ExprNode.cc 52.9 KB
Newer Older
1
/*
sebastien's avatar
trunk:    
sebastien committed
2
 * Copyright (C) 2007-2009 Dynare Team
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <iostream>
#include <iterator>
#include <algorithm>

24
#include <cmath>
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

#include "ExprNode.hh"
#include "DataTree.hh"

ExprNode::ExprNode(DataTree &datatree_arg) : datatree(datatree_arg)
{
  // Add myself to datatree
  datatree.node_list.push_back(this);

  // Set my index and increment counter
  idx = datatree.node_counter++;
}

ExprNode::~ExprNode()
{
}

NodeID
ExprNode::getDerivative(int varID)
{
  // Return zero if derivative is necessarily null (using symbolic a priori)
  set<int>::const_iterator it = non_null_derivatives.find(varID);
  if (it == non_null_derivatives.end())
    return datatree.Zero;

  // If derivative is stored in cache, use the cached value, otherwise compute it (and cache it)
  map<int, NodeID>::const_iterator it2 = derivatives.find(varID);
  if (it2 != derivatives.end())
    return it2->second;
  else
    {
      NodeID d = computeDerivative(varID);
      derivatives[varID] = d;
      return d;
    }
}

int
ExprNode::precedence(ExprNodeOutputType output_type, const temporary_terms_type &temporary_terms) const
{
  // For a constant, a variable, or a unary op, the precedence is maximal
  return 100;
}

int
ExprNode::cost(const temporary_terms_type &temporary_terms, bool is_matlab) const
{
  // For a terminal node, the cost is null
  return 0;
}

void
ExprNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
                                temporary_terms_type &temporary_terms,
                                bool is_matlab) const
{
  // Nothing to do for a terminal node
}

void
ExprNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
                                temporary_terms_type &temporary_terms,
87
                                map<NodeID, pair<int, int> > &first_occurence,
88
89
                                int Curr_block,
                                Model_Block *ModelBlock,
90
                                int equation,
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
                                map_idx_type &map_idx) const
{
  // Nothing to do for a terminal node
}

void
ExprNode::writeOutput(ostream &output)
{
  writeOutput(output, oMatlabOutsideModel, temporary_terms_type());
}

NumConstNode::NumConstNode(DataTree &datatree_arg, int id_arg) :
  ExprNode(datatree_arg),
  id(id_arg)
{
  // Add myself to the num const map
  datatree.num_const_node_map[id] = this;

  // All derivatives are null, so non_null_derivatives is left empty
}

NodeID
NumConstNode::computeDerivative(int varID)
{
  return datatree.Zero;
}

118
119
120
121
122
123
124
125
126

void
NumConstNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const
{
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<NumConstNode *>(this));
  if (it != temporary_terms.end())
    ModelBlock->Block_List[Curr_Block].Temporary_InUse->insert(idx);
}

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
void
NumConstNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
                          const temporary_terms_type &temporary_terms) const
{
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<NumConstNode *>(this));
  if (it != temporary_terms.end())
    if (output_type == oCDynamicModelSparseDLL)
      output << "T" << idx << "[it_]";
    else if (output_type == oMatlabDynamicModelSparse)
      output << "T" << idx << "(it_)";
    else
      output << "T" << idx;
  else
    output << datatree.num_constants.get(id);
}

double
NumConstNode::eval(const eval_context_type &eval_context) const throw (EvalException)
{
  return(datatree.num_constants.getDouble(id));
}

void
150
NumConstNode::compile(ofstream &CompileCode, bool lhs_rhs, ExprNodeOutputType output_type, const temporary_terms_type &temporary_terms, map_idx_type &map_idx) const
151
{
152
153
  CompileCode.write(&FLDC, sizeof(FLDC));
  double vard=atof(datatree.num_constants.get(id).c_str());
154
  //double vard=id;
155
#ifdef DEBUGC
156
  cout << "FLDC " << vard << "\n";
157
#endif
158
  CompileCode.write(reinterpret_cast<char *>(&vard),sizeof(vard));
159
160
161
162
}


void
163
NumConstNode::collectEndogenous(set<pair<int, int> > &result) const
164
165
166
{
}

ferhat's avatar
ferhat committed
167
168
169
170
171
172
void
NumConstNode::collectExogenous(set<pair<int, int> > &result) const
{
}


173
VariableNode::VariableNode(DataTree &datatree_arg, int symb_id_arg, SymbolType type_arg, int lag_arg) :
174
175
176
177
178
179
180
181
182
183
184
  ExprNode(datatree_arg),
  symb_id(symb_id_arg),
  type(type_arg),
  lag(lag_arg)
{
  // Add myself to the variable map
  datatree.variable_node_map[make_pair(make_pair(symb_id, type), lag)] = this;

  // Add myself to the variable table if necessary and initialize var_id
  if (type == eEndogenous
      || type == eExogenousDet
185
      || type == eExogenous)
186
187
188
189
    var_id = datatree.variable_table.addVariable(type, symb_id, lag);
  else
    var_id = -1;

sebastien's avatar
sebastien committed
190
191
192
193
  // It makes sense to allow a lead/lag on parameters: during steady state calibration, endogenous and parameters can be swapped
  if ((type == eModelLocalVariable || type == eModFileLocalVariable || type == eUnknownFunction) && lag != 0)
    {
      cerr << "Attempt to construct a VariableNode for local variable or unknown function with non-zero lead/lag" << endl;
194
      exit(EXIT_FAILURE);
sebastien's avatar
sebastien committed
195
196
    }

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
  // Fill in non_null_derivatives
  switch(type)
    {
    case eEndogenous:
    case eExogenous:
    case eExogenousDet:
      // For a variable, the only non-null derivative is with respect to itself
      non_null_derivatives.insert(var_id);
      break;
    case eParameter:
      // All derivatives are null, do nothing
      break;
    case eModelLocalVariable:
      // Non null derivatives are those of the value of the local parameter
      non_null_derivatives = datatree.local_variables_table[symb_id]->non_null_derivatives;
      break;
    case eModFileLocalVariable:
      // Such a variable is never derived
      break;
    case eUnknownFunction:
      cerr << "Attempt to construct a VariableNode with an unknown function name" << endl;
218
      exit(EXIT_FAILURE);
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    }
}

NodeID
VariableNode::computeDerivative(int varID)
{
  switch(type)
    {
    case eEndogenous:
    case eExogenous:
    case eExogenousDet:
      if (varID == var_id)
        return datatree.One;
      else
        return datatree.Zero;
    case eParameter:
      return datatree.Zero;
    case eModelLocalVariable:
      return datatree.local_variables_table[symb_id]->getDerivative(varID);
    case eModFileLocalVariable:
      cerr << "ModFileLocalVariable is not derivable" << endl;
240
      exit(EXIT_FAILURE);
241
242
    case eUnknownFunction:
      cerr << "Impossible case!" << endl;
243
      exit(EXIT_FAILURE);
244
245
    }
  cerr << "Impossible case!" << endl;
246
  exit(EXIT_FAILURE);
247
248
}

249
250
251
252
253
254
255
256
void
VariableNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const
{
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<VariableNode *>(this));
  if (it != temporary_terms.end())
    ModelBlock->Block_List[Curr_Block].Temporary_InUse->insert(idx);
}

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
void
VariableNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
                          const temporary_terms_type &temporary_terms) const
{
  // If node is a temporary term
#ifdef DEBUGC
  cout << "write_ouput output_type=" << output_type << "\n";
#endif
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<VariableNode *>(this));
  if (it != temporary_terms.end())
    {
      if (output_type == oCDynamicModelSparseDLL)
        output << "T" << idx << "[it_]";
      else if (output_type == oMatlabDynamicModelSparse)
        output << "T" << idx << "(it_)";
      else
        output << "T" << idx;
      return;
    }

  int i;
  switch(type)
    {
    case eParameter:
      if (output_type == oMatlabOutsideModel)
        output << "M_.params" << "(" << symb_id + 1 << ")";
      else
        output << "params" << LPAR(output_type) << symb_id + OFFSET(output_type) << RPAR(output_type);
      break;

    case eModelLocalVariable:
    case eModFileLocalVariable:
289
      if(output_type==oMatlabDynamicModelSparse || output_type==oMatlabStaticModelSparse)
290
291
292
293
294
        {
          output << "(";
          datatree.local_variables_table[symb_id]->writeOutput(output, output_type,temporary_terms);
          output << ")";
        }
295
296
      else
        output << datatree.symbol_table.getNameByID(type, symb_id);
297
298
299
300
301
302
303
      break;

    case eEndogenous:
      switch(output_type)
        {
        case oMatlabDynamicModel:
        case oCDynamicModel:
sebastien's avatar
sebastien committed
304
          i = datatree.variable_table.getDynJacobianCol(var_id) + OFFSET(output_type);
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
          output <<  "y" << LPAR(output_type) << i << RPAR(output_type);
          break;
        case oMatlabStaticModel:
        case oMatlabStaticModelSparse:
        case oCStaticModel:
          i = symb_id + OFFSET(output_type);
          output <<  "y" << LPAR(output_type) << i << RPAR(output_type);
          break;
        case oCDynamicModelSparseDLL:
          if (lag > 0)
            output << "y" << LPAR(output_type) << "(it_+" << lag << ")*y_size+" << symb_id << RPAR(output_type);
          else if (lag < 0)
            output << "y" << LPAR(output_type) << "(it_" << lag << ")*y_size+" << symb_id << RPAR(output_type);
          else
            output << "y" << LPAR(output_type) << "Per_y_+" << symb_id << RPAR(output_type);
          break;
        case oMatlabDynamicModelSparse:
          i = symb_id + OFFSET(output_type);
          if (lag > 0)
            output << "y" << LPAR(output_type) << "it_+" << lag << ", " << i << RPAR(output_type);
          else if (lag < 0)
            output << "y" << LPAR(output_type) << "it_" << lag << ", " << i << RPAR(output_type);
          else
            output << "y" << LPAR(output_type) << "it_, " << i << RPAR(output_type);
          break;
        case oMatlabOutsideModel:
          output << "oo_.steady_state" << "(" << symb_id + 1 << ")";
          break;
        }
      break;

    case eExogenous:
      i = symb_id + OFFSET(output_type);
      switch(output_type)
        {
        case oMatlabDynamicModel:
        case oMatlabDynamicModelSparse:
          if (lag > 0)
            output <<  "x(it_+" << lag << ", " << i << ")";
          else if (lag < 0)
            output <<  "x(it_" << lag << ", " << i << ")";
          else
            output <<  "x(it_, " << i << ")";
          break;
        case oCDynamicModel:
        case oCDynamicModelSparseDLL:
          if (lag == 0)
            output <<  "x[it_+" << i << "*nb_row_x]";
          else if (lag > 0)
            output <<  "x[it_+" << lag << "+" << i << "*nb_row_x]";
          else
            output <<  "x[it_" << lag << "+" << i << "*nb_row_x]";
          break;
        case oMatlabStaticModel:
        case oMatlabStaticModelSparse:
        case oCStaticModel:
          output << "x" << LPAR(output_type) << i << RPAR(output_type);
          break;
        case oMatlabOutsideModel:
          if (lag != 0)
            {
              cerr << "VariableNode::writeOutput: lag != 0 for exogenous variable outside model scope!" << endl;
367
              exit(EXIT_FAILURE);
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
            }
          output <<  "oo_.exo_steady_state" << "(" << i << ")";
          break;
        }
      break;

    case eExogenousDet:
      i = symb_id + datatree.symbol_table.exo_nbr + OFFSET(output_type);
      switch(output_type)
        {
        case oMatlabDynamicModel:
        case oMatlabDynamicModelSparse:
          if (lag > 0)
            output <<  "x(it_+" << lag << ", " << i << ")";
          else if (lag < 0)
            output <<  "x(it_" << lag << ", " << i << ")";
          else
            output <<  "x(it_, " << i << ")";
          break;
        case oCDynamicModel:
        case oCDynamicModelSparseDLL:
          if (lag == 0)
            output <<  "x[it_+" << i << "*nb_row_xd]";
          else if (lag > 0)
            output <<  "x[it_+" << lag << "+" << i << "*nb_row_xd]";
          else
            output <<  "x[it_" << lag << "+" << i << "*nb_row_xd]";
          break;
        case oMatlabStaticModel:
        case oMatlabStaticModelSparse:
        case oCStaticModel:
          output << "x" << LPAR(output_type) << i << RPAR(output_type);
          break;
        case oMatlabOutsideModel:
          if (lag != 0)
            {
              cerr << "VariableNode::writeOutput: lag != 0 for exogenous determistic variable outside model scope!" << endl;
405
              exit(EXIT_FAILURE);
406
407
408
409
410
411
412
413
            }
          output <<  "oo_.exo_det_steady_state" << "(" << symb_id + 1 << ")";
          break;
        }
      break;

    case eUnknownFunction:
      cerr << "Impossible case" << endl;
414
      exit(EXIT_FAILURE);
415
416
417
418
419
420
421
422
    }
}

double
VariableNode::eval(const eval_context_type &eval_context) const throw (EvalException)
{
  eval_context_type::const_iterator it = eval_context.find(make_pair(symb_id, type));
  if (it == eval_context.end())
423
424
425
    {
      throw EvalException();
    }
426
427
428
429
430

  return it->second;
}

void
431
VariableNode::compile(ofstream &CompileCode, bool lhs_rhs, ExprNodeOutputType output_type, const temporary_terms_type &temporary_terms, map_idx_type &map_idx) const
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
{
  int i, lagl;
#ifdef DEBUGC
  cout << "output_type=" << output_type << "\n";
#endif
  if(!lhs_rhs)
    CompileCode.write(&FLDV, sizeof(FLDV));
  else
    CompileCode.write(&FSTPV, sizeof(FSTPV));
  char typel=(char)type;
  CompileCode.write(&typel, sizeof(typel));
  switch(type)
    {
    case eParameter:
      i = symb_id + OFFSET(output_type);
      CompileCode.write(reinterpret_cast<char *>(&i), sizeof(i));
#ifdef DEBUGC
      cout << "FLD Param[ " << i << ", symb_id=" << symb_id << "]\n";
#endif
      break;
    case eEndogenous :
      i = symb_id + OFFSET(output_type);
      CompileCode.write(reinterpret_cast<char *>(&i), sizeof(i));
      lagl=lag;
      CompileCode.write(reinterpret_cast<char *>(&lagl), sizeof(lagl));
      break;
    case eExogenous :
      i = symb_id + OFFSET(output_type);
      CompileCode.write(reinterpret_cast<char *>(&i), sizeof(i));
      lagl=lag;
      CompileCode.write(reinterpret_cast<char *>(&lagl), sizeof(lagl));
      break;
    case eExogenousDet:
      i = symb_id + datatree.symbol_table.exo_nbr + OFFSET(output_type);
      CompileCode.write(reinterpret_cast<char *>(&i), sizeof(i));
      lagl=lag;
      CompileCode.write(reinterpret_cast<char *>(&lagl), sizeof(lagl));
      break;
    case eModelLocalVariable:
    case eModFileLocalVariable:
472
473
      datatree.local_variables_table[symb_id]->compile(CompileCode, lhs_rhs, output_type, temporary_terms, map_idx);
      break;
474
    case eUnknownFunction:
475
      cerr << "Impossible case: eUnknownFuncion" << endl;
476
      exit(EXIT_FAILURE);
477
478
479
    }
}

480
481
482

void
VariableNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
483
484
485
486
487
488
                                    temporary_terms_type &temporary_terms,
                                    map<NodeID, pair<int, int> > &first_occurence,
                                    int Curr_block,
                                    Model_Block *ModelBlock,
                                    int equation,
                                    map_idx_type &map_idx) const
489
490
491
492
493
494
495
496
{
  if(type== eModelLocalVariable)
    datatree.local_variables_table[symb_id]->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
}




497
void
498
VariableNode::collectEndogenous(set<pair<int, int> > &result) const
499
500
{
  if (type == eEndogenous)
501
    result.insert(make_pair(symb_id, lag));
502
503
  else if (type == eModelLocalVariable)
    datatree.local_variables_table[symb_id]->collectEndogenous(result);
504
505
}

ferhat's avatar
ferhat committed
506
507
508
509
510
void
VariableNode::collectExogenous(set<pair<int, int> > &result) const
{
  if (type == eExogenous)
    result.insert(make_pair(symb_id, lag));
511
512
  else if (type == eModelLocalVariable)
    datatree.local_variables_table[symb_id]->collectExogenous(result);
ferhat's avatar
ferhat committed
513
514
515
}


516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
UnaryOpNode::UnaryOpNode(DataTree &datatree_arg, UnaryOpcode op_code_arg, const NodeID arg_arg) :
  ExprNode(datatree_arg),
  arg(arg_arg),
  op_code(op_code_arg)
{
  // Add myself to the unary op map
  datatree.unary_op_node_map[make_pair(arg, op_code)] = this;

  // Non-null derivatives are those of the argument
  non_null_derivatives = arg->non_null_derivatives;
}

NodeID
UnaryOpNode::computeDerivative(int varID)
{
  NodeID darg = arg->getDerivative(varID);

  NodeID t11, t12, t13;

  switch(op_code)
    {
    case oUminus:
      return datatree.AddUMinus(darg);
    case oExp:
      return datatree.AddTimes(darg, this);
    case oLog:
      return datatree.AddDivide(darg, arg);
    case oLog10:
      t11 = datatree.AddExp(datatree.One);
      t12 = datatree.AddLog10(t11);
      t13 = datatree.AddDivide(darg, arg);
      return datatree.AddTimes(t12, t13);
    case oCos:
      t11 = datatree.AddSin(arg);
      t12 = datatree.AddUMinus(t11);
      return datatree.AddTimes(darg, t12);
    case oSin:
      t11 = datatree.AddCos(arg);
      return datatree.AddTimes(darg, t11);
    case oTan:
      t11 = datatree.AddTimes(this, this);
      t12 = datatree.AddPlus(t11, datatree.One);
      return datatree.AddTimes(darg, t12);
    case oAcos:
      t11 = datatree.AddSin(this);
      t12 = datatree.AddDivide(darg, t11);
      return datatree.AddUMinus(t12);
    case oAsin:
      t11 = datatree.AddCos(this);
      return datatree.AddDivide(darg, t11);
    case oAtan:
      t11 = datatree.AddTimes(arg, arg);
      t12 = datatree.AddPlus(datatree.One, t11);
      return datatree.AddDivide(darg, t12);
    case oCosh:
      t11 = datatree.AddSinH(arg);
      return datatree.AddTimes(darg, t11);
    case oSinh:
      t11 = datatree.AddCosH(arg);
      return datatree.AddTimes(darg, t11);
    case oTanh:
      t11 = datatree.AddTimes(this, this);
      t12 = datatree.AddMinus(datatree.One, t11);
      return datatree.AddTimes(darg, t12);
    case oAcosh:
      t11 = datatree.AddSinH(this);
      return datatree.AddDivide(darg, t11);
    case oAsinh:
      t11 = datatree.AddCosH(this);
      return datatree.AddDivide(darg, t11);
    case oAtanh:
      t11 = datatree.AddTimes(arg, arg);
      t12 = datatree.AddMinus(datatree.One, t11);
      return datatree.AddTimes(darg, t12);
    case oSqrt:
      t11 = datatree.AddPlus(this, this);
      return datatree.AddDivide(darg, t11);
    }
  cerr << "Impossible case!" << endl;
595
  exit(EXIT_FAILURE);
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
}

int
UnaryOpNode::cost(const temporary_terms_type &temporary_terms, bool is_matlab) const
{
  // For a temporary term, the cost is null
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<UnaryOpNode *>(this));
  if (it != temporary_terms.end())
    return 0;

  int cost = arg->cost(temporary_terms, is_matlab);

  if (is_matlab)
    // Cost for Matlab files
    switch(op_code)
      {
      case oUminus:
        return cost + 70;
      case oExp:
        return cost + 160;
      case oLog:
        return cost + 300;
      case oLog10:
        return cost + 16000;
      case oCos:
      case oSin:
      case oCosh:
        return cost + 210;
      case oTan:
        return cost + 230;
      case oAcos:
        return cost + 300;
      case oAsin:
        return cost + 310;
      case oAtan:
        return cost + 140;
      case oSinh:
        return cost + 240;
      case oTanh:
        return cost + 190;
      case oAcosh:
        return cost + 770;
      case oAsinh:
        return cost + 460;
      case oAtanh:
        return cost + 350;
      case oSqrt:
        return cost + 570;
      }
  else
    // Cost for C files
    switch(op_code)
      {
      case oUminus:
        return cost + 3;
      case oExp:
      case oAcosh:
        return cost + 210;
      case oLog:
        return cost + 137;
      case oLog10:
        return cost + 139;
      case oCos:
      case oSin:
        return cost + 160;
      case oTan:
        return cost + 170;
      case oAcos:
      case oAtan:
        return cost + 190;
      case oAsin:
        return cost + 180;
      case oCosh:
      case oSinh:
      case oTanh:
        return cost + 240;
      case oAsinh:
        return cost + 220;
      case oAtanh:
        return cost + 150;
      case oSqrt:
        return cost + 90;
      }
  cerr << "Impossible case!" << endl;
680
  exit(EXIT_FAILURE);
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
}

void
UnaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
                                   temporary_terms_type &temporary_terms,
                                   bool is_matlab) const
{
  NodeID this2 = const_cast<UnaryOpNode *>(this);

  map<NodeID, int>::iterator it = reference_count.find(this2);
  if (it == reference_count.end())
    {
      reference_count[this2] = 1;
      arg->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
    }
  else
    {
      reference_count[this2]++;
      if (reference_count[this2] * cost(temporary_terms, is_matlab) > MIN_COST(is_matlab))
        temporary_terms.insert(this2);
    }
}

void
UnaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
                                   temporary_terms_type &temporary_terms,
707
                                   map<NodeID, pair<int, int> > &first_occurence,
708
709
                                   int Curr_block,
                                   Model_Block *ModelBlock,
710
                                   int equation,
711
712
713
714
715
716
717
                                   map_idx_type &map_idx) const
{
  NodeID this2 = const_cast<UnaryOpNode *>(this);
  map<NodeID, int>::iterator it = reference_count.find(this2);
  if (it == reference_count.end())
    {
      reference_count[this2] = 1;
718
719
      first_occurence[this2] = make_pair(Curr_block,equation);
      arg->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
720
721
722
723
724
725
726
    }
  else
    {
      reference_count[this2]++;
      if (reference_count[this2] * cost(temporary_terms, false) > MIN_COST_C)
        {
          temporary_terms.insert(this2);
727
          ModelBlock->Block_List[first_occurence[this2].first].Temporary_Terms_in_Equation[first_occurence[this2].second]->insert(this2);
728
729
730
731
        }
    }
}

732
733
734
735
736
737
738
739
740
741
void
UnaryOpNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const
{
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<UnaryOpNode*>(this));
  if (it != temporary_terms.end())
    ModelBlock->Block_List[Curr_Block].Temporary_InUse->insert(idx);
  else
    arg->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
}

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
void
UnaryOpNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
                         const temporary_terms_type &temporary_terms) const
{
  // If node is a temporary term
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<UnaryOpNode *>(this));
  if (it != temporary_terms.end())
    {
      if (output_type == oCDynamicModelSparseDLL)
        output << "T" << idx << "[it_]";
      else if (output_type == oMatlabDynamicModelSparse)
        output << "T" << idx << "(it_)";
      else
        output << "T" << idx;
      return;
    }

  // Always put parenthesis around uminus nodes
  if (op_code == oUminus)
    output << "(";

  switch(op_code)
    {
    case oUminus:
      output << "-";
      break;
    case oExp:
      output << "exp";
      break;
    case oLog:
      output << "log";
      break;
    case oLog10:
      output << "log10";
      break;
    case oCos:
      output << "cos";
      break;
    case oSin:
      output << "sin";
      break;
    case oTan:
      output << "tan";
      break;
    case oAcos:
      output << "acos";
      break;
    case oAsin:
      output << "asin";
      break;
    case oAtan:
      output << "atan";
      break;
    case oCosh:
      output << "cosh";
      break;
    case oSinh:
      output << "sinh";
      break;
    case oTanh:
      output << "tanh";
      break;
    case oAcosh:
      output << "acosh";
      break;
    case oAsinh:
      output << "asinh";
      break;
    case oAtanh:
      output << "atanh";
      break;
    case oSqrt:
      output << "sqrt";
      break;
    }

  bool close_parenthesis = false;

  /* Enclose argument with parentheses if:
     - current opcode is not uminus, or
     - current opcode is uminus and argument has lowest precedence
  */
  if (op_code != oUminus
      || (op_code == oUminus
          && arg->precedence(output_type, temporary_terms) < precedence(output_type, temporary_terms)))
    {
      output << "(";
      close_parenthesis = true;
    }

  // Write argument
  arg->writeOutput(output, output_type, temporary_terms);

  if (close_parenthesis)
    output << ")";

  // Close parenthesis for uminus
  if (op_code == oUminus)
    output << ")";
}

double
UnaryOpNode::eval_opcode(UnaryOpcode op_code, double v) throw (EvalException)
{
  switch(op_code)
    {
    case oUminus:
      return(-v);
    case oExp:
      return(exp(v));
    case oLog:
      return(log(v));
    case oLog10:
      return(log10(v));
    case oCos:
      return(cos(v));
    case oSin:
      return(sin(v));
    case oTan:
      return(tan(v));
    case oAcos:
      return(acos(v));
    case oAsin:
      return(asin(v));
    case oAtan:
      return(atan(v));
    case oCosh:
      return(cosh(v));
    case oSinh:
      return(sinh(v));
    case oTanh:
      return(tanh(v));
    case oAcosh:
      return(acosh(v));
    case oAsinh:
      return(asinh(v));
    case oAtanh:
      return(atanh(v));
    case oSqrt:
      return(sqrt(v));
    }
  // Impossible
  throw EvalException();
}

double
UnaryOpNode::eval(const eval_context_type &eval_context) const throw (EvalException)
{
  double v = arg->eval(eval_context);

  return eval_opcode(op_code, v);
}

void
896
UnaryOpNode::compile(ofstream &CompileCode, bool lhs_rhs, ExprNodeOutputType output_type, const temporary_terms_type &temporary_terms, map_idx_type &map_idx) const
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
{
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<UnaryOpNode *>(this));
  if (it != temporary_terms.end())
    {
      CompileCode.write(&FLDT, sizeof(FLDT));
      int var=map_idx[idx];
      CompileCode.write(reinterpret_cast<char *>(&var), sizeof(var));
      return;
    }
  arg->compile(CompileCode, lhs_rhs, output_type, temporary_terms, map_idx);
  CompileCode.write(&FUNARY, sizeof(FUNARY));
  UnaryOpcode op_codel=op_code;
  CompileCode.write(reinterpret_cast<char *>(&op_codel), sizeof(op_codel));
}

void
913
UnaryOpNode::collectEndogenous(set<pair<int, int> > &result) const
914
{
915
  arg->collectEndogenous(result);
916
917
}

ferhat's avatar
ferhat committed
918
919
920
921
922
923
924
void
UnaryOpNode::collectExogenous(set<pair<int, int> > &result) const
{
  arg->collectExogenous(result);
}


925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
BinaryOpNode::BinaryOpNode(DataTree &datatree_arg, const NodeID arg1_arg,
                           BinaryOpcode op_code_arg, const NodeID arg2_arg) :
  ExprNode(datatree_arg),
  arg1(arg1_arg),
  arg2(arg2_arg),
  op_code(op_code_arg)
{
  datatree.binary_op_node_map[make_pair(make_pair(arg1, arg2), op_code)] = this;

  // Non-null derivatives are the union of those of the arguments
  // Compute set union of arg1->non_null_derivatives and arg2->non_null_derivatives
  set_union(arg1->non_null_derivatives.begin(),
            arg1->non_null_derivatives.end(),
            arg2->non_null_derivatives.begin(),
            arg2->non_null_derivatives.end(),
            inserter(non_null_derivatives, non_null_derivatives.begin()));
}

NodeID
BinaryOpNode::computeDerivative(int varID)
{
  NodeID darg1 = arg1->getDerivative(varID);
  NodeID darg2 = arg2->getDerivative(varID);

  NodeID t11, t12, t13, t14, t15;

  switch(op_code)
    {
    case oPlus:
      return datatree.AddPlus(darg1, darg2);
    case oMinus:
      return datatree.AddMinus(darg1, darg2);
    case oTimes:
      t11 = datatree.AddTimes(darg1, arg2);
      t12 = datatree.AddTimes(darg2, arg1);
      return datatree.AddPlus(t11, t12);
    case oDivide:
      t11 = datatree.AddTimes(darg1, arg2);
      t12 = datatree.AddTimes(darg2, arg1);
      t13 = datatree.AddMinus(t11, t12);
      t14 = datatree.AddTimes(arg2, arg2);
      return datatree.AddDivide(t13, t14);
    case oLess:
    case oGreater:
    case oLessEqual:
    case oGreaterEqual:
    case oEqualEqual:
    case oDifferent:
      return datatree.Zero;
    case oPower:
      if (darg2 == datatree.Zero)
        {
          if (darg1 == datatree.Zero)
            return datatree.Zero;
          else
            {
              t11 = datatree.AddMinus(arg2, datatree.One);
              t12 = datatree.AddPower(arg1, t11);
              t13 = datatree.AddTimes(arg2, t12);
              return datatree.AddTimes(darg1, t13);
            }
        }
      else
        {
          t11 = datatree.AddLog(arg1);
          t12 = datatree.AddTimes(darg2, t11);
          t13 = datatree.AddTimes(darg1, arg2);
          t14 = datatree.AddDivide(t13, arg1);
          t15 = datatree.AddPlus(t12, t14);
          return datatree.AddTimes(t15, this);
        }
    case oMax:
      t11 = datatree.AddGreater(arg1,arg2);
      t12 = datatree.AddTimes(t11,darg1);
      t13 = datatree.AddMinus(datatree.One,t11);
      t14 = datatree.AddTimes(t13,darg2);
      return datatree.AddPlus(t14,t12);
    case oMin:
      t11 = datatree.AddGreater(arg2,arg1);
      t12 = datatree.AddTimes(t11,darg1);
      t13 = datatree.AddMinus(datatree.One,t11);
      t14 = datatree.AddTimes(t13,darg2);
      return datatree.AddPlus(t14,t12);
    case oEqual:
      return datatree.AddMinus(darg1, darg2);
    }
  cerr << "Impossible case!" << endl;
1012
  exit(EXIT_FAILURE);
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
}

int
BinaryOpNode::precedence(ExprNodeOutputType output_type, const temporary_terms_type &temporary_terms) const
{
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<BinaryOpNode *>(this));
  // A temporary term behaves as a variable
  if (it != temporary_terms.end())
    return 100;

  switch(op_code)
    {
    case oEqual:
      return 0;
    case oEqualEqual:
    case oDifferent:
      return 1;
    case oLessEqual:
    case oGreaterEqual:
    case oLess:
    case oGreater:
      return 2;
    case oPlus:
    case oMinus:
      return 3;
    case oTimes:
    case oDivide:
      return 4;
    case oPower:
      if (!OFFSET(output_type))
        // In C, power operator is of the form pow(a, b)
        return 100;
      else
        return 5;
    case oMin:
    case oMax:
      return 100;
    }
  cerr << "Impossible case!" << endl;
1052
  exit(EXIT_FAILURE);
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
}

int
BinaryOpNode::cost(const temporary_terms_type &temporary_terms, bool is_matlab) const
{
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<BinaryOpNode *>(this));
  // For a temporary term, the cost is null
  if (it != temporary_terms.end())
    return 0;

  int cost = arg1->cost(temporary_terms, is_matlab);
  cost += arg2->cost(temporary_terms, is_matlab);

  if (is_matlab)
    // Cost for Matlab files
    switch(op_code)
      {
      case oLess:
      case oGreater:
      case oLessEqual:
      case oGreaterEqual:
      case oEqualEqual:
      case oDifferent:
        return cost + 60;
      case oPlus:
      case oMinus:
      case oTimes:
        return cost + 90;
      case oMax:
      case oMin:
1083
        return cost + 110;
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
      case oDivide:
        return cost + 990;
      case oPower:
        return cost + 1160;
      case oEqual:
        return cost;
      }
  else
    // Cost for C files
    switch(op_code)
      {
      case oLess:
      case oGreater:
      case oLessEqual:
      case oGreaterEqual:
      case oEqualEqual:
      case oDifferent:
        return cost + 2;
      case oPlus:
      case oMinus:
      case oTimes:
        return cost + 4;
      case oMax:
      case oMin:
	return cost + 5;
      case oDivide:
        return cost + 15;
      case oPower:
        return cost + 520;
      case oEqual:
        return cost;
      }
  cerr << "Impossible case!" << endl;
1117
  exit(EXIT_FAILURE);
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
}

void
BinaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
                                    temporary_terms_type &temporary_terms,
                                    bool is_matlab) const
{
  NodeID this2 = const_cast<BinaryOpNode *>(this);
  map<NodeID, int>::iterator it = reference_count.find(this2);
  if (it == reference_count.end())
    {
      // If this node has never been encountered, set its ref count to one,
      //  and travel through its children
      reference_count[this2] = 1;
      arg1->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
      arg2->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
    }
  else
    {
      // If the node has already been encountered, increment its ref count
      //  and declare it as a temporary term if it is too costly
      reference_count[this2]++;
      if (reference_count[this2] * cost(temporary_terms, is_matlab) > MIN_COST(is_matlab))
        temporary_terms.insert(this2);
    }
}

void
BinaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
                                    temporary_terms_type &temporary_terms,
1148
                                    map<NodeID, pair<int, int> > &first_occurence,
1149
1150
                                    int Curr_block,
                                    Model_Block *ModelBlock,
1151
                                    int equation,
1152
1153
1154
1155
1156
1157
1158
                                    map_idx_type &map_idx) const
{
  NodeID this2 = const_cast<BinaryOpNode *>(this);
  map<NodeID, int>::iterator it = reference_count.find(this2);
  if (it == reference_count.end())
    {
      reference_count[this2] = 1;
1159
1160
1161
      first_occurence[this2] = make_pair(Curr_block, equation);
      arg1->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
      arg2->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
1162
1163
1164
1165
1166
1167
1168
    }
  else
    {
      reference_count[this2]++;
      if (reference_count[this2] * cost(temporary_terms, false) > MIN_COST_C)
        {
          temporary_terms.insert(this2);
1169
          ModelBlock->Block_List[first_occurence[this2].first].Temporary_Terms_in_Equation[first_occurence[this2].second]->insert(this2);
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
        }
    }
}

double
BinaryOpNode::eval_opcode(double v1, BinaryOpcode op_code, double v2) throw (EvalException)
{
  switch(op_code)
    {
    case oPlus:
      return(v1 + v2);
    case oMinus:
      return(v1 - v2);
    case oTimes:
      return(v1 * v2);
    case oDivide:
      return(v1 / v2);
    case oPower:
      return(pow(v1, v2));
    case oMax:
      if (v1 < v2)
        return v2;
      else
        return v1;
    case oMin:
      if (v1 > v2)
        return v2;
      else
        return v1;
    case oLess:
      return (v1 < v2);
    case oGreater:
      return (v1 > v2);
    case oLessEqual:
      return (v1 <= v2);
    case oGreaterEqual:
      return (v1 >= v2);
    case oEqualEqual:
      return (v1 == v2);
    case oDifferent:
      return (v1 != v2);
    case oEqual:
      throw EvalException();
    }
  cerr << "Impossible case!" << endl;
1215
  exit(EXIT_FAILURE);
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
}

double
BinaryOpNode::eval(const eval_context_type &eval_context) const throw (EvalException)
{
  double v1 = arg1->eval(eval_context);
  double v2 = arg2->eval(eval_context);

  return eval_opcode(v1, op_code, v2);
}

void
1228
BinaryOpNode::compile(ofstream &CompileCode, bool lhs_rhs, ExprNodeOutputType output_type, const temporary_terms_type &temporary_terms, map_idx_type &map_idx) const
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
{
  // If current node is a temporary term
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<BinaryOpNode *>(this));
  if (it != temporary_terms.end())
    {
      CompileCode.write(&FLDT, sizeof(FLDT));
      int var=map_idx[idx];
      CompileCode.write(reinterpret_cast<char *>(&var), sizeof(var));
      return;
    }
  arg1->compile(CompileCode, lhs_rhs, output_type, temporary_terms, map_idx);
  arg2->compile(CompileCode, lhs_rhs, output_type, temporary_terms, map_idx);
  CompileCode.write(&FBINARY, sizeof(FBINARY));
  BinaryOpcode op_codel=op_code;
  CompileCode.write(reinterpret_cast<char *>(&op_codel),sizeof(op_codel));
}

1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
void
BinaryOpNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const
{
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<BinaryOpNode *>(this));
  if (it != temporary_terms.end())
    ModelBlock->Block_List[Curr_Block].Temporary_InUse->insert(idx);
  else
    {
      arg1->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
      arg2->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
    }
}


1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
void
BinaryOpNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
                          const temporary_terms_type &temporary_terms) const
{
  // If current node is a temporary term
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<BinaryOpNode *>(this));
  if (it != temporary_terms.end())
    {
      if (output_type == oCDynamicModelSparseDLL)
        output << "T" << idx << "[it_]";
      else if (output_type == oMatlabDynamicModelSparse)
        output << "T" << idx << "(it_)";
      else
        output << "T" << idx;
      return;
    }

  // Treat special case of power operator in C, and case of max and min operators
  if ((op_code == oPower && !OFFSET(output_type)) || op_code == oMax || op_code == oMin )
    {
      switch (op_code)
1281
        {
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
        case oPower:
          output << "pow(";
          break;
        case oMax:
          output << "max(";
          break;
        case oMin:
          output << "min(";
          break;
        default:
          ;
1293
        }
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
      arg1->writeOutput(output, output_type, temporary_terms);
      output << ",";
      arg2->writeOutput(output, output_type, temporary_terms);
      output << ")";
      return;
    }

  int prec = precedence(output_type, temporary_terms);

  bool close_parenthesis = false;

  // If left argument has a lower precedence, or if current and left argument are both power operators, add parenthesis around left argument
  BinaryOpNode *barg1 = dynamic_cast<BinaryOpNode *>(arg1);
  if (arg1->precedence(output_type, temporary_terms) < prec
      || (op_code == oPower && barg1 != NULL && barg1->op_code == oPower))
    {
      output << "(";
      close_parenthesis = true;
    }

  // Write left argument
  arg1->writeOutput(output, output_type, temporary_terms);

  if (close_parenthesis)
    output << ")";

  // Write current operator symbol
  switch(op_code)
    {
    case oPlus:
      output << "+";
      break;
    case oMinus:
      output << "-";
      break;
    case oTimes:
      output << "*";
      break;
    case oDivide:
      output << "/";
      break;
    case oPower:
      output << "^";
      break;
    case oLess:
      output << "<";
      break;
    case oGreater:
      output << ">";
      break;
    case oLessEqual:
      output << "<=";
      break;
    case oGreaterEqual:
      output << ">=";
      break;
    case oEqualEqual:
      output << "==";
      break;
    case oDifferent:
      if (OFFSET(output_type))
        output << "~=";
      else
        output << "!=";
      break;
    case oEqual:
      output << "=";
      break;
    default:
      ;
    }

  close_parenthesis = false;

  /* Add parenthesis around right argument if:
     - its precedence is lower than those of the current node
     - it is a power operator and current operator is also a power operator
     - it is a minus operator with same precedence than current operator
     - it is a divide operator with same precedence than current operator */
  BinaryOpNode *barg2 = dynamic_cast<BinaryOpNode *>(arg2);
  int arg2_prec = arg2->precedence(output_type, temporary_terms);
  if (arg2_prec < prec
      || (op_code == oPower && barg2 != NULL && barg2->op_code == oPower)
      || (op_code == oMinus && arg2_prec == prec)
      || (op_code == oDivide && arg2_prec == prec))
    {
      output << "(";
      close_parenthesis = true;
    }

  // Write right argument
  arg2->writeOutput(output, output_type, temporary_terms);

  if (close_parenthesis)
    output << ")";
}

void
1392
BinaryOpNode::collectEndogenous(set<pair<int, int> > &result) const
1393
{
1394
1395
  arg1->collectEndogenous(result);
  arg2->collectEndogenous(result);
1396
1397
}

ferhat's avatar
ferhat committed
1398
1399
1400
1401
1402
1403
1404
1405

void
BinaryOpNode::collectExogenous(set<pair<int, int> > &result) const
{
  arg1->collectExogenous(result);
  arg2->collectExogenous(result);
}

1406
TrinaryOpNode::TrinaryOpNode(DataTree &datatree_arg, const NodeID arg1_arg,
1407
                             TrinaryOpcode op_code_arg, const NodeID arg2_arg, const NodeID arg3_arg) :
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
  ExprNode(datatree_arg),
  arg1(arg1_arg),
  arg2(arg2_arg),
  arg3(arg3_arg),
  op_code(op_code_arg)
{
  datatree.trinary_op_node_map[make_pair(make_pair(make_pair(arg1, arg2), arg3), op_code)] = this;

  // Non-null derivatives are the union of those of the arguments
  // Compute set union of arg{1,2,3}->non_null_derivatives
ferhat's avatar
ferhat committed
1418
  set<int> non_null_derivatives_tmp;
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
  set_union(arg1->non_null_derivatives.begin(),
            arg1->non_null_derivatives.end(),
            arg2->non_null_derivatives.begin(),
            arg2->non_null_derivatives.end(),
            inserter(non_null_derivatives_tmp, non_null_derivatives_tmp.begin()));
  set_union(non_null_derivatives_tmp.begin(),
            non_null_derivatives_tmp.end(),
            arg3->non_null_derivatives.begin(),
            arg3->non_null_derivatives.end(),
            inserter(non_null_derivatives, non_null_derivatives.begin()));
}

NodeID
TrinaryOpNode::computeDerivative(int varID)
{
  NodeID darg1 = arg1->getDerivative(varID);
  NodeID darg2 = arg2->getDerivative(varID);
  NodeID darg3 = arg3->getDerivative(varID);

  NodeID t11, t12, t13, t14, t15;

  switch(op_code)
    {
    case oNormcdf:
      // normal pdf is inlined in the tree
      NodeID y;
      t11 = datatree.AddNumConstant("2");
      t12 = datatree.AddNumConstant("3.141592653589793");
      // 2 * pi
      t13 = datatree.AddTimes(t11,t12);
      // sqrt(2*pi)
      t14 = datatree.AddSqRt(t13);
      // x - mu
      t12 = datatree.AddMinus(arg1,arg2);
      // y = (x-mu)/sigma
      y = datatree.AddDivide(t12,arg3);
      // (x-mu)^2/sigma^2
      t12 = datatree.AddTimes(y,y);
      // -(x-mu)^2/sigma^2
      t13 = datatree.AddUMinus(t12);
      // -((x-mu)^2/sigma^2)/2
      t12 = datatree.AddDivide(t13,t11);
      // exp(-((x-mu)^2/sigma^2)/2)
      t13 = datatree.AddExp(t12);
      // derivative of a standardized normal
      // t15 = (1/sqrt(2*pi))*exp(-y^2/2)
      t15 = datatree.AddDivide(t13,t14);
      // derivatives thru x
      t11 = datatree.AddDivide(darg1,arg3);
      // derivatives thru mu
      t12 = datatree.AddDivide(darg2,arg3);
      // intermediary sum
      t14 = datatree.AddMinus(t11,t12);
      // derivatives thru sigma
      t11 = datatree.AddDivide(y,arg3);
      t12 = datatree.AddTimes(t11,darg3);
      //intermediary sum
      t11 = datatree.AddMinus(t14,t12);
      // total derivative:
      // (darg1/sigma - darg2/sigma - darg3*(x-mu)/sigma)* t13
      // where t13 is the derivative of a standardized normal
      return datatree.AddTimes(t11, t15);
    }
  cerr << "Impossible case!" << endl;
1483
  exit(EXIT_FAILURE);
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
}

int
TrinaryOpNode::precedence(ExprNodeOutputType output_type, const temporary_terms_type &temporary_terms) const
{
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<TrinaryOpNode *>(this));
  // A temporary term behaves as a variable
  if (it != temporary_terms.end())
    return 100;

  switch(op_code)
    {
    case oNormcdf:
      return 100;
    }
  cerr << "Impossible case!" << endl;
1500
  exit(EXIT_FAILURE);
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
}

int
TrinaryOpNode::cost(const temporary_terms_type &temporary_terms, bool is_matlab) const
{
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<TrinaryOpNode *>(this));
  // For a temporary term, the cost is null
  if (it != temporary_terms.end())
    return 0;

  int cost = arg1->cost(temporary_terms, is_matlab);
  cost += arg2->cost(temporary_terms, is_matlab);

  if (is_matlab)
    // Cost for Matlab files
    switch(op_code)
      {
      case oNormcdf:
        return cost+1000;
      }
  else
    // Cost for C files
    switch(op_code)
      {
      case oNormcdf:
        return cost+1000;
      }
  cerr << "Impossible case!" << endl;
1529
  exit(EXIT_FAILURE);
1530
1531
1532
1533
}

void
TrinaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
1534
1535
                                     temporary_terms_type &temporary_terms,
                                     bool is_matlab) const
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
{
  NodeID this2 = const_cast<TrinaryOpNode *>(this);
  map<NodeID, int>::iterator it = reference_count.find(this2);
  if (it == reference_count.end())
    {
      // If this node has never been encountered, set its ref count to one,
      //  and travel through its children
      reference_count[this2] = 1;
      arg1->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
      arg2->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
      arg3->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
    }
  else
    {
      // If the node has already been encountered, increment its ref count
      //  and declare it as a temporary term if it is too costly
      reference_count[this2]++;
      if (reference_count[this2] * cost(temporary_terms, is_matlab) > MIN_COST(is_matlab))
        temporary_terms.insert(this2);
    }
}

void
TrinaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
1560
1561
1562
1563
1564
1565
                                     temporary_terms_type &temporary_terms,
                                     map<NodeID, pair<int, int> > &first_occurence,
                                     int Curr_block,
                                     Model_Block *ModelBlock,
                                     int equation,
                                     map_idx_type &map_idx) const
1566
1567
1568
1569
1570
1571
{
  NodeID this2 = const_cast<TrinaryOpNode *>(this);
  map<NodeID, int>::iterator it = reference_count.find(this2);
  if (it == reference_count.end())
    {
      reference_count[this2] = 1;
1572
1573
1574
1575
      first_occurence[this2] = make_pair(Curr_block,equation);
      arg1->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
      arg2->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
      arg3->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
1576
1577
1578
1579
1580
1581
1582
    }
  else
    {
      reference_count[this2]++;
      if (reference_count[this2] * cost(temporary_terms, false) > MIN_COST_C)
        {
          temporary_terms.insert(this2);
1583
          ModelBlock->Block_List[first_occurence[this2].first].Temporary_Terms_in_Equation[first_occurence[this2].second]->insert(this2);
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
        }
    }
}

double
TrinaryOpNode::eval_opcode(double v1, TrinaryOpcode op_code, double v2, double v3) throw (EvalException)
{
  switch(op_code)
    {
    case oNormcdf:
      cerr << "NORMCDF: eval not implemented" << endl;
1595
      exit(EXIT_FAILURE);
1596
1597
    }
  cerr << "Impossible case!" << endl;
1598
  exit(EXIT_FAILURE);
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
}

double
TrinaryOpNode::eval(const eval_context_type &eval_context) const throw (EvalException)
{
  double v1 = arg1->eval(eval_context);
  double v2 = arg2->eval(eval_context);
  double v3 = arg3->eval(eval_context);

  return eval_opcode(v1, op_code, v2, v3);
}

void
TrinaryOpNode::compile(ofstream &CompileCode, bool lhs_rhs, ExprNodeOutputType output_type,
1613
                       const temporary_terms_type &temporary_terms, map_idx_type &map_idx) const
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
{
  // If current node is a temporary term
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<TrinaryOpNode *>(this));
  if (it != temporary_terms.end())
    {
      CompileCode.write(&FLDT, sizeof(FLDT));
      int var=map_idx[idx];
      CompileCode.write(reinterpret_cast<char *>(&var), sizeof(var));
      return;
    }
  arg1->compile(CompileCode, lhs_rhs, output_type, temporary_terms, map_idx);
  arg2->compile(CompileCode, lhs_rhs, output_type, temporary_terms, map_idx);
  arg3->compile(CompileCode, lhs_rhs, output_type, temporary_terms, map_idx);
  CompileCode.write(&FBINARY, sizeof(FBINARY));
  TrinaryOpcode op_codel=op_code;
  CompileCode.write(reinterpret_cast<char *>(&op_codel),sizeof(op_codel));
}

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
void
TrinaryOpNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const
{
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<TrinaryOpNode *>(this));
  if (it != temporary_terms.end())
    ModelBlock->Block_List[Curr_Block].Temporary_InUse->insert(idx);
  else
    {
      arg1->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
      arg2->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
      arg3->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
    }
}


1647
1648
void
TrinaryOpNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
1649
                           const temporary_terms_type &temporary_terms) const
1650
1651
1652
1653
{
  if (!OFFSET(output_type))
    {
      cerr << "TrinaryOpNode not implemented for C output" << endl;
1654
      exit(EXIT_FAILURE);
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
    }

  // If current node is a temporary term
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<TrinaryOpNode *>(this));
  if (it != temporary_terms.end())
    {
      if (output_type != oCDynamicModelSparseDLL)
        output << "T" << idx;
      else
        output << "T" << idx << "[it_]";
      return;
    }

  switch (op_code)
    {
    case oNormcdf:
1671
      output << "normcdf(";
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
      break;
    }
  arg1->writeOutput(output, output_type, temporary_terms);
  output << ",";
  arg2->writeOutput(output, output_type, temporary_terms);
  output << ",";
  arg3->writeOutput(output, output_type, temporary_terms);
  output << ")";
}

void
1683
TrinaryOpNode::collectEndogenous(set<pair<int, int> > &result) const
1684
{
1685
1686
1687
  arg1->collectEndogenous(result);
  arg2->collectEndogenous(result);
  arg3->collectEndogenous(result);
1688
1689
}

ferhat's avatar
ferhat committed
1690
1691
1692
1693
1694
1695
1696
1697
1698
void
TrinaryOpNode::collectExogenous(set<pair<int, int> > &result) const
{
  arg1->collectExogenous(result);
  arg2->collectExogenous(result);
  arg3->collectExogenous(result);
}


1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
UnknownFunctionNode::UnknownFunctionNode(DataTree &datatree_arg,
                                         int symb_id_arg,
                                         const vector<NodeID> &arguments_arg) :
  ExprNode(datatree_arg),
  symb_id(symb_id_arg),
  arguments(arguments_arg)
{
}

NodeID
UnknownFunctionNode::computeDerivative(int varID)
{
  cerr << "UnknownFunctionNode::computeDerivative: operation impossible!" << endl;
1712
  exit(EXIT_FAILURE);
1713
1714
1715
1716
1717
1718
1719
1720
}

void
UnknownFunctionNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
                                           temporary_terms_type &temporary_terms,
                                           bool is_matlab) const
{
  cerr << "UnknownFunctionNode::computeTemporaryTerms: operation impossible!" << endl;
1721
  exit(EXIT_FAILURE);
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
}

void UnknownFunctionNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
                                      const temporary_terms_type &temporary_terms) const
{
  output << datatree.symbol_table.getNameByID(eUnknownFunction, symb_id) << "(";
  for(vector<NodeID>::const_iterator it = arguments.begin();
      it != arguments.end(); it++)
    {
      if (it != arguments.begin())
        output << ",";

      (*it)->writeOutput(output, output_type, temporary_terms);
    }
  output << ")";
}

void
UnknownFunctionNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
                                           temporary_terms_type &temporary_terms,
1742
                                           map<NodeID, pair<int, int> > &first_occurence,
1743
1744
                                           int Curr_block,
                                           Model_Block *ModelBlock,
1745
                                           int equation,
1746
1747
1748
                                           map_idx_type &map_idx) const
{
  cerr << "UnknownFunctionNode::computeTemporaryTerms: not implemented" << endl;
1749
  exit(EXIT_FAILURE);
1750
1751
1752
}

void
1753
UnknownFunctionNode::collectEndogenous(set<pair<int, int> > &result) const
1754
{
1755
1756
1757
  for(vector<NodeID>::const_iterator it = arguments.begin();
      it != arguments.end(); it++)
    (*it)->collectEndogenous(result);
1758
1759
}

ferhat's avatar
ferhat committed
1760
1761
1762
1763
1764
1765
1766
1767
void
UnknownFunctionNode::collectExogenous(set<pair<int, int> > &result) const
{
  for(vector<NodeID>::const_iterator it = arguments.begin();
      it != arguments.end(); it++)
    (*it)->collectExogenous(result);
}

1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
void
UnknownFunctionNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const
{
  temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<UnknownFunctionNode *>(this));
  if (it != temporary_terms.end())
    ModelBlock->Block_List[Curr_Block].Temporary_InUse->insert(idx);
  else
    {
      //arg->collectTemporary_terms(temporary_terms, result);
    }
}

ferhat's avatar
ferhat committed
1780

1781
1782
1783
1784
1785
1786
1787
double
UnknownFunctionNode::eval(const eval_context_type &eval_context) const throw (EvalException)
{
  throw EvalException();
}

void
1788
UnknownFunctionNode::compile(ofstream &CompileCode, bool lhs_rhs, ExprNodeOutputType output_type, const temporary_terms_type &temporary_terms, map_idx_type &map_idx) const
1789
1790
{
  cerr << "UnknownFunctionNode::compile: operation impossible!" << endl;
1791
  exit(EXIT_FAILURE);
1792
}