auxiliary_particle_filter.m 6.34 KB
Newer Older
1
function [LIK,lik] = auxiliary_particle_filter(ReducedForm,Y,start,ParticleOptions,ThreadsOptions)
Stéphane Adjemian's avatar
Stéphane Adjemian committed
2

3
4
% Evaluates the likelihood of a nonlinear model with a particle filter allowing eventually resampling.

Stéphane Adjemian's avatar
Stéphane Adjemian committed
5
% Copyright (C) 2011-2014 Dynare Team
6
%
Stéphane Adjemian's avatar
Stéphane Adjemian committed
7
% This file is part of Dynare (particles module).
8
9
10
11
12
13
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
Stéphane Adjemian's avatar
Stéphane Adjemian committed
14
% Dynare particles module is distributed in the hope that it will be useful,
15
16
17
18
19
20
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
Stéphane Adjemian's avatar
Stéphane Adjemian committed
21

22
23
24
25
26
27
28
29
30
persistent init_flag mf0 mf1 number_of_particles
persistent sample_size number_of_state_variables number_of_observed_variables number_of_structural_innovations

% Set default
if isempty(start)
    start = 1;
end

% Set flag for prunning
31
pruning = ParticleOptions.pruning;
32
33
34
35
36
37
38
39
40
41
42
43
44
45

% Get steady state and mean.
steadystate = ReducedForm.steadystate;
constant = ReducedForm.constant;
state_variables_steady_state = ReducedForm.state_variables_steady_state;

% Set persistent variables.
if isempty(init_flag)
    mf0 = ReducedForm.mf0;
    mf1 = ReducedForm.mf1;
    sample_size = size(Y,2);
    number_of_state_variables = length(mf0);
    number_of_observed_variables = length(mf1);
    number_of_structural_innovations = length(ReducedForm.Q);
46
    number_of_particles = ParticleOptions.number_of_particles;
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    init_flag = 1;
end

% Set local state space model (first order approximation).
ghx  = ReducedForm.ghx;
ghu  = ReducedForm.ghu;
% Set local state space model (second order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;

% Get covariance matrices
Q = ReducedForm.Q;
H = ReducedForm.H;
if isempty(H)
    H = 0;
end

% Get initial condition for the state vector.
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = reduced_rank_cholesky(ReducedForm.StateVectorVariance)';
state_variance_rank = size(StateVectorVarianceSquareRoot,2);
Q_lower_triangular_cholesky = chol(Q)';
if pruning
    StateVectorMean_ = StateVectorMean;
    StateVectorVarianceSquareRoot_ = StateVectorVarianceSquareRoot;
end

% Set seed for randn().
set_dynare_seed('default');

% Initialization of the likelihood.
const_lik = log(2*pi)*number_of_observed_variables;
lik  = NaN(sample_size,1);
LIK  = NaN;

% Initialization of the weights across particles.
weights = ones(1,number_of_particles)/number_of_particles ;
StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean);
if pruning
    StateVectors_ = StateVectors;
end
for t=1:sample_size
    yhat = bsxfun(@minus,StateVectors,state_variables_steady_state);
    if pruning
        yhat_ = bsxfun(@minus,StateVectors_,state_variables_steady_state);
93
        [tmp, tmp_] = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,ThreadsOptions.local_state_space_iteration_2);
94
    else
95
        tmp = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2);
96
97
98
99
100
101
102
103
104
105
106
107
108
    end
    PredictedObservedMean = weights*(tmp(mf1,:)');
    PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
    dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean');
    PredictedObservedVariance = bsxfun(@times,weights,dPredictedObservedMean)*dPredictedObservedMean' +H;
    wtilde = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1))) ;
    tau_tilde = weights.*wtilde ;
    sum_tau_tilde = sum(tau_tilde) ;
    %var_wtilde = wtilde-sum_tau_tilde ;
    %var_wtilde = var_wtilde'*var_wtilde/(number_of_particles-1) ;
    lik(t) = log(sum_tau_tilde) ; %+ .5*var_wtilde/(number_of_particles*(sum_tau_tilde*sum_tau_tilde)) ;
    tau_tilde = tau_tilde/sum_tau_tilde;
    if pruning
109
        temp = resample([yhat' yhat_'],tau_tilde',ParticleOptions);
110
111
112
        yhat = temp(:,1:number_of_state_variables)' ;
        yhat_ = temp(:,number_of_state_variables+1:2*number_of_state_variables)' ;
    else
113
        yhat = resample(yhat',tau_tilde',ParticleOptions)' ;
114
115
    end
    if pruning
116
        [tmp, tmp_] = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,ThreadsOptions.local_state_space_iteration_2);
117
    else
118
        tmp = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2);
119
120
121
122
123
124
125
126
    end
    PredictedObservedMean = weights*(tmp(mf1,:)');
    PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
    dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean');
    PredictedObservedVariance = bsxfun(@times,weights,dPredictedObservedMean)*dPredictedObservedMean' +H;
    wtilde = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1))) ;
    epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,number_of_particles);
    if pruning
127
        [tmp, tmp_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,ThreadsOptions.local_state_space_iteration_2);
128
129
        StateVectors_ = tmp_(mf0,:);
    else
130
        tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2);
131
132
133
134
135
136
137
138
139
140
141
142
    end
    StateVectors = tmp(mf0,:);
    PredictedObservedMean = mean(tmp(mf1,:),2);
    PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
    dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean);
    PredictedObservedVariance = (dPredictedObservedMean*dPredictedObservedMean')/number_of_particles + H;
    lnw = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1)));
    wtilde = lnw./wtilde;
    weights = wtilde/sum(wtilde);
end

LIK = -sum(lik(start:end));