DynamicModel.cc 186 KB
Newer Older
sebastien's avatar
sebastien committed
1
/*
Sébastien Villemot's avatar
Sébastien Villemot committed
2
 * Copyright (C) 2003-2013 Dynare Team
sebastien's avatar
sebastien committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
#include <iostream>
sebastien's avatar
sebastien committed
21
#include <cmath>
22
#include <cstdlib>
23
#include <cassert>
24
25
#include <cstdio>
#include <cerrno>
26
#include <algorithm>
Ferhat Mihoubi's avatar
Ferhat Mihoubi committed
27
#include <iterator>
sebastien's avatar
sebastien committed
28
29
30
31
32
33
34
35
36
37
38
39
#include "DynamicModel.hh"

// For mkdir() and chdir()
#ifdef _WIN32
# include <direct.h>
#else
# include <unistd.h>
# include <sys/stat.h>
# include <sys/types.h>
#endif

DynamicModel::DynamicModel(SymbolTable &symbol_table_arg,
40
41
42
                           NumericalConstants &num_constants_arg,
                           ExternalFunctionsTable &external_functions_table_arg) :
  ModelTree(symbol_table_arg, num_constants_arg, external_functions_table_arg),
43
44
45
46
47
  max_lag(0), max_lead(0),
  max_endo_lag(0), max_endo_lead(0),
  max_exo_lag(0), max_exo_lead(0),
  max_exo_det_lag(0), max_exo_det_lead(0),
  dynJacobianColsNbr(0),
48
  global_temporary_terms(true)
sebastien's avatar
sebastien committed
49
50
51
{
}

sebastien's avatar
sebastien committed
52
53
VariableNode *
DynamicModel::AddVariable(int symb_id, int lag)
sebastien's avatar
sebastien committed
54
{
sebastien's avatar
sebastien committed
55
  return AddVariableInternal(symb_id, lag);
sebastien's avatar
sebastien committed
56
57
}

sebastien's avatar
sebastien committed
58
void
59
DynamicModel::compileDerivative(ofstream &code_file, unsigned int &instruction_number, int eq, int symb_id, int lag, const map_idx_t &map_idx) const
60
{
61
  first_derivatives_t::const_iterator it = first_derivatives.find(make_pair(eq, getDerivID(symbol_table.getID(eEndogenous, symb_id), lag)));
62
  if (it != first_derivatives.end())
63
    (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
64
65
66
  else
    {
      FLDZ_ fldz;
67
      fldz.write(code_file, instruction_number);
68
69
    }
}
70
71

void
72
DynamicModel::compileChainRuleDerivative(ofstream &code_file, unsigned int &instruction_number, int eqr, int varr, int lag, const map_idx_t &map_idx) const
73
{
74
  map<pair<int, pair<int, int> >, expr_t>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
75
  if (it != first_chain_rule_derivatives.end())
76
    (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
77
  else
78
79
    {
      FLDZ_ fldz;
80
      fldz.write(code_file, instruction_number);
81
    }
82
83
}

sebastien's avatar
sebastien committed
84
void
85
DynamicModel::computeTemporaryTermsOrdered()
sebastien's avatar
sebastien committed
86
{
87
88
  map<expr_t, pair<int, int> > first_occurence;
  map<expr_t, int> reference_count;
sebastien's avatar
sebastien committed
89
  BinaryOpNode *eq_node;
90
91
  first_derivatives_t::const_iterator it;
  first_chain_rule_derivatives_t::const_iterator it_chr;
sebastien's avatar
sebastien committed
92
  ostringstream tmp_s;
93
94
  v_temporary_terms.clear();
  map_idx.clear();
sebastien's avatar
sebastien committed
95

96
  unsigned int nb_blocks = getNbBlocks();
97
98
  v_temporary_terms = vector<vector<temporary_terms_t> >(nb_blocks);
  v_temporary_terms_inuse = vector<temporary_terms_inuse_t>(nb_blocks);
sebastien's avatar
sebastien committed
99
  temporary_terms.clear();
100

101
  if (!global_temporary_terms)
102
103
    {
      for (unsigned int block = 0; block < nb_blocks; block++)
sebastien's avatar
sebastien committed
104
        {
105
106
107
108
109
          reference_count.clear();
          temporary_terms.clear();
          unsigned int block_size = getBlockSize(block);
          unsigned int block_nb_mfs = getBlockMfs(block);
          unsigned int block_nb_recursives = block_size - block_nb_mfs;
110
          v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
111
          for (unsigned int i = 0; i < block_size; i++)
sebastien's avatar
sebastien committed
112
            {
113
              if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
114
                getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
115
              else
sebastien's avatar
sebastien committed
116
                {
117
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
118
                  eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
sebastien's avatar
sebastien committed
119
120
                }
            }
121
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
122
            {
123
              expr_t id = it->second.second;
124
125
              id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
            }
126
          for (derivative_t::const_iterator it = derivative_endo[block].begin(); it != derivative_endo[block].end(); it++)
127
            it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
128
          for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != derivative_other_endo[block].end(); it++)
129
130
131
132
            it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
          set<int> temporary_terms_in_use;
          temporary_terms_in_use.clear();
          v_temporary_terms_inuse[block] = temporary_terms_in_use;
sebastien's avatar
sebastien committed
133
134
        }
    }
135
  else
sebastien's avatar
sebastien committed
136
    {
137
      for (unsigned int block = 0; block < nb_blocks; block++)
sebastien's avatar
sebastien committed
138
        {
139
140
141
142
          // Compute the temporary terms reordered
          unsigned int block_size = getBlockSize(block);
          unsigned int block_nb_mfs = getBlockMfs(block);
          unsigned int block_nb_recursives = block_size - block_nb_mfs;
143
          v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
144
          for (unsigned int i = 0; i < block_size; i++)
145
            {
146
              if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
147
                getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
148
149
              else
                {
150
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
151
152
                  eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, i);
                }
153
            }
154
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
sebastien's avatar
sebastien committed
155
            {
156
              expr_t id = it->second.second;
157
              id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
sebastien's avatar
sebastien committed
158
            }
159
          for (derivative_t::const_iterator it = derivative_endo[block].begin(); it != derivative_endo[block].end(); it++)
160
            it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
161
          for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != derivative_other_endo[block].end(); it++)
162
            it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
163
        }
164
      for (unsigned int block = 0; block < nb_blocks; block++)
165
        {
166
167
168
169
170
171
          // Collect the temporary terms reordered
          unsigned int block_size = getBlockSize(block);
          unsigned int block_nb_mfs = getBlockMfs(block);
          unsigned int block_nb_recursives = block_size - block_nb_mfs;
          set<int> temporary_terms_in_use;
          for (unsigned int i = 0; i < block_size; i++)
sebastien's avatar
sebastien committed
172
            {
173
              if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
174
                getBlockEquationRenormalizedExpr(block, i)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
175
              else
sebastien's avatar
sebastien committed
176
                {
177
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
178
                  eq_node->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
sebastien's avatar
sebastien committed
179
180
                }
            }
181
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
182
            {
183
              expr_t id = it->second.second;
184
185
              id->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
            }
186
          for (derivative_t::const_iterator it = derivative_endo[block].begin(); it != derivative_endo[block].end(); it++)
187
            it->second->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
188
          for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != derivative_other_endo[block].end(); it++)
189
190
            it->second->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
          v_temporary_terms_inuse[block] = temporary_terms_in_use;
sebastien's avatar
sebastien committed
191
        }
192
      computeTemporaryTermsMapping();
sebastien's avatar
sebastien committed
193
194
195
    }
}

196
197
198
199
200
void
DynamicModel::computeTemporaryTermsMapping()
{
  // Add a mapping form node ID to temporary terms order
  int j = 0;
201
  for (temporary_terms_t::const_iterator it = temporary_terms.begin();
202
       it != temporary_terms.end(); it++)
203
204
205
    map_idx[(*it)->idx] = j++;
}

sebastien's avatar
sebastien committed
206
void
207
DynamicModel::writeModelEquationsOrdered_M(const string &dynamic_basename) const
208
209
210
{
  string tmp_s, sps;
  ostringstream tmp_output, tmp1_output, global_output;
211
  expr_t lhs = NULL, rhs = NULL;
212
  BinaryOpNode *eq_node;
213
214
  ostringstream Ufoss;
  vector<string> Uf(symbol_table.endo_nbr(), "");
215
  map<expr_t, int> reference_count;
216
  temporary_terms_t local_temporary_terms;
217
  ofstream  output;
218
  int nze, nze_exo, nze_exo_det, nze_other_endo;
219
220
  vector<int> feedback_variables;
  ExprNodeOutputType local_output_type;
sebastien's avatar
sebastien committed
221

Sébastien Villemot's avatar
Sébastien Villemot committed
222
  local_output_type = oMatlabDynamicModelSparse;
223
  if (global_temporary_terms)
Sébastien Villemot's avatar
Sébastien Villemot committed
224
    local_temporary_terms = temporary_terms;
225
226
227
228
229
230
231
232
233
234
235
236

  //----------------------------------------------------------------------
  //For each block
  for (unsigned int block = 0; block < getNbBlocks(); block++)
    {

      //recursive_variables.clear();
      feedback_variables.clear();
      //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
      nze = derivative_endo[block].size();
      nze_other_endo = derivative_other_endo[block].size();
      nze_exo = derivative_exo[block].size();
237
      nze_exo_det = derivative_exo_det[block].size();
238
239
240
241
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      unsigned int block_size = getBlockSize(block);
      unsigned int block_mfs = getBlockMfs(block);
      unsigned int block_recursive = block_size - block_mfs;
242
      deriv_node_temp_terms_t tef_terms;
Sébastien Villemot's avatar
Sébastien Villemot committed
243
      local_output_type = oMatlabDynamicModelSparse;
244
      if (global_temporary_terms)
Sébastien Villemot's avatar
Sébastien Villemot committed
245
        local_temporary_terms = temporary_terms;
246

247
248
249
250
      int prev_lag;
      unsigned int prev_var, count_col, count_col_endo, count_col_exo, count_col_exo_det, count_col_other_endo;
      map<pair<int, pair<int, int> >, expr_t> tmp_block_endo_derivative;
      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
251
        tmp_block_endo_derivative[make_pair(it->second.first, make_pair(it->first.second, it->first.first))] = it->second.second;
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col_endo = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_endo_derivative.begin(); it != tmp_block_endo_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          //int eqr = getBlockInitialEquationID(block, eq);
          //int varr = getBlockInitialVariableID(block, var);
          if (var != prev_var || lag != prev_lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_endo++;
            }
        }
      map<pair<int, pair<int, int> >, expr_t> tmp_block_exo_derivative;
      for (derivative_t::const_iterator it = derivative_exo[block].begin(); it != (derivative_exo[block]).end(); it++)
270
        tmp_block_exo_derivative[make_pair(it->first.first, make_pair(it->first.second.second, it->first.second.first))] = it->second;
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col_exo = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          //int eqr = getBlockInitialEquationID(block, eq);
          //int varr = getBlockInitialVariableID(block, var);
          if (var != prev_var || lag != prev_lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_exo++;
            }
        }
      map<pair<int, pair<int, int> >, expr_t> tmp_block_exo_det_derivative;
      for (derivative_t::const_iterator it = derivative_exo_det[block].begin(); it != (derivative_exo_det[block]).end(); it++)
289
        tmp_block_exo_det_derivative[make_pair(it->first.first, make_pair(it->first.second.second, it->first.second.first))] = it->second;
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col_exo_det = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          //int eqr = getBlockInitialEquationID(block, eq);
          //int varr = getBlockInitialVariableID(block, var);
          if (var != prev_var || lag != prev_lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_exo_det++;
            }
        }
      map<pair<int, pair<int, int> >, expr_t> tmp_block_other_endo_derivative;
      for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != (derivative_other_endo[block]).end(); it++)
308
        tmp_block_other_endo_derivative[make_pair(it->first.first, make_pair(it->first.second.second, it->first.second.first))] = it->second;
309
310
311
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col_other_endo = 0;
312
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_other_endo_derivative.begin(); it != tmp_block_other_endo_derivative.end(); it++)
313
314
315
316
317
318
319
320
321
322
323
324
325
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          //int eqr = getBlockInitialEquationID(block, eq);
          //int varr = getBlockInitialVariableID(block, var);
          if (var != prev_var || lag != prev_lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_other_endo++;
            }
        }

326
327
328
329
330
331
332
333
334
335
336
      tmp1_output.str("");
      tmp1_output << dynamic_basename << "_" << block+1 << ".m";
      output.open(tmp1_output.str().c_str(), ios::out | ios::binary);
      output << "%\n";
      output << "% " << tmp1_output.str() << " : Computes dynamic model for Dynare\n";
      output << "%\n";
      output << "% Warning : this file is generated automatically by Dynare\n";
      output << "%           from model file (.mod)\n\n";
      output << "%/\n";
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        {
337
          output << "function [y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, steady_state, jacobian_eval, y_kmin, periods)\n";
338
339
        }
      else if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
340
        output << "function [residual, y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, steady_state, it_, jacobian_eval)\n";
341
      else if (simulation_type == SOLVE_BACKWARD_SIMPLE || simulation_type == SOLVE_FORWARD_SIMPLE)
342
        output << "function [residual, y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, steady_state, it_, jacobian_eval)\n";
343
      else
344
        output << "function [residual, y, g1, g2, g3, b, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, steady_state, periods, jacobian_eval, y_kmin, y_size)\n";
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
      BlockType block_type;
      if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
        block_type = SIMULTAN;
      else if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
        block_type = SIMULTANS;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) < prologue)
        block_type = PROLOGUE;
      else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
               && getBlockFirstEquation(block) >= equations.size() - epilogue)
        block_type = EPILOGUE;
      else
        block_type = SIMULTANS;
      output << "  % ////////////////////////////////////////////////////////////////////////" << endl
             << "  % //" << string("                     Block ").substr(int (log10(block + 1))) << block + 1 << " " << BlockType0(block_type)
             << "          //" << endl
             << "  % //                     Simulation type "
             << BlockSim(simulation_type) << "  //" << endl
             << "  % ////////////////////////////////////////////////////////////////////////" << endl;
366
      output << "  global options_ oo_;" << endl;
367
368
369
370
      //The Temporary terms
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        {
          output << "  if(jacobian_eval)\n";
371
372
          output << "    g1 = spalloc(" << block_mfs  << ", " << count_col_endo << ", " << nze << ");\n";
          output << "    g1_x=spalloc(" << block_size << ", " << count_col_exo  << ", " << nze_exo << ");\n";
373
          output << "    g1_xd=spalloc(" << block_size << ", " << count_col_exo_det  << ", " << nze_exo_det << ");\n";
374
          output << "    g1_o=spalloc(" << block_size << ", " << count_col_other_endo << ", " << nze_other_endo << ");\n";
375
376
377
378
379
          output << "  end;\n";
        }
      else
        {
          output << "  if(jacobian_eval)\n";
380
381
          output << "    g1 = spalloc(" << block_size << ", " << count_col_endo << ", " << nze << ");\n";
          output << "    g1_x=spalloc(" << block_size << ", " << count_col_exo  << ", " << nze_exo << ");\n";
382
          output << "    g1_xd=spalloc(" << block_size << ", " << count_col_exo_det  << ", " << nze_exo_det << ");\n";
383
          output << "    g1_o=spalloc(" << block_size << ", " << count_col_other_endo << ", " << nze_other_endo << ");\n";
384
385
386
387
388
389
390
          output << "  else\n";
          if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
            {
              output << "    g1 = spalloc(" << block_mfs << "*options_.periods, "
                     << block_mfs << "*(options_.periods+" << max_leadlag_block[block].first+max_leadlag_block[block].second+1 << ")"
                     << ", " << nze << "*options_.periods);\n";
            }
ferhat's avatar
ferhat committed
391
          else
392
393
394
395
396
397
            {
              output << "    g1 = spalloc(" << block_mfs
                     << ", " << block_mfs << ", " << nze << ");\n";
            }
          output << "  end;\n";
        }
398

399
400
401
402
      output << "  g2=0;g3=0;\n";
      if (v_temporary_terms_inuse[block].size())
        {
          tmp_output.str("");
403
          for (temporary_terms_inuse_t::const_iterator it = v_temporary_terms_inuse[block].begin();
404
405
406
407
408
409
               it != v_temporary_terms_inuse[block].end(); it++)
            tmp_output << " T" << *it;
          output << "  global" << tmp_output.str() << ";\n";
        }
      if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
        {
410
          temporary_terms_t tt2;
411
412
413
414
415
416
417
          tt2.clear();
          for (int i = 0; i < (int) block_size; i++)
            {
              if (v_temporary_terms[block][i].size() && global_temporary_terms)
                {
                  output << "  " << "% //Temporary variables initialization" << endl
                         << "  " << "T_zeros = zeros(y_kmin+periods, 1);" << endl;
418
                  for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
                       it != v_temporary_terms[block][i].end(); it++)
                    {
                      output << "  ";
                      (*it)->writeOutput(output, oMatlabDynamicModel, local_temporary_terms);
                      output << " = T_zeros;" << endl;
                    }
                }
            }
        }
      if (simulation_type == SOLVE_BACKWARD_SIMPLE || simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
        output << "  residual=zeros(" << block_mfs << ",1);\n";
      else if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
        output << "  residual=zeros(" << block_mfs << ",y_kmin+periods);\n";
      if (simulation_type == EVALUATE_BACKWARD)
        output << "  for it_ = (y_kmin+periods):y_kmin+1\n";
      if (simulation_type == EVALUATE_FORWARD)
        output << "  for it_ = y_kmin+1:(y_kmin+periods)\n";

      if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
        {
          output << "  b = zeros(periods*y_size,1);" << endl
                 << "  for it_ = y_kmin+1:(periods+y_kmin)" << endl
                 << "    Per_y_=it_*y_size;" << endl
                 << "    Per_J_=(it_-y_kmin-1)*y_size;" << endl
                 << "    Per_K_=(it_-1)*y_size;" << endl;
          sps = "  ";
        }
      else
        if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
          sps = "  ";
        else
          sps = "";
      // The equations
      for (unsigned int i = 0; i < block_size; i++)
        {
454
          temporary_terms_t tt2;
455
456
457
458
          tt2.clear();
          if (v_temporary_terms[block].size())
            {
              output << "  " << "% //Temporary variables" << endl;
459
              for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
460
461
                   it != v_temporary_terms[block][i].end(); it++)
                {
462
463
464
                  if (dynamic_cast<ExternalFunctionNode *>(*it) != NULL)
                    (*it)->writeExternalFunctionOutput(output, local_output_type, tt2, tef_terms);

465
                  output << "  " <<  sps;
466
                  (*it)->writeOutput(output, local_output_type, local_temporary_terms, tef_terms);
467
                  output << " = ";
468
                  (*it)->writeOutput(output, local_output_type, tt2, tef_terms);
469
470
471
472
473
474
475
476
477
478
                  // Insert current node into tt2
                  tt2.insert(*it);
                  output << ";" << endl;
                }
            }

          int variable_ID = getBlockVariableID(block, i);
          int equation_ID = getBlockEquationID(block, i);
          EquationType equ_type = getBlockEquationType(block, i);
          string sModel = symbol_table.getName(symbol_table.getID(eEndogenous, variable_ID));
479
          eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
          lhs = eq_node->get_arg1();
          rhs = eq_node->get_arg2();
          tmp_output.str("");
          lhs->writeOutput(tmp_output, local_output_type, local_temporary_terms);
          switch (simulation_type)
            {
            case EVALUATE_BACKWARD:
            case EVALUATE_FORWARD:
            evaluation:     if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
                output << "    % equation " << getBlockEquationID(block, i)+1 << " variable : " << sModel
                       << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
              output << "    ";
              if (equ_type == E_EVALUATE)
                {
                  output << tmp_output.str();
                  output << " = ";
                  rhs->writeOutput(output, local_output_type, local_temporary_terms);
                }
              else if (equ_type == E_EVALUATE_S)
                {
                  output << "%" << tmp_output.str();
                  output << " = ";
                  if (isBlockEquationRenormalized(block, i))
                    {
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << "\n    ";
                      tmp_output.str("");
507
                      eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
                      lhs = eq_node->get_arg1();
                      rhs = eq_node->get_arg2();
                      lhs->writeOutput(output, local_output_type, local_temporary_terms);
                      output << " = ";
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                    }
                }
              else
                {
                  cerr << "Type missmatch for equation " << equation_ID+1  << "\n";
                  exit(EXIT_FAILURE);
                }
              output << ";\n";
              break;
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              if (i < block_recursive)
                goto evaluation;
              feedback_variables.push_back(variable_ID);
              output << "  % equation " << equation_ID+1 << " variable : " << sModel
530
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << " symb_id=" << symbol_table.getID(eEndogenous, variable_ID) << endl;
531
532
533
534
535
536
537
538
              output << "  " << "residual(" << i+1-block_recursive << ") = (";
              goto end;
            case SOLVE_TWO_BOUNDARIES_COMPLETE:
            case SOLVE_TWO_BOUNDARIES_SIMPLE:
              if (i < block_recursive)
                goto evaluation;
              feedback_variables.push_back(variable_ID);
              output << "    % equation " << equation_ID+1 << " variable : " << sModel
539
                     << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << " symb_id=" << symbol_table.getID(eEndogenous, variable_ID) << endl;
540
541
542
              Ufoss << "    b(" << i+1-block_recursive << "+Per_J_) = -residual(" << i+1-block_recursive << ", it_)";
              Uf[equation_ID] = Ufoss.str();
              Ufoss.str("");
543
544
545
546
547
548
549
550
              output << "    residual(" << i+1-block_recursive << ", it_) = (";
              goto end;
            default:
            end:
              output << tmp_output.str();
              output << ") - (";
              rhs->writeOutput(output, local_output_type, local_temporary_terms);
              output << ");\n";
sebastien's avatar
sebastien committed
551
#ifdef CONDITION
552
553
              if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
                output << "  condition(" << i+1 << ")=0;\n";
sebastien's avatar
sebastien committed
554
#endif
555
556
557
558
            }
        }
      // The Jacobian if we have to solve the block
      if (simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
559
        output << "  " << sps << "% Jacobian  " << endl << "    if jacobian_eval" << endl;
560
561
562
563
      else
        if (simulation_type == SOLVE_BACKWARD_SIMPLE   || simulation_type == SOLVE_FORWARD_SIMPLE
            || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
          output << "  % Jacobian  " << endl << "  if jacobian_eval" << endl;
sebastien's avatar
sebastien committed
564
        else
565
          output << "    % Jacobian  " << endl << "    if jacobian_eval" << endl;
566
567
568
569
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_endo_derivative.begin(); it != tmp_block_endo_derivative.end(); it++)
570
        {
571
572
573
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          unsigned int eq = it->first.second.second;
Ferhat Mihoubi's avatar
Ferhat Mihoubi committed
574
575
          int eqr = getBlockEquationID(block, eq);
          int varr = getBlockVariableID(block, var);
576
          if (var != prev_var || lag != prev_lag)
577
            {
578
579
580
581
              prev_var = var;
              prev_lag = lag;
              count_col++;
            }
582

583
          expr_t id = it->second;
584

585
586
          output << "      g1(" << eq+1 << ", " << count_col << ") = ";
          id->writeOutput(output, local_output_type, local_temporary_terms);
Ferhat Mihoubi's avatar
Ferhat Mihoubi committed
587
          output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
588
                 << "(" << lag
Ferhat Mihoubi's avatar
Ferhat Mihoubi committed
589
590
                 << ") " << varr+1 << ", " << var+1
                 << ", equation=" << eqr+1 << ", " << eq+1 << endl;
591
592
593
594
595
596
597
598
599
600
601
        }
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          unsigned int eq = it->first.second.second;
          int eqr = getBlockInitialEquationID(block, eq);
          if (var != prev_var || lag != prev_lag)
602
            {
603
604
605
              prev_var = var;
              prev_lag = lag;
              count_col++;
606
            }
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
          expr_t id = it->second;
          output << "      g1_x(" << eqr+1 << ", " << count_col << ") = ";
          id->writeOutput(output, local_output_type, local_temporary_terms);
          output << "; % variable=" << symbol_table.getName(symbol_table.getID(eExogenous, var))
                 << "(" << lag
                 << ") " << var+1
                 << ", equation=" << eq+1 << endl;
        }
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_det_derivative.begin(); it != tmp_block_exo_det_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          unsigned int eq = it->first.second.second;
          int eqr = getBlockInitialEquationID(block, eq);
          if (var != prev_var || lag != prev_lag)
625
            {
626
627
628
              prev_var = var;
              prev_lag = lag;
              count_col++;
629
            }
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
          expr_t id = it->second;
          output << "      g1_xd(" << eqr+1 << ", " << count_col << ") = ";
          id->writeOutput(output, local_output_type, local_temporary_terms);
          output << "; % variable=" << symbol_table.getName(symbol_table.getID(eExogenous, var))
                 << "(" << lag
                 << ") " << var+1
                 << ", equation=" << eq+1 << endl;
        }
      prev_var = 999999999;
      prev_lag = -9999999;
      count_col = 0;
      for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_other_endo_derivative.begin(); it != tmp_block_other_endo_derivative.end(); it++)
        {
          int lag = it->first.first;
          unsigned int var = it->first.second.first;
          unsigned int eq = it->first.second.second;
          int eqr = getBlockInitialEquationID(block, eq);
          if (var != prev_var || lag != prev_lag)
648
            {
649
650
651
              prev_var = var;
              prev_lag = lag;
              count_col++;
652
            }
653
654
          expr_t id = it->second;

655
          output << "      g1_o(" << eqr+1 << ", " << /*var+1+(lag+block_max_lag)*block_size*/ count_col << ") = ";
656
657
658
659
660
661
662
663
664
665
666
667
668
669
          id->writeOutput(output, local_output_type, local_temporary_terms);
          output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                 << "(" << lag
                 << ") " << var+1
                 << ", equation=" << eq+1 << endl;
        }
      output << "      varargout{1}=g1_x;\n";
      output << "      varargout{2}=g1_xd;\n";
      output << "      varargout{3}=g1_o;\n";

      switch (simulation_type)
        {
        case EVALUATE_FORWARD:
        case EVALUATE_BACKWARD:
670
671
672
673
674
675
676
677
          output << "    end;" << endl;
          output << "  end;" << endl;
          break;
        case SOLVE_BACKWARD_SIMPLE:
        case SOLVE_FORWARD_SIMPLE:
        case SOLVE_BACKWARD_COMPLETE:
        case SOLVE_FORWARD_COMPLETE:
          output << "  else" << endl;
678
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
679
680
681
682
683
            {
              unsigned int eq = it->first.first;
              unsigned int var = it->first.second;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
684
              expr_t id = it->second.second;
685
              int lag = it->second.first;
686
687
688
689
690
691
692
693
694
695
              if (lag == 0)
                {
                  output << "    g1(" << eq+1 << ", " << var+1-block_recursive << ") = ";
                  id->writeOutput(output, local_output_type, local_temporary_terms);
                  output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                         << "(" << lag
                         << ") " << varr+1
                         << ", equation=" << eqr+1 << endl;
                }

696
697
698
699
700
            }
          output << "  end;\n";
          break;
        case SOLVE_TWO_BOUNDARIES_SIMPLE:
        case SOLVE_TWO_BOUNDARIES_COMPLETE:
701
          output << "    else" << endl;
702
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
703
704
705
706
707
708
            {
              unsigned int eq = it->first.first;
              unsigned int var = it->first.second;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
              ostringstream tmp_output;
709
              expr_t id = it->second.second;
710
              int lag = it->second.first;
711
              if (eq >= block_recursive && var >= block_recursive)
712
713
                {
                  if (lag == 0)
714
715
716
                    Ufoss << "+g1(" << eq+1-block_recursive
                          << "+Per_J_, " << var+1-block_recursive
                          << "+Per_K_)*y(it_, " << varr+1 << ")";
717
                  else if (lag == 1)
718
719
720
                    Ufoss << "+g1(" << eq+1-block_recursive
                          << "+Per_J_, " << var+1-block_recursive
                          << "+Per_y_)*y(it_+1, " << varr+1 << ")";
721
                  else if (lag > 0)
722
723
724
                    Ufoss << "+g1(" << eq+1-block_recursive
                          << "+Per_J_, " << var+1-block_recursive
                          << "+y_size*(it_+" << lag-1 << "))*y(it_+" << lag << ", " << varr+1 << ")";
725
                  else
726
727
728
729
730
731
                    Ufoss << "+g1(" << eq+1-block_recursive
                          << "+Per_J_, " << var+1-block_recursive
                          << "+y_size*(it_" << lag-1 << "))*y(it_" << lag << ", " << varr+1 << ")";
                  Uf[eqr] = Ufoss.str();
                  Ufoss.str("");

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
                  if (lag == 0)
                    tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                               << var+1-block_recursive << "+Per_K_) = ";
                  else if (lag == 1)
                    tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                               << var+1-block_recursive << "+Per_y_) = ";
                  else if (lag > 0)
                    tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                               << var+1-block_recursive << "+y_size*(it_+" << lag-1 << ")) = ";
                  else if (lag < 0)
                    tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                               << var+1-block_recursive << "+y_size*(it_" << lag-1 << ")) = ";
                  output << " " << tmp_output.str();
                  id->writeOutput(output, local_output_type, local_temporary_terms);
                  output << ";";
                  output << " %2 variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                         << "(" << lag << ") " << varr+1
                         << ", equation=" << eqr+1 << " (" << eq+1 << ")" << endl;
                }
751

sebastien's avatar
sebastien committed
752
#ifdef CONDITION
753
754
              output << "  if (fabs(condition[" << eqr << "])<fabs(u[" << u << "+Per_u_]))\n";
              output << "    condition(" << eqr << ")=u(" << u << "+Per_u_);\n";
sebastien's avatar
sebastien committed
755
#endif
756
757
758
759
            }
          for (unsigned int i = 0; i < block_size; i++)
            {
              if (i >= block_recursive)
760
                output << "  " << Uf[getBlockEquationID(block, i)] << ";\n";
sebastien's avatar
sebastien committed
761
#ifdef CONDITION
762
763
              output << "  if (fabs(condition(" << i+1 << "))<fabs(u(" << i << "+Per_u_)))\n";
              output << "    condition(" << i+1 << ")=u(" << i+1 << "+Per_u_);\n";
sebastien's avatar
sebastien committed
764
#endif
765
            }
sebastien's avatar
sebastien committed
766
#ifdef CONDITION
767
768
769
770
771
772
773
774
775
776
777
778
779
780
          for (m = 0; m <= ModelBlock->Block_List[block].Max_Lead+ModelBlock->Block_List[block].Max_Lag; m++)
            {
              k = m-ModelBlock->Block_List[block].Max_Lag;
              for (i = 0; i < ModelBlock->Block_List[block].IM_lead_lag[m].size; i++)
                {
                  unsigned int eq = ModelBlock->Block_List[block].IM_lead_lag[m].Equ_Index[i];
                  unsigned int var = ModelBlock->Block_List[block].IM_lead_lag[m].Var_Index[i];
                  unsigned int u = ModelBlock->Block_List[block].IM_lead_lag[m].u[i];
                  unsigned int eqr = ModelBlock->Block_List[block].IM_lead_lag[m].Equ[i];
                  output << "  u(" << u+1 << "+Per_u_) = u(" << u+1 << "+Per_u_) / condition(" << eqr+1 << ");\n";
                }
            }
          for (i = 0; i < ModelBlock->Block_List[block].Size; i++)
            output << "  u(" << i+1 << "+Per_u_) = u(" << i+1 << "+Per_u_) / condition(" << i+1 << ");\n";
sebastien's avatar
sebastien committed
781
#endif
782
783
          output << "    end;" << endl;
          output << "  end;" << endl;
784
785
786
787
          break;
        default:
          break;
        }
788
      output << "end" << endl;
789
790
791
      output.close();
    }
}
sebastien's avatar
sebastien committed
792
793

void
794
DynamicModel::writeModelEquationsCode(string &file_name, const string &bin_basename, const map_idx_t &map_idx) const
795
{
796

797
798
  ostringstream tmp_output;
  ofstream code_file;
799
  unsigned int instruction_number = 0;
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
  bool file_open = false;
  string main_name = file_name;

  main_name += ".cod";
  code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
  if (!code_file.is_open())
    {
      cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
      exit(EXIT_FAILURE);
    }

  int count_u;
  int u_count_int = 0;
  BlockSimulationType simulation_type;
  if ((max_endo_lag > 0) && (max_endo_lead > 0))
    simulation_type = SOLVE_TWO_BOUNDARIES_COMPLETE;
  else if ((max_endo_lag >= 0) && (max_endo_lead == 0))
    simulation_type = SOLVE_FORWARD_COMPLETE;
  else
    simulation_type = SOLVE_BACKWARD_COMPLETE;

821
  Write_Inf_To_Bin_File(file_name, u_count_int, file_open, simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE, symbol_table.endo_nbr());
822
823
824
825
  file_open = true;

  //Temporary variables declaration
  FDIMT_ fdimt(temporary_terms.size());
826
827
828
829
  fdimt.write(code_file, instruction_number);
  int other_endo_size = 0;

  vector<unsigned int> exo, exo_det, other_endo;
830

831
  for (int i = 0; i < symbol_table.exo_det_nbr(); i++)
832
    exo_det.push_back(i);
833
  for (int i = 0; i < symbol_table.exo_nbr(); i++)
834
    exo.push_back(i);
835

836
837
  map<pair< int, pair<int, int> >, expr_t> first_derivatives_reordered_endo;
  map<pair< pair<int, int>, pair<int, int> >, expr_t>  first_derivatives_reordered_exo;
838
839
840
841
842
843
844
845
846
847
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      unsigned int eq = it->first.first;
      int symb = getSymbIDByDerivID(deriv_id);
      unsigned int var = symbol_table.getTypeSpecificID(symb);
      int lag = getLagByDerivID(deriv_id);
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        first_derivatives_reordered_endo[make_pair(lag, make_pair(var, eq))] = it->second;
848
      else if (getTypeByDerivID(deriv_id) == eExogenous || getTypeByDerivID(deriv_id) == eExogenousDet)
849
        first_derivatives_reordered_exo[make_pair(make_pair(lag, getTypeByDerivID(deriv_id)), make_pair(var, eq))] = it->second;
850
851
852
853
854
855
856
857
858
    }
  int prev_var = -1;
  int prev_lag = -999999999;
  int count_col_endo = 0;
  for (map<pair< int, pair<int, int> >, expr_t>::const_iterator it = first_derivatives_reordered_endo.begin();
       it != first_derivatives_reordered_endo.end(); it++)
    {
      int var = it->first.second.first;
      int lag = it->first.first;
859
      if (prev_var != var || prev_lag != lag)
860
861
862
863
864
865
        {
          prev_var = var;
          prev_lag = lag;
          count_col_endo++;
        }
    }
866
867
  prev_var = -1;
  prev_lag = -999999999;
868
  int prev_type = -1;
869
870
  int count_col_exo = 0;

871
  for (map<pair< pair<int, int>, pair<int, int> >, expr_t>::const_iterator it = first_derivatives_reordered_exo.begin();
872
873
874
       it != first_derivatives_reordered_exo.end(); it++)
    {
      int var = it->first.second.first;
875
876
877
      int lag = it->first.first.first;
      int type = it->first.first.second;
      if (prev_var != var || prev_lag != lag || prev_type != type)
878
879
880
        {
          prev_var = var;
          prev_lag = lag;
881
          prev_type = type;
882
883
884
          count_col_exo++;
        }
    }
885
  
886
887
888
889
890
891
892
893
894
895
  FBEGINBLOCK_ fbeginblock(symbol_table.endo_nbr(),
                           simulation_type,
                           0,
                           symbol_table.endo_nbr(),
                           variable_reordered,
                           equation_reordered,
                           false,
                           symbol_table.endo_nbr(),
                           0,
                           0,
896
                           u_count_int,
897
                           count_col_endo,
898
                           symbol_table.exo_det_nbr(),
899
                           count_col_exo,
900
901
902
903
904
                           other_endo_size,
                           0,
                           exo_det,
                           exo,
                           other_endo
905
                           );
906
  fbeginblock.write(code_file, instruction_number);
907

908
  compileTemporaryTerms(code_file, instruction_number, temporary_terms, map_idx, true, false);
909

910
  compileModelEquations(code_file, instruction_number, temporary_terms, map_idx, true, false);
911
912

  FENDEQU_ fendequ;
913
  fendequ.write(code_file, instruction_number);
914
915
916
917
918
919
920

  // Get the current code_file position and jump if eval = true
  streampos pos1 = code_file.tellp();
  FJMPIFEVAL_ fjmp_if_eval(0);
  fjmp_if_eval.write(code_file, instruction_number);
  int prev_instruction_number = instruction_number;

921
922
923
  vector<vector<pair<pair<int, int>, int > > > derivatives;
  derivatives.resize(symbol_table.endo_nbr());
  count_u = symbol_table.endo_nbr();
924
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
925
926
927
928
929
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
930
          expr_t d1 = it->second;
931
932
933
934
          unsigned int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          unsigned int var = symbol_table.getTypeSpecificID(symb);
          int lag = getLagByDerivID(deriv_id);
935
          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var, lag);
936
          fnumexpr.write(code_file, instruction_number);
937
938
939
          if (!derivatives[eq].size())
            derivatives[eq].clear();
          derivatives[eq].push_back(make_pair(make_pair(var, lag), count_u));
940
          d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
941
942

          FSTPU_ fstpu(count_u);
943
          fstpu.write(code_file, instruction_number);
944
945
946
947
948
949
          count_u++;
        }
    }
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
    {
      FLDR_ fldr(i);
950
      fldr.write(code_file, instruction_number);
951
      if (derivatives[i].size())
952
        {
953
954
          for (vector<pair<pair<int, int>, int> >::const_iterator it = derivatives[i].begin();
               it != derivatives[i].end(); it++)
955
            {
956
957
958
959
960
              FLDU_ fldu(it->second);
              fldu.write(code_file, instruction_number);
              FLDV_ fldv(eEndogenous, it->first.first, it->first.second);
              fldv.write(code_file, instruction_number);
              FBINARY_ fbinary(oTimes);
961
              fbinary.write(code_file, instruction_number);
962
963
964
965
966
              if (it != derivatives[i].begin())
                {
                  FBINARY_ fbinary(oPlus);
                  fbinary.write(code_file, instruction_number);
                }
967
            }
968
969
          FBINARY_ fbinary(oMinus);
          fbinary.write(code_file, instruction_number);
970
971
        }
      FSTPU_ fstpu(i);
972
      fstpu.write(code_file, instruction_number);
973
    }
974
975
976
977
978
979
980
981
982
983
984

  // Get the current code_file position and jump = true
  streampos pos2 = code_file.tellp();
  FJMP_ fjmp(0);
  fjmp.write(code_file, instruction_number);
  // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
  streampos pos3 = code_file.tellp();
  code_file.seekp(pos1);
  FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
  fjmp_if_eval1.write(code_file, instruction_number);
  code_file.seekp(pos3);
985
  prev_instruction_number = instruction_number;
986
987
988
989
990
991
992
993
994
995
996
997
998
999

  // The Jacobian
  prev_var = -1;
  prev_lag = -999999999;
  count_col_endo = 0;
  for (map<pair< int, pair<int, int> >, expr_t>::const_iterator it = first_derivatives_reordered_endo.begin();
       it != first_derivatives_reordered_endo.end(); it++)
    {
      unsigned int eq = it->first.second.second;
      int var = it->first.second.first;
      int lag = it->first.first;
      expr_t d1 = it->second;
      FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var, lag);
      fnumexpr.write(code_file, instruction_number);
1000
      if (prev_var != var || prev_lag != lag)
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
        {
          prev_var = var;
          prev_lag = lag;
          count_col_endo++;
        }
      d1->