(ten);
    }

}

/* Here we evaluate the residual $F(y^*,u,u')$. We have to evaluate |hss|
   for $u'=$|point| and then we evaluate the system $f$. */

void
ResidFunction::eval(const Vector &point, const ParameterSignal &sig, Vector &out)
{
  KORD_RAISE_IF(point.length() != hss->nvars(),
                "Wrong dimension of input vector in ResidFunction::eval");
  KORD_RAISE_IF(out.length() != model->numeq(),
                "Wrong dimension of output vector in ResidFunction::eval");
  Vector yss(hss->nrows());
  hss->evalHorner(yss, point);
  model->evaluateSystem(out, *ystar, *yplus, yss, *u);
}

/* This checks the $E[F(y^*,u,u')]$ for a given $y^*$ and $u$ by
   integrating with a given quadrature. Note that the input |ys| is $y^*$
   not whole $y$. */

void
GlobalChecker::check(const Quadrature &quad, int level,
                     const ConstVector &ys, const ConstVector &x, Vector &out)
{
  for (int ifunc = 0; ifunc < vfs.getNum(); ifunc++)
    ((GResidFunction &) (vfs.getFunc(ifunc))).setYU(ys, x);
  quad.integrate(vfs, level, out);
}

/* This method is a bulk version of |@<|GlobalChecker::check| vector
   code@>|. It decides between Smolyak and product quadrature according
   to |max_evals| constraint.

   Note that |y| can be either full (all endogenous variables including
   static and forward looking), or just $y^*$ (state variables). The
   method is able to recognize it. */

void
GlobalChecker::check(int max_evals, const ConstTwoDMatrix &y,
                     const ConstTwoDMatrix &x, TwoDMatrix &out)
{
  JournalRecordPair pa(journal);
  pa << "Checking approximation error for " << y.ncols()
     << " states with at most " << max_evals << " evaluations" << endrec;

  // decide about type of quadrature
  GaussHermite gh;

  SmolyakQuadrature dummy_sq(model.nexog(), 1, gh);
  int smol_evals;
  int smol_level;
  dummy_sq.designLevelForEvals(max_evals, smol_level, smol_evals);

  ProductQuadrature dummy_pq(model.nexog(), gh);
  int prod_evals;
  int prod_level;
  dummy_pq.designLevelForEvals(max_evals, prod_level, prod_evals);

  bool take_smolyak = (smol_evals < prod_evals) && (smol_level >= prod_level-1);

  Quadrature *quad;
  int lev;

  // create the quadrature and report the decision
  if (take_smolyak)
    {
      quad = new SmolyakQuadrature(model.nexog(), smol_level, gh);
      lev = smol_level;
      JournalRecord rec(journal);
      rec << "Selected Smolyak (level,evals)=(" << smol_level << ","
          << smol_evals << ") over product (" << prod_level << ","
          << prod_evals << ")" << endrec;
    }
  else
    {
      quad = new ProductQuadrature(model.nexog(), gh);
      lev = prod_level;
      JournalRecord rec(journal);
      rec << "Selected product (level,evals)=(" << prod_level << ","
          << prod_evals << ") over Smolyak (" << smol_level << ","
          << smol_evals << ")" << endrec;
    }

  // check all column of |y| and |x|
  int first_row = (y.nrows() == model.numeq()) ? model.nstat() : 0;
  ConstTwoDMatrix ysmat(y, first_row, 0, model.npred()+model.nboth(), y.ncols());
  for (int j = 0; j < y.ncols(); j++)
    {
198 199 200
      ConstVector yj{ysmat.getCol(j)};
      ConstVector xj{x.getCol(j)};
      Vector outj{out.getCol(j)};
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
      check(*quad, lev, yj, xj, outj);
    }

  delete quad;
}

/* This method checks an error of the approximation by evaluating
   residual $E[F(y^*,u,u')\vert y^*,u]$ for $y^*$ being the steady state, and
   changing $u$. We go through all elements of $u$ and vary them from
   $-mult\cdot\sigma$ to $mult\cdot\sigma$ in |m| steps. */

void
GlobalChecker::checkAlongShocksAndSave(mat_t *fd, const char *prefix,
                                       int m, double mult, int max_evals)
{
  JournalRecordPair pa(journal);
  pa << "Calculating errors along shocks +/- "
     << mult << " std errors, granularity " << m << endrec;

  // setup |y_mat| of steady states for checking
  TwoDMatrix y_mat(model.numeq(), 2*m *model.nexog()+1);
  for (int j = 0; j < 2*m*model.nexog()+1; j++)
    {
224
      Vector yj{y_mat.getCol(j)};
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
      yj = (const Vector &) model.getSteady();
    }

  // setup |exo_mat| for checking
  TwoDMatrix exo_mat(model.nexog(), 2*m *model.nexog()+1);
  exo_mat.zeros();
  for (int ishock = 0; ishock < model.nexog(); ishock++)
    {
      double max_sigma = sqrt(model.getVcov().get(ishock, ishock));
      for (int j = 0; j < 2*m; j++)
        {
          int jmult = (j < m) ? j-m : j-m+1;
          exo_mat.get(ishock, 1+2*m*ishock+j)
            = mult*jmult*max_sigma/m;
        }
    }

  TwoDMatrix errors(model.numeq(), 2*m *model.nexog()+1);
  check(max_evals, y_mat, exo_mat, errors);

  // report errors along shock and save them
  TwoDMatrix res(model.nexog(), 2*m+1);
  JournalRecord rec(journal);
  rec << "Shock    value         error" << endrec;
249
  ConstVector err0{errors.getCol(0)};
250 251 252 253 254 255 256 257 258
  char shock[9];
  char erbuf[17];
  for (int ishock = 0; ishock < model.nexog(); ishock++)
    {
      TwoDMatrix err_out(model.numeq(), 2*m+1);
      sprintf(shock, "%-8s", model.getExogNames().getName(ishock));
      for (int j = 0; j < 2*m+1; j++)
        {
          int jj;
259
          Vector error{err_out.getCol(j)};
260 261 262 263 264 265
          if (j != m)
            {
              if (j < m)
                jj = 1 + 2*m*ishock+j;
              else
                jj = 1 + 2*m*ishock+j-1;
266
              ConstVector coljj{errors.getCol(jj)};
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
              error = coljj;
            }
          else
            {
              jj = 0;
              error = err0;
            }
          JournalRecord rec1(journal);
          sprintf(erbuf, "%12.7g    ", error.getMax());
          rec1 << shock << " " << exo_mat.get(ishock, jj)
               << "\t" << erbuf << endrec;
        }
      char tmp[100];
      sprintf(tmp, "%s_shock_%s_errors", prefix, model.getExogNames().getName(ishock));
      err_out.writeMat(fd, tmp);
    }
}

/* This method checks errors on ellipse of endogenous states
   (predetermined variables). The ellipse is shaped according to
   covariance matrix of endogenous variables based on the first order
   approximation and scaled by |mult|. The points on the
   ellipse are chosen as polar images of the low discrepancy grid in a
   cube.

   The method works as follows: First we calculate symmetric Schur factor of
   covariance matrix of the states. Second we generate low discrepancy
   points on the unit sphere. Third we transform the sphere with the
   variance-covariance matrix factor and multiplier |mult| and initialize
   matrix of $u_t$ to zeros. Fourth we run the |check| method and save
   the results. */

void
GlobalChecker::checkOnEllipseAndSave(mat_t *fd, const char *prefix,
                                     int m, double mult, int max_evals)
{
  JournalRecordPair pa(journal);
  pa << "Calculating errors at " << m
     << " ellipse points scaled by " << mult << endrec;

  // make factor of covariance of variables
  /* Here we set |ycovfac| to the symmetric Schur decomposition factor of
     a submatrix of covariances of all endogenous variables. The submatrix
     corresponds to state variables (predetermined plus both). */
  TwoDMatrix *ycov = approx.calcYCov();
  TwoDMatrix ycovpred((const TwoDMatrix &)*ycov, model.nstat(), model.nstat(),
                      model.npred()+model.nboth(), model.npred()+model.nboth());
  delete ycov;
  SymSchurDecomp ssd(ycovpred);
  ssd.correctDefinitness(1.e-05);
  TwoDMatrix ycovfac(ycovpred.nrows(), ycovpred.ncols());
  KORD_RAISE_IF(!ssd.isPositiveSemidefinite(),
                "Covariance matrix of the states not positive \
				  semidefinite in GlobalChecker::checkOnEllipseAndSave");
  ssd.getFactor(ycovfac);

  // put low discrepancy sphere points to |ymat|
  /* Here we first calculate dimension |d| of the sphere, which is a
     number of state variables minus one. We go through the |d|-dimensional
     cube $\langle 0,1\rangle^d$ by |QMCarloCubeQuadrature| and make a
     polar transformation to the sphere. The polar transformation $f^i$ can
     be written recursively wrt. the dimension $i$ as:
     $$\eqalign{
     f^0() &= \left[1\right]\cr
     f^i(x_1,\ldots,x_i) &=
     \left[\matrix{cos(2\pi x_i)\cdot f^{i-1}(x_1,\ldots,x_{i-1})\cr sin(2\pi x_i)}\right]
     }$$ */
  int d = model.npred()+model.nboth()-1;
  TwoDMatrix ymat(model.npred()+model.nboth(), (d == 0) ? 2 : m);
  if (d == 0)
    {
      ymat.get(0, 0) = 1;
      ymat.get(0, 1) = -1;
    }
  else
    {
      int icol = 0;
      ReversePerScheme ps;
      QMCarloCubeQuadrature qmc(d, m, ps);
      qmcpit beg = qmc.start(m);
      qmcpit end = qmc.end(m);
      for (qmcpit run = beg; run != end; ++run, icol++)
        {
350
          Vector ycol{ymat.getCol(icol)};
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
          Vector x(run.point());
          x.mult(2*M_PI);
          ycol[0] = 1;
          for (int i = 0; i < d; i++)
            {
              Vector subsphere(ycol, 0, i+1);
              subsphere.mult(cos(x[i]));
              ycol[i+1] = sin(x[i]);
            }
        }
    }

  // transform sphere |ymat| and prepare |umat| for checking
  /* Here we multiply the sphere points in |ymat| with the Cholesky
     factor to obtain the ellipse, scale the ellipse by the given |mult|,
     and initialize matrix of shocks |umat| to zero. */
  TwoDMatrix umat(model.nexog(), ymat.ncols());
  umat.zeros();
  ymat.mult(mult);
  ymat.multLeft(ycovfac);
  ConstVector ys(model.getSteady(), model.nstat(),
                 model.npred()+model.nboth());
  for (int icol = 0; icol < ymat.ncols(); icol++)
    {
375
      Vector ycol{ymat.getCol(icol)};
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
      ycol.add(1.0, ys);
    }

  // check on ellipse and save
  /* Here we check the points and save the results to MAT-4 file. */
  TwoDMatrix out(model.numeq(), ymat.ncols());
  check(max_evals, ymat, umat, out);

  char tmp[100];
  sprintf(tmp, "%s_ellipse_points", prefix);
  ymat.writeMat(fd, tmp);
  sprintf(tmp, "%s_ellipse_errors", prefix);
  out.writeMat(fd, tmp);
}

/* Here we check the errors along a simulation. We simulate, then set
   |x| to zeros, check and save results. */

void
GlobalChecker::checkAlongSimulationAndSave(mat_t *fd, const char *prefix,
                                           int m, int max_evals)
{
  JournalRecordPair pa(journal);
  pa << "Calculating errors at " << m
     << " simulated points" << endrec;
  RandomShockRealization sr(model.getVcov(), system_random_generator.int_uniform());
  TwoDMatrix *y = approx.getFoldDecisionRule().simulate(DecisionRule::horner,
                                                        m, model.getSteady(), sr);
  TwoDMatrix x(model.nexog(), m);
  x.zeros();
  TwoDMatrix out(model.numeq(), m);
  check(max_evals, *y, x, out);

  char tmp[100];
  sprintf(tmp, "%s_simul_points", prefix);
  y->writeMat(fd, tmp);
  sprintf(tmp, "%s_simul_errors", prefix);
  out.writeMat(fd, tmp);

  delete y;
}