% Basic RBC Model % % Jesus Fernandez-Villaverde % Philadelphia, March 3, 2005 %---------------------------------------------------------------- % 0. Housekeeping (close all graphic windows) %---------------------------------------------------------------- close all; %---------------------------------------------------------------- % 1. Defining variables %---------------------------------------------------------------- var y c k i l y_l z; varexo e; parameters beta psi delta alpha rho; %---------------------------------------------------------------- % 2. Calibration %---------------------------------------------------------------- alpha = 0.33; beta = 0.99; delta = 0.023; psi = 1.75; rho = 0.95; sigma = (0.007/(1-alpha)); %---------------------------------------------------------------- % 3. Model %---------------------------------------------------------------- model; (1/c) = beta*(1/c(+1))*(1+alpha*(k^(alpha-1))*(exp(z(+1))*l(+1))^(1-alpha)-delta); psi*c/(1-l) = (1-alpha)*(k(-1)^alpha)*(exp(z)^(1-alpha))*(l^(-alpha)); c+i = y; y = (k(-1)^alpha)*(exp(z)*l)^(1-alpha); i = k-(1-delta)*k(-1); y_l = y/l; z = rho*z(-1)+e; end; %---------------------------------------------------------------- % 4. Computation %---------------------------------------------------------------- initval; k = 9; c = 0.76; l = 0.3; z = 0; e = 0; end; shocks; var e = sigma^2; end; steady; stoch_simul(hp_filter = 1600, order = 1); %---------------------------------------------------------------- % 5. Some Results %---------------------------------------------------------------- statistic1 = 100*sqrt(diag(oo_.var(1:6,1:6)))./oo_.mean(1:6); dyntable('Relative standard deviations in %',strvcat('VARIABLE','REL. S.D.'),M_.endo_names(1:6,:),statistic1,10,8,4);