ModelTree.cc 41.3 KB
Newer Older
1
/*
sebastien's avatar
trunk:    
sebastien committed
2
 * Copyright (C) 2003-2009 Dynare Team
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
#include <cstdlib>
21
#include <cassert>
22
#include <iostream>
23
#include <fstream>
24
25

#include "ModelTree.hh"
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
#include "MinimumFeedbackSet.hh"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/strong_components.hpp>
#include <boost/graph/topological_sort.hpp>

using namespace boost;
using namespace MFS;

void
ModelTree::computeNormalization(const set<pair<int, int> > &endo_eqs_incidence) throw (NormalizationException)
{
  const int n = equation_number();

  assert(n == symbol_table.endo_nbr());

  typedef adjacency_list<vecS, vecS, undirectedS> BipartiteGraph;

  /*
    Vertices 0 to n-1 are for endogenous (using type specific ID)
    Vertices n to 2*n-1 are for equations (using equation no.)
  */
  BipartiteGraph g(2 * n);

  // Fill in the graph
  set<pair<int, int> > endo;

  for(set<pair<int, int> >::const_iterator it = endo_eqs_incidence.begin(); it != endo_eqs_incidence.end(); it++)
    add_edge(it->first + n, it->second, g);

  // Compute maximum cardinality matching
  vector<int> mate_map(2*n);

#if 1
  bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]);
#else // Alternative way to compute normalization, by giving an initial matching using natural normalizations
  fill(mate_map.begin(), mate_map.end(), graph_traits<BipartiteGraph>::null_vertex());

  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

  for(int i = 0; i < symbol_table.endo_nbr(); i++)
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      int j = natural_endo2eqs.find(i)->second;

      put(&mate_map[0], i, n+j);
      put(&mate_map[0], n+j, i);
    }

  edmonds_augmenting_path_finder<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type> augmentor(g, &mate_map[0], get(vertex_index, g));
  bool not_maximum_yet = true;
  while(not_maximum_yet)
    {
      not_maximum_yet = augmentor.augment_matching();
    }
  augmentor.get_current_matching(&mate_map[0]);

  bool check = maximum_cardinality_matching_verifier<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type>::verify_matching(g, &mate_map[0], get(vertex_index, g));
#endif

  assert(check);

#ifdef DEBUG
  for(int i = 0; i < n; i++)
    cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
         << " matched with equation " << (mate_map[i]-n+1) << endl;
#endif

  // Create the resulting map, by copying the n first elements of mate_map, and substracting n to them
  endo2eq.resize(equation_number());
  transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), bind2nd(minus<int>(), n));

#ifdef DEBUG
  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

  int n1 = 0, n2 = 0;

  for(int i = 0; i < symbol_table.endo_nbr(); i++)
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      n1++;

      pair<multimap<int, int>::const_iterator, multimap<int, int>::const_iterator> x = natural_endo2eqs.equal_range(i);
      if (find_if(x.first, x.second, compose1(bind2nd(equal_to<int>(), endo2eq[i]), select2nd<multimap<int, int>::value_type>())) == x.second)
        cout << "Natural normalization of variable " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
             << " not used." << endl;
      else
        n2++;
    }

  cout << "Used " << n2 << " natural normalizations out of " << n1 << ", for a total of " << n << " equations." << endl;
#endif

  // Check if all variables are normalized
  vector<int>::const_iterator it = find(mate_map.begin(), mate_map.begin() + n, graph_traits<BipartiteGraph>::null_vertex());
  if (it != mate_map.begin() + n)
    throw NormalizationException(symbol_table.getID(eEndogenous, it - mate_map.begin()));
}


void
ModelTree::computePossiblySingularNormalization(const jacob_map &contemporaneous_jacobian, bool try_symbolic)
{
  cout << "Normalizing the model..." << endl;

  set<pair<int, int> > endo_eqs_incidence;

  for(jacob_map::const_iterator it = contemporaneous_jacobian.begin();
      it != contemporaneous_jacobian.end(); it++)
    endo_eqs_incidence.insert(make_pair(it->first.first, it->first.second));

  try
    {
      computeNormalization(endo_eqs_incidence);
      return;
    }
  catch(NormalizationException &e)
    {
      if (try_symbolic)
        cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
      else
        {
          cerr << "ERROR: Could not normalize the model. Variable "
               << symbol_table.getName(e.symb_id)
               << " is not in the maximum cardinality matching. Try to decrease the cutoff." << endl;
          exit(EXIT_FAILURE);
        }
    }

  // If no non-singular normalization can be found, try to find a normalization even with a potential singularity
  if (try_symbolic)
    {
      endo_eqs_incidence.clear();
      set<pair<int, int> > endo;
      for(int i = 0; i < equation_number(); i++)
        {
          endo.clear();
          equations[i]->collectEndogenous(endo);
          for(set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
            endo_eqs_incidence.insert(make_pair(i, it->first));
        }

      try
        {
          computeNormalization(endo_eqs_incidence);
        }
      catch(NormalizationException &e)
        {
          cerr << "ERROR: Could not normalize the model even with zero cutoff. Variable "
               << symbol_table.getName(e.symb_id)
               << " is not in the maximum cardinality matching." << endl;
          exit(EXIT_FAILURE);
        }
    }
}

void
ModelTree::computeNormalizedEquations(multimap<int, int> &endo2eqs) const
{
  for(int i = 0; i < equation_number(); i++)
    {
      VariableNode *lhs = dynamic_cast<VariableNode *>(equations[i]->get_arg1());
      if (lhs == NULL)
        continue;

      int symb_id = lhs->get_symb_id();
      if (symbol_table.getType(symb_id) != eEndogenous)
        continue;

      set<pair<int, int> > endo;
      equations[i]->get_arg2()->collectEndogenous(endo);
      if (endo.find(make_pair(symbol_table.getTypeSpecificID(symb_id), 0)) != endo.end())
        continue;

      endo2eqs.insert(make_pair(symbol_table.getTypeSpecificID(symb_id), i));
      cout << "Endogenous " << symbol_table.getName(symb_id) << " normalized in equation " << (i+1) << endl;
    }
}


void
ModelTree::evaluateAndReduceJacobian(const eval_context_type &eval_context, jacob_map &contemporaneous_jacobian, jacob_map &static_jacobian, dynamic_jacob_map &dynamic_jacobian, double cutoff, bool verbose)
{
  int nb_elements_contemparenous_Jacobian = 0;
  set<pair<int, int> > jacobian_elements_to_delete;
  for (first_derivatives_type::iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
          NodeID Id = it->second;
          int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          int var = symbol_table.getTypeSpecificID(symb);
          int lag = getLagByDerivID(deriv_id);
          double val = 0;
          try
            {
              val = Id->eval(eval_context);
            }
          catch (ExprNode::EvalException &e)
            {
              cerr << "ERROR: evaluation of Jacobian failed for equation " << eq+1 << " and variable " << symbol_table.getName(symb) << "(" << lag << ") [" << symb << "] !" << endl;
              Id->writeOutput(cerr, oMatlabDynamicModelSparse, temporary_terms);
              cerr << endl;
              exit(EXIT_FAILURE);
            }

          if (fabs(val) < cutoff)
            {
              if (verbose)
                cout << "the coefficient related to variable " << var << " with lag " << lag << " in equation " << eq << " is equal to " << val << " and is set to 0 in the incidence matrix (size=" << symbol_table.endo_nbr() << ")" << endl;
              jacobian_elements_to_delete.insert(make_pair(eq, deriv_id));
            }
          else
            {
              if (lag == 0)
                {
                  nb_elements_contemparenous_Jacobian++;
                  contemporaneous_jacobian[make_pair(eq,var)] = val;
                }
              if (static_jacobian.find(make_pair(eq, var)) != static_jacobian.end())
                static_jacobian[make_pair(eq, var)] += val;
              else
                static_jacobian[make_pair(eq, var)] = val;
              dynamic_jacobian[make_pair(lag, make_pair(eq, var))] = Id;
            }
        }
    }

  // Get rid of the elements of the Jacobian matrix below the cutoff
  for(set<pair<int, int> >::const_iterator it = jacobian_elements_to_delete.begin(); it != jacobian_elements_to_delete.end(); it++)
    first_derivatives.erase(*it);

  if (jacobian_elements_to_delete.size()>0)
    {
      cout << jacobian_elements_to_delete.size() << " elements among " << first_derivatives.size() << " in the incidence matrices are below the cutoff (" << cutoff << ") and are discarded" << endl
           << "The contemporaneous incidence matrix has " << nb_elements_contemparenous_Jacobian << " elements" << endl;
    }
}

void
ModelTree::computePrologueAndEpilogue(jacob_map &static_jacobian_arg, vector<int> &equation_reordered, vector<int> &variable_reordered, unsigned int &prologue, unsigned int &epilogue)
{
  vector<int> eq2endo(equation_number(),0);
  equation_reordered.resize(equation_number());
  variable_reordered.resize(equation_number());
  bool *IM;
  int n = equation_number();
  IM = (bool*)calloc(n*n,sizeof(bool));
  int i = 0;
  for(vector<int>::const_iterator it=endo2eq.begin(); it != endo2eq.end(); it++, i++)
    {
      eq2endo[*it] = i;
      equation_reordered[i] = i;
      variable_reordered[*it] = i;
    }
  for (jacob_map::const_iterator it = static_jacobian_arg.begin(); it != static_jacobian_arg.end(); it ++)
    IM[it->first.first * n + endo2eq[it->first.second]] = true;
  bool something_has_been_done = true;
  prologue = 0;
  int k = 0;
  // Find the prologue equations and place first the AR(1) shock equations first
  while (something_has_been_done)
    {
      int tmp_prologue = prologue;
      something_has_been_done = false;
      for(int i = prologue;i < n; i++)
        {
          int nze = 0;
          for(int j = tmp_prologue; j < n; j++)
            if(IM[i * n + j])
              {
                nze ++;
                k = j;
              }
          if(nze == 1)
            {
              for(int j = 0; j < n; j++)
                {
                  bool tmp_bool = IM[tmp_prologue * n + j];
                  IM[tmp_prologue * n + j] = IM[i * n + j];
                  IM[i * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[tmp_prologue];
              equation_reordered[tmp_prologue] = equation_reordered[i];
              equation_reordered[i] = tmp;
              for(int j = 0; j < n; j++)
                {
                  bool tmp_bool = IM[j * n + tmp_prologue];
                  IM[j * n + tmp_prologue] = IM[j * n + k];
                  IM[j * n + k] = tmp_bool;
                }
              tmp = variable_reordered[tmp_prologue];
              variable_reordered[tmp_prologue] = variable_reordered[k];
              variable_reordered[k] = tmp;
              tmp_prologue++;
              something_has_been_done = true;
            }
        }
      prologue = tmp_prologue;
    }

  something_has_been_done = true;
  epilogue = 0;
  // Find the epilogue equations
  while (something_has_been_done)
    {
      int tmp_epilogue = epilogue;
      something_has_been_done = false;
      for(int i = prologue;i < n - (int) epilogue; i++)
        {
          int nze = 0;
          for(int j = prologue; j < n - tmp_epilogue; j++)
            if(IM[j * n + i])
              {
                nze ++;
                k = j;
              }
          if(nze == 1)
            {
              for(int j = 0; j < n; j++)
                {
                  bool tmp_bool = IM[(n - 1 - tmp_epilogue) * n + j];
                  IM[(n - 1 - tmp_epilogue) * n + j] = IM[k * n + j];
                  IM[k * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[n - 1 - tmp_epilogue];
              equation_reordered[n - 1 - tmp_epilogue] = equation_reordered[k];
              equation_reordered[k] = tmp;
              for(int j = 0; j < n; j++)
                {
                  bool tmp_bool = IM[j * n + n - 1 - tmp_epilogue];
                  IM[j * n + n - 1 - tmp_epilogue] = IM[j * n + i];
                  IM[j * n + i] = tmp_bool;
                }
              tmp = variable_reordered[n - 1 - tmp_epilogue];
              variable_reordered[n - 1 - tmp_epilogue] = variable_reordered[i];
              variable_reordered[i] = tmp;
              tmp_epilogue++;
              something_has_been_done = true;
            }
        }
      epilogue = tmp_epilogue;
    }
  free(IM);
}

t_equation_type_and_normalized_equation
ModelTree::equationTypeDetermination(vector<BinaryOpNode *> &equations, map<pair<int, pair<int, int> >, NodeID> &first_order_endo_derivatives, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM, int mfs)
{
  NodeID lhs, rhs;
  ostringstream tmp_output;
  BinaryOpNode *eq_node;
  ostringstream tmp_s;
  temporary_terms_type temporary_terms;
  EquationType Equation_Simulation_Type;
  t_equation_type_and_normalized_equation V_Equation_Simulation_Type(equations.size());
  for (unsigned int i = 0; i < equations.size(); i++)
    {
      temporary_terms.clear();
      int eq = Index_Equ_IM[i];
      int var = Index_Var_IM[i];
      eq_node = equations[eq];
      lhs = eq_node->get_arg1();
      rhs = eq_node->get_arg2();
      Equation_Simulation_Type = E_SOLVE;
      tmp_s.str("");
      tmp_output.str("");
      lhs->writeOutput(tmp_output, oMatlabDynamicModelSparse, temporary_terms);
      tmp_s << "y(it_, " << Index_Var_IM[i]+1 << ")";
      map<pair<int, pair<int, int> >, NodeID>::iterator derivative = first_order_endo_derivatives.find(make_pair(eq, make_pair(var, 0)));
      pair<bool, NodeID> res;
      if(derivative != first_order_endo_derivatives.end())
        {
          set<pair<int, int> > result;
          derivative->second->collectEndogenous(result);
          set<pair<int, int> >::const_iterator d_endo_variable = result.find(make_pair(var, 0));
          //Determine whether the equation could be evaluated rather than to be solved
          ostringstream tt("");
          derivative->second->writeOutput(tt, oMatlabDynamicModelSparse, temporary_terms);
          if (tmp_output.str() == tmp_s.str() and tt.str()=="1")
            {
              Equation_Simulation_Type = E_EVALUATE;
            }
          else
            {
        	    vector<pair<int, pair<NodeID, NodeID> > > List_of_Op_RHS;
              res =  equations[eq]->normalizeEquation(var, List_of_Op_RHS);
              if(mfs==2)
                {
                  if(d_endo_variable == result.end() && res.second)
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
              else if(mfs==3)
                {
                  if(res.second) // The equation could be solved analytically
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
            }
        }
      V_Equation_Simulation_Type[eq] = make_pair(Equation_Simulation_Type, dynamic_cast<BinaryOpNode *>(res.second));
    }
  return (V_Equation_Simulation_Type);
}

void
ModelTree::getVariableLeadLagByBlock(dynamic_jacob_map &dynamic_jacobian, vector<int > &components_set, int nb_blck_sim, int prologue, int epilogue, t_lag_lead_vector &equation_lead_lag, t_lag_lead_vector &variable_lead_lag, vector<int> equation_reordered, vector<int> variable_reordered) const
{
  int nb_endo = symbol_table.endo_nbr();
  variable_lead_lag = t_lag_lead_vector(nb_endo , make_pair(0,0));
  equation_lead_lag = t_lag_lead_vector(nb_endo , make_pair(0,0));
  vector<int> variable_blck(nb_endo), equation_blck(nb_endo);
  for (int i = 0; i < nb_endo; i++)
    {
      if (i < prologue)
        {
          variable_blck[variable_reordered[i]] = i;
          equation_blck[equation_reordered[i]] = i;
        }
      else if (i < (int)components_set.size() + prologue)
        {
          variable_blck[variable_reordered[i]] = components_set[i-prologue] + prologue;
          equation_blck[equation_reordered[i]] = components_set[i-prologue] + prologue;
        }
      else
        {
          variable_blck[variable_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
          equation_blck[equation_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
        }
    }
  for (dynamic_jacob_map::const_iterator it = dynamic_jacobian.begin(); it != dynamic_jacobian.end(); it++)
    {
      int lag = it->first.first;
      int j_1 = it->first.second.second;
      int i_1 = it->first.second.second;
      if (variable_blck[i_1] == equation_blck[j_1])
        {
          if (lag > variable_lead_lag[i_1].second)
            variable_lead_lag[i_1] = make_pair(variable_lead_lag[i_1].first, lag);
          if (lag < -variable_lead_lag[i_1].first)
            variable_lead_lag[i_1] = make_pair(-lag, variable_lead_lag[i_1].second);
          if (lag > equation_lead_lag[j_1].second)
            equation_lead_lag[j_1] = make_pair(equation_lead_lag[j_1].first, lag);
          if (lag < -equation_lead_lag[j_1].first)
            equation_lead_lag[j_1] = make_pair(-lag, equation_lead_lag[j_1].second);
        }
    }
}


void
ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(jacob_map &static_jacobian, dynamic_jacob_map &dynamic_jacobian, int prologue, int epilogue, vector<int> &equation_reordered, vector<int> &variable_reordered, vector<pair<int, int> > &blocks, t_equation_type_and_normalized_equation &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs, vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered) const
{
  int nb_var = variable_reordered.size();
  int n = nb_var - prologue - epilogue;
  typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;

  GraphvizDigraph G2(n);

  vector<int> reverse_equation_reordered(nb_var), reverse_variable_reordered(nb_var);

  for(int i=0; i<nb_var; i++)
    {
      reverse_equation_reordered[equation_reordered[i]] = i;
      reverse_variable_reordered[variable_reordered[i]] = i;
    }

  for(jacob_map::const_iterator it = static_jacobian.begin(); it != static_jacobian.end(); it++)
    if(   reverse_equation_reordered[it->first.first]>=prologue && reverse_equation_reordered[it->first.first]<nb_var - epilogue
       && reverse_variable_reordered[it->first.second]>=prologue && reverse_variable_reordered[it->first.second]<nb_var - epilogue
       && it->first.first != endo2eq[it->first.second])
         add_edge(reverse_equation_reordered[it->first.first]-prologue, reverse_equation_reordered[endo2eq[it->first.second]]-prologue, G2);

  vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2));

  // Compute strongly connected components
  int num = strong_components(G2, &endo2block[0]);

  blocks = vector<pair<int, int> >(num, make_pair(0, 0));


  // Create directed acyclic graph associated to the strongly connected components
  typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;
  DirectedGraph dag(num);


  for (unsigned int i = 0;i < num_vertices(G2);i++)
    {
      GraphvizDigraph::out_edge_iterator it_out, out_end;
      GraphvizDigraph::vertex_descriptor vi = vertex(i, G2);
      for (tie(it_out, out_end) = out_edges(vi, G2); it_out != out_end; ++it_out)
        {
          int t_b = endo2block[target(*it_out, G2)];
          int s_b = endo2block[source(*it_out, G2)];
          if (s_b != t_b)
            add_edge(s_b, t_b, dag);
        }
    }

  // Compute topological sort of DAG (ordered list of unordered SCC)
  deque<int> ordered2unordered;
  topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order

  // Construct mapping from unordered SCC to ordered SCC
  vector<int> unordered2ordered(num);
  for(int i = 0; i < num; i++)
    unordered2ordered[ordered2unordered[i]] = i;


  //This vector contains for each block:
  //   - first set = equations belonging to the block,
  //   - second set = the feeback variables,
  //   - third vector = the reordered non-feedback variables.
  vector<pair<set<int>, pair<set<int>, vector<int> > > > components_set(num);
  for (unsigned int i = 0; i < endo2block.size(); i++)
    {
      endo2block[i] = unordered2ordered[endo2block[i]];
      blocks[endo2block[i]].first++;
      components_set[endo2block[i]].first.insert(i);
    }

  t_lag_lead_vector equation_lag_lead, variable_lag_lead;

  getVariableLeadLagByBlock(dynamic_jacobian, endo2block, num, prologue, epilogue, equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);

  vector<int> tmp_equation_reordered(equation_reordered), tmp_variable_reordered(variable_reordered);
  int order = prologue;
  //Add a loop on vertices which could not be normalized or vertices related to lead variables => force those vertices to belong to the feedback set
  if(select_feedback_variable)
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE
            or variable_lag_lead[variable_reordered[i+prologue]].second > 0 or variable_lag_lead[variable_reordered[i+prologue]].first > 0
            or equation_lag_lead[equation_reordered[i+prologue]].second > 0 or equation_lag_lead[equation_reordered[i+prologue]].first > 0
            or mfs == 0)
          add_edge(i, i, G2);
    }
  else
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE || mfs == 0)
          add_edge(i, i, G2);
    }
  //For each block, the minimum set of feedback variable is computed
  // and the non-feedback variables are reordered to get
  // a sub-recursive block without feedback variables

  for (int i = 0; i < num; i++)
    {
      AdjacencyList_type G = GraphvizDigraph_2_AdjacencyList(G2, components_set[i].first);
      set<int> feed_back_vertices;
      //Print(G);
      AdjacencyList_type G1 = Minimal_set_of_feedback_vertex(feed_back_vertices, G);
      property_map<AdjacencyList_type, vertex_index_t>::type v_index = get(vertex_index, G);
      components_set[i].second.first = feed_back_vertices;
      blocks[i].second = feed_back_vertices.size();
      vector<int> Reordered_Vertice;
      Reorder_the_recursive_variables(G, feed_back_vertices, Reordered_Vertice);

      //First we have the recursive equations conditional on feedback variables
      for (vector<int>::iterator its = Reordered_Vertice.begin(); its != Reordered_Vertice.end(); its++)
        {
          equation_reordered[order] = tmp_equation_reordered[*its+prologue];
          variable_reordered[order] = tmp_variable_reordered[*its+prologue];
          order++;
        }
      components_set[i].second.second = Reordered_Vertice;
      //Second we have the equations related to the feedback variables
      for (set<int>::iterator its = feed_back_vertices.begin(); its != feed_back_vertices.end(); its++)
        {
          equation_reordered[order] = tmp_equation_reordered[v_index[vertex(*its, G)]+prologue];
          variable_reordered[order] = tmp_variable_reordered[v_index[vertex(*its, G)]+prologue];
          order++;
        }
    }
  inv_equation_reordered = vector<int>(nb_var);
  inv_variable_reordered = vector<int>(nb_var);
  for(int i = 0; i < nb_var ; i++)
    {
      inv_variable_reordered[variable_reordered[i]] = i;
      inv_equation_reordered[equation_reordered[i]] = i;
    }
}

void ModelTree::printBlockDecomposition(vector<pair<int, int> > blocks)
{
  int largest_block = 0;
  int Nb_SimulBlocks = 0;
  int Nb_feedback_variable = 0;
  unsigned int Nb_TotalBlocks = getNbBlocks();
  for (unsigned int block = 0; block < Nb_TotalBlocks; block++)
    {
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
        {
          Nb_SimulBlocks++;
          int size = getBlockSize(block);
          if (size > largest_block)
            {
              largest_block = size;
              Nb_feedback_variable = blocks[Nb_SimulBlocks-1].second;
            }
        }
    }


  int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
  cout << Nb_TotalBlocks << " block(s) found:" << endl
       << "  " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks << " simultaneous block(s)." << endl
       << "  the largest simultaneous block has " << largest_block << " equation(s)" << endl
       << "                                 and " << Nb_feedback_variable << " feedback variable(s)." << endl;
}



t_block_type_firstequation_size_mfs
ModelTree::reduceBlocksAndTypeDetermination(dynamic_jacob_map &dynamic_jacobian, int prologue, int epilogue, vector<pair<int, int> > &blocks, vector<BinaryOpNode *> &equations, t_equation_type_and_normalized_equation &Equation_Type, vector<int> &variable_reordered, vector<int> &equation_reordered)
{
  int i = 0;
  int count_equ = 0, blck_count_simult = 0;
  int Blck_Size, MFS_Size;
  int Lead, Lag;
  t_block_type_firstequation_size_mfs block_type_size_mfs;
  BlockSimulationType Simulation_Type, prev_Type = UNKNOWN;
  int eq = 0;
  for (i = 0; i < prologue+(int) blocks.size()+epilogue; i++)
    {
      int first_count_equ = count_equ;
      if (i < prologue)
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }
      else if (i < prologue+(int) blocks.size())
        {
          Blck_Size = blocks[blck_count_simult].first;
          MFS_Size = blocks[blck_count_simult].second;
          blck_count_simult++;
        }
      else if (i < prologue+(int) blocks.size()+epilogue)
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }

      Lag = Lead = 0;
      set<pair<int, int> > endo;
      for(count_equ  = first_count_equ; count_equ  < Blck_Size+first_count_equ; count_equ++)
        {
          endo.clear();
          equations[equation_reordered[count_equ]]->collectEndogenous(endo);
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
            {
              int curr_variable = it->first;
              int curr_lag = it->second;
              vector<int>::const_iterator it = find(variable_reordered.begin()+first_count_equ, variable_reordered.begin()+(first_count_equ+Blck_Size), curr_variable);
              if(it != variable_reordered.begin()+(first_count_equ+Blck_Size))
                if (dynamic_jacobian.find(make_pair(curr_lag, make_pair(equation_reordered[count_equ], curr_variable))) != dynamic_jacobian.end())
                  {
                    if (curr_lag > Lead)
                      Lead = curr_lag;
                    else if (-curr_lag > Lag)
                      Lag = -curr_lag;
                  }
            }
        }
      if ((Lag > 0) && (Lead > 0))
        {
          if (Blck_Size == 1)
            Simulation_Type = SOLVE_TWO_BOUNDARIES_SIMPLE;
          else
            Simulation_Type = SOLVE_TWO_BOUNDARIES_COMPLETE;
        }
      else if (Blck_Size > 1)
        {
          if (Lead > 0)
            Simulation_Type = SOLVE_BACKWARD_COMPLETE;
          else
            Simulation_Type = SOLVE_FORWARD_COMPLETE;
        }
      else
        {
          if (Lead > 0)
            Simulation_Type = SOLVE_BACKWARD_SIMPLE;
          else
            Simulation_Type = SOLVE_FORWARD_SIMPLE;
        }
      if (Blck_Size == 1)
        {
          if (Equation_Type[equation_reordered[eq]].first == E_EVALUATE or Equation_Type[equation_reordered[eq]].first == E_EVALUATE_S)
            {
              if (Simulation_Type == SOLVE_BACKWARD_SIMPLE)
                Simulation_Type = EVALUATE_BACKWARD;
              else if (Simulation_Type == SOLVE_FORWARD_SIMPLE)
                Simulation_Type = EVALUATE_FORWARD;
            }
          if (i > 0)
            {
              if ((prev_Type ==  EVALUATE_FORWARD and Simulation_Type == EVALUATE_FORWARD)
                  or (prev_Type ==  EVALUATE_BACKWARD and Simulation_Type == EVALUATE_BACKWARD))
                {
                  //merge the current block with the previous one
                  BlockSimulationType c_Type = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.first;
                  int c_Size = (block_type_size_mfs[block_type_size_mfs.size()-1]).second.first;
                  int first_equation = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.second;
                  block_type_size_mfs[block_type_size_mfs.size()-1] = make_pair(make_pair(c_Type, first_equation), make_pair(++c_Size, block_type_size_mfs[block_type_size_mfs.size()-1].second.second));
                  if(block_lag_lead[block_type_size_mfs.size()-1].first > Lag)
                    Lag = block_lag_lead[block_type_size_mfs.size()-1].first;
                  if(block_lag_lead[block_type_size_mfs.size()-1].second > Lead)
                    Lead = block_lag_lead[block_type_size_mfs.size()-1].second;
                  block_lag_lead[block_type_size_mfs.size()-1] = make_pair(Lag, Lead);
                }
              else
                {
                  block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
                  block_lag_lead.push_back(make_pair(Lag, Lead));
                }
            }
          else
            {
              block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
              block_lag_lead.push_back(make_pair(Lag, Lead));
            }
        }
      else
        {
          block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
          block_lag_lead.push_back(make_pair(Lag, Lead));
        }
      prev_Type = Simulation_Type;
      eq += Blck_Size;
    }
  return (block_type_size_mfs);
}


vector<bool>
ModelTree::BlockLinear(t_blocks_derivatives &blocks_derivatives, vector<int> &variable_reordered)
{
  unsigned int nb_blocks = getNbBlocks();
  vector<bool> blocks_linear(nb_blocks, true);
  for (unsigned int block = 0;block < nb_blocks; block++)
    {
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      int block_size = getBlockSize(block);
      t_block_derivatives_equation_variable_laglead_nodeid derivatives_block = blocks_derivatives[block];
      int first_variable_position = getBlockFirstEquation(block);
      if (simulation_type==SOLVE_BACKWARD_COMPLETE || simulation_type==SOLVE_FORWARD_COMPLETE)
        {
          for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
            {
              int lag = it->second.first;
              if (lag == 0)
                {
                  NodeID Id = it->second.second;
                  set<pair<int, int> > endogenous;
                  Id->collectEndogenous(endogenous);
                  if (endogenous.size() > 0)
                    {
                      for (int l=0;l<block_size;l++)
                        {
                          if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], 0)) != endogenous.end())
                            {
                              blocks_linear[block] = false;
                              goto the_end;
                            }
                        }
                    }
                }
            }
        }
      else if (simulation_type==SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type==SOLVE_TWO_BOUNDARIES_SIMPLE)
        {
          for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
            {
              int lag = it->second.first;
              NodeID Id = it->second.second;//
              set<pair<int, int> > endogenous;
              Id->collectEndogenous(endogenous);
              if (endogenous.size() > 0)
                {
                  for (int l=0;l<block_size;l++)
                    {
                      if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], lag)) != endogenous.end())
                        {
                          blocks_linear[block] = false;
                          goto the_end;
                        }
                    }
                }
            }
        }
the_end:;
    }
  return(blocks_linear);
}


832
833
834

ModelTree::ModelTree(SymbolTable &symbol_table_arg,
                     NumericalConstants &num_constants_arg) :
835
  DataTree(symbol_table_arg, num_constants_arg)
836
{
837
838
  for(int i=0; i < 3; i++)
    NNZDerivatives[i] = 0;
839
840
841
842
}

int
ModelTree::equation_number() const
843
844
845
{
  return(equations.size());
}
846
847
848
849

void
ModelTree::writeDerivative(ostream &output, int eq, int symb_id, int lag,
                           ExprNodeOutputType output_type,
sebastien's avatar
sebastien committed
850
                           const temporary_terms_type &temporary_terms) const
851
{
852
  first_derivatives_type::const_iterator it = first_derivatives.find(make_pair(eq, getDerivID(symb_id, lag)));
853
854
855
856
857
  if (it != first_derivatives.end())
    (it->second)->writeOutput(output, output_type, temporary_terms);
  else
    output << 0;
}
858
859

void
860
ModelTree::computeJacobian(const set<int> &vars)
861
{
862
  for(set<int>::const_iterator it = vars.begin();
863
      it != vars.end(); it++)
864
    for (int eq = 0; eq < (int) equations.size(); eq++)
865
      {
866
        NodeID d1 = equations[eq]->getDerivative(*it);
867
868
        if (d1 == Zero)
          continue;
869
        first_derivatives[make_pair(eq, *it)] = d1;
870
	++NNZDerivatives[0];
871
      }
872
}
873

874
875


876
877
878
879
880
void
ModelTree::computeHessian(const set<int> &vars)
{
  for (first_derivatives_type::const_iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
881
    {
882
883
884
885
886
887
888
      int eq = it->first.first;
      int var1 = it->first.second;
      NodeID d1 = it->second;

      // Store only second derivatives with var2 <= var1
      for(set<int>::const_iterator it2 = vars.begin();
          it2 != vars.end(); it2++)
889
        {
890
891
892
893
894
895
896
897
          int var2 = *it2;
          if (var2 > var1)
            continue;

          NodeID d2 = d1->getDerivative(var2);
          if (d2 == Zero)
            continue;
          second_derivatives[make_pair(eq, make_pair(var1, var2))] = d2;
898
899
900
901
	  if (var2 == var1)
	    ++NNZDerivatives[1];
	  else
	    NNZDerivatives[1] += 2;
902
903
        }
    }
904
}
905

906
907
908
909
910
void
ModelTree::computeThirdDerivatives(const set<int> &vars)
{
  for (second_derivatives_type::const_iterator it = second_derivatives.begin();
       it != second_derivatives.end(); it++)
911
    {
912
913
914
915
916
917
918
919
920
921
922
      int eq = it->first.first;

      int var1 = it->first.second.first;
      int var2 = it->first.second.second;
      // By construction, var2 <= var1

      NodeID d2 = it->second;

      // Store only third derivatives such that var3 <= var2 <= var1
      for(set<int>::const_iterator it2 = vars.begin();
          it2 != vars.end(); it2++)
923
        {
924
925
926
927
928
929
930
931
          int var3 = *it2;
          if (var3 > var2)
            continue;

          NodeID d3 = d2->getDerivative(var3);
          if (d3 == Zero)
            continue;
          third_derivatives[make_pair(eq, make_pair(var1, make_pair(var2, var3)))] = d3;
932
933
934
935
936
937
	  if (var3 == var2 && var2 == var1)
	    ++NNZDerivatives[2];
	  else if (var3 == var2 || var2 == var1)
	    NNZDerivatives[2] += 3;
	  else
	    NNZDerivatives[2] += 6;
938
939
940
941
942
        }
    }
}

void
943
ModelTree::computeTemporaryTerms(bool is_matlab)
944
945
946
947
{
  map<NodeID, int> reference_count;
  temporary_terms.clear();

948
949
  for (vector<BinaryOpNode *>::iterator it = equations.begin();
       it != equations.end(); it++)
950
951
    (*it)->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);

952
953
  for (first_derivatives_type::iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
954
955
    it->second->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);

956
957
958
  for (second_derivatives_type::iterator it = second_derivatives.begin();
       it != second_derivatives.end(); it++)
    it->second->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
959

960
961
962
  for (third_derivatives_type::iterator it = third_derivatives.begin();
       it != third_derivatives.end(); it++)
    it->second->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
963
964
965
}

void
sebastien's avatar
sebastien committed
966
967
ModelTree::writeTemporaryTerms(const temporary_terms_type &tt, ostream &output,
                               ExprNodeOutputType output_type) const
968
{
sebastien's avatar
sebastien committed
969
  // Local var used to keep track of temp nodes already written
970
  temporary_terms_type tt2;
971

972
  if (tt.size() > 0 && (IS_C(output_type)))
sebastien's avatar
sebastien committed
973
    output << "double" << endl;
974

sebastien's avatar
sebastien committed
975
976
  for (temporary_terms_type::const_iterator it = tt.begin();
       it != tt.end(); it++)
977
    {
978
      if (IS_C(output_type) && it != tt.begin())
979
        output << "," << endl;
980

sebastien's avatar
sebastien committed
981
      (*it)->writeOutput(output, output_type, tt);
982
      output << " = ";
983

984
      (*it)->writeOutput(output, output_type, tt2);
985

986
987
      // Insert current node into tt2
      tt2.insert(*it);
988

989
      if (IS_MATLAB(output_type))
990
991
        output << ";" << endl;
    }
992
  if (IS_C(output_type))
993
994
    output << ";" << endl;
}
995
996
997

void
ModelTree::writeModelLocalVariables(ostream &output, ExprNodeOutputType output_type) const
998
999
1000
{
  for (map<int, NodeID>::const_iterator it = local_variables_table.begin();
       it != local_variables_table.end(); it++)