ModelTree.cc 78 KB
Newer Older
1
/*
2
 * Copyright (C) 2003-2017 Dynare Team
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
#include <cstdlib>
21
#include <cassert>
sebastien's avatar
sebastien committed
22
#include <cmath>
23
#include <iostream>
24
#include <fstream>
25
26

#include "ModelTree.hh"
27
28
29
30
31
32
33
34
35
#include "MinimumFeedbackSet.hh"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/strong_components.hpp>
#include <boost/graph/topological_sort.hpp>

using namespace boost;
using namespace MFS;

sebastien's avatar
sebastien committed
36
bool
37
ModelTree::computeNormalization(const jacob_map_t &contemporaneous_jacobian, bool verbose)
38
{
39
  const int n = equations.size();
40
41
42
43
44
45
46
47
48
49
50
51
52
53

  assert(n == symbol_table.endo_nbr());

  typedef adjacency_list<vecS, vecS, undirectedS> BipartiteGraph;

  /*
    Vertices 0 to n-1 are for endogenous (using type specific ID)
    Vertices n to 2*n-1 are for equations (using equation no.)
  */
  BipartiteGraph g(2 * n);

  // Fill in the graph
  set<pair<int, int> > endo;

54
  for (jacob_map_t::const_iterator it = contemporaneous_jacobian.begin(); it != contemporaneous_jacobian.end(); it++)
sebastien's avatar
sebastien committed
55
    add_edge(it->first.first + n, it->first.second, g);
56
57
58
59
60
61
62
63
64
65
66
67

  // Compute maximum cardinality matching
  vector<int> mate_map(2*n);

#if 1
  bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]);
#else // Alternative way to compute normalization, by giving an initial matching using natural normalizations
  fill(mate_map.begin(), mate_map.end(), graph_traits<BipartiteGraph>::null_vertex());

  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

68
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
69
70
71
72
73
74
75
76
77
78
79
80
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      int j = natural_endo2eqs.find(i)->second;

      put(&mate_map[0], i, n+j);
      put(&mate_map[0], n+j, i);
    }

  edmonds_augmenting_path_finder<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type> augmentor(g, &mate_map[0], get(vertex_index, g));
  bool not_maximum_yet = true;
81
  while (not_maximum_yet)
82
83
84
85
86
87
88
89
90
91
92
    {
      not_maximum_yet = augmentor.augment_matching();
    }
  augmentor.get_current_matching(&mate_map[0]);

  bool check = maximum_cardinality_matching_verifier<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type>::verify_matching(g, &mate_map[0], get(vertex_index, g));
#endif

  assert(check);

#ifdef DEBUG
93
  for (int i = 0; i < n; i++)
94
95
96
97
98
    cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
         << " matched with equation " << (mate_map[i]-n+1) << endl;
#endif

  // Create the resulting map, by copying the n first elements of mate_map, and substracting n to them
99
  endo2eq.resize(equations.size());
100
101
102
103
104
105
106
107
  transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), bind2nd(minus<int>(), n));

#ifdef DEBUG
  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

  int n1 = 0, n2 = 0;

108
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      n1++;

      pair<multimap<int, int>::const_iterator, multimap<int, int>::const_iterator> x = natural_endo2eqs.equal_range(i);
      if (find_if(x.first, x.second, compose1(bind2nd(equal_to<int>(), endo2eq[i]), select2nd<multimap<int, int>::value_type>())) == x.second)
        cout << "Natural normalization of variable " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
             << " not used." << endl;
      else
        n2++;
    }

  cout << "Used " << n2 << " natural normalizations out of " << n1 << ", for a total of " << n << " equations." << endl;
#endif

  // Check if all variables are normalized
  vector<int>::const_iterator it = find(mate_map.begin(), mate_map.begin() + n, graph_traits<BipartiteGraph>::null_vertex());
  if (it != mate_map.begin() + n)
sebastien's avatar
sebastien committed
129
130
131
132
133
134
135
136
    {
      if (verbose)
        cerr << "ERROR: Could not normalize the model. Variable "
             << symbol_table.getName(symbol_table.getID(eEndogenous, it - mate_map.begin()))
             << " is not in the maximum cardinality matching." << endl;
      check = false;
    }
  return check;
137
138
139
}

void
140
ModelTree::computeNonSingularNormalization(jacob_map_t &contemporaneous_jacobian, double cutoff, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian)
141
{
sebastien's avatar
sebastien committed
142
143
  bool check = false;

144
145
  cout << "Normalizing the model..." << endl;

146
  int n = equations.size();
147

sebastien's avatar
sebastien committed
148
149
  // compute the maximum value of each row of the contemporaneous Jacobian matrix
  //jacob_map normalized_contemporaneous_jacobian;
150
  jacob_map_t normalized_contemporaneous_jacobian(contemporaneous_jacobian);
sebastien's avatar
sebastien committed
151
  vector<double> max_val(n, 0.0);
152
  for (jacob_map_t::const_iterator iter = contemporaneous_jacobian.begin(); iter != contemporaneous_jacobian.end(); iter++)
sebastien's avatar
sebastien committed
153
154
    if (fabs(iter->second) > max_val[iter->first.first])
      max_val[iter->first.first] = fabs(iter->second);
155

156
  for (jacob_map_t::iterator iter = normalized_contemporaneous_jacobian.begin(); iter != normalized_contemporaneous_jacobian.end(); iter++)
sebastien's avatar
sebastien committed
157
158
159
160
161
162
163
    iter->second /= max_val[iter->first.first];

  //We start with the highest value of the cutoff and try to normalize the model
  double current_cutoff = 0.99999999;

  int suppressed = 0;
  while (!check && current_cutoff > 1e-19)
164
    {
165
      jacob_map_t tmp_normalized_contemporaneous_jacobian;
sebastien's avatar
sebastien committed
166
      int suppress = 0;
167
      for (jacob_map_t::iterator iter = normalized_contemporaneous_jacobian.begin(); iter != normalized_contemporaneous_jacobian.end(); iter++)
sebastien's avatar
sebastien committed
168
169
170
171
172
173
174
175
176
        if (fabs(iter->second) > max(current_cutoff, cutoff))
          tmp_normalized_contemporaneous_jacobian[make_pair(iter->first.first, iter->first.second)] = iter->second;
        else
          suppress++;

      if (suppress != suppressed)
        check = computeNormalization(tmp_normalized_contemporaneous_jacobian, false);
      suppressed = suppress;
      if (!check)
177
        {
sebastien's avatar
sebastien committed
178
179
180
181
          current_cutoff /= 2;
          // In this last case try to normalize with the complete jacobian
          if (current_cutoff <= 1e-19)
            check = computeNormalization(normalized_contemporaneous_jacobian, false);
182
183
184
        }
    }

sebastien's avatar
sebastien committed
185
  if (!check)
186
    {
sebastien's avatar
sebastien committed
187
188
      cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
      //if no non-singular normalization can be found, try to find a normalization even with a potential singularity
189
      jacob_map_t tmp_normalized_contemporaneous_jacobian;
190
      set<pair<int, int> > endo;
sebastien's avatar
sebastien committed
191
      for (int i = 0; i < n; i++)
192
193
194
        {
          endo.clear();
          equations[i]->collectEndogenous(endo);
195
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
sebastien's avatar
sebastien committed
196
            tmp_normalized_contemporaneous_jacobian[make_pair(i, it->first)] = 1;
197
        }
sebastien's avatar
sebastien committed
198
199
      check = computeNormalization(tmp_normalized_contemporaneous_jacobian, true);
      if (check)
200
        {
sebastien's avatar
sebastien committed
201
          // Update the jacobian matrix
202
          for (jacob_map_t::const_iterator it = tmp_normalized_contemporaneous_jacobian.begin(); it != tmp_normalized_contemporaneous_jacobian.end(); it++)
sebastien's avatar
sebastien committed
203
204
205
206
207
208
209
            {
              if (static_jacobian.find(make_pair(it->first.first, it->first.second)) == static_jacobian.end())
                static_jacobian[make_pair(it->first.first, it->first.second)] = 0;
              if (dynamic_jacobian.find(make_pair(0, make_pair(it->first.first, it->first.second))) == dynamic_jacobian.end())
                dynamic_jacobian[make_pair(0, make_pair(it->first.first, it->first.second))] = 0;
              if (contemporaneous_jacobian.find(make_pair(it->first.first, it->first.second)) == contemporaneous_jacobian.end())
                contemporaneous_jacobian[make_pair(it->first.first, it->first.second)] = 0;
210
211
212
213
214
215
216
217
218
219
220
              try
                {
                  if (first_derivatives.find(make_pair(it->first.first, getDerivID(symbol_table.getID(eEndogenous, it->first.second), 0))) == first_derivatives.end())
                    first_derivatives[make_pair(it->first.first, getDerivID(symbol_table.getID(eEndogenous, it->first.second), 0))] = Zero;
                }
              catch(DataTree::UnknownDerivIDException &e)
                {
                  cerr << "The variable " << symbol_table.getName(symbol_table.getID(eEndogenous, it->first.second))
                       << " does not appear at the current period (i.e. with no lead and no lag); this case is not handled by the 'block' option of the 'model' block." << endl;
                  exit(EXIT_FAILURE);
                }
sebastien's avatar
sebastien committed
221
            }
222
223
        }
    }
sebastien's avatar
sebastien committed
224
225
226
227
228
229

  if (!check)
    {
      cerr << "No normalization could be computed. Aborting." << endl;
      exit(EXIT_FAILURE);
    }
230
231
232
233
234
}

void
ModelTree::computeNormalizedEquations(multimap<int, int> &endo2eqs) const
{
235
  for (int i = 0; i < equations.size(); i++)
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    {
      VariableNode *lhs = dynamic_cast<VariableNode *>(equations[i]->get_arg1());
      if (lhs == NULL)
        continue;

      int symb_id = lhs->get_symb_id();
      if (symbol_table.getType(symb_id) != eEndogenous)
        continue;

      set<pair<int, int> > endo;
      equations[i]->get_arg2()->collectEndogenous(endo);
      if (endo.find(make_pair(symbol_table.getTypeSpecificID(symb_id), 0)) != endo.end())
        continue;

      endo2eqs.insert(make_pair(symbol_table.getTypeSpecificID(symb_id), i));
      cout << "Endogenous " << symbol_table.getName(symb_id) << " normalized in equation " << (i+1) << endl;
    }
}

void
256
ModelTree::evaluateAndReduceJacobian(const eval_context_t &eval_context, jacob_map_t &contemporaneous_jacobian, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian, double cutoff, bool verbose)
257
258
259
{
  int nb_elements_contemparenous_Jacobian = 0;
  set<pair<int, int> > jacobian_elements_to_delete;
260
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
261
262
263
264
265
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
266
          expr_t Id = it->second;
267
268
269
270
271
272
273
274
275
          int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          int var = symbol_table.getTypeSpecificID(symb);
          int lag = getLagByDerivID(deriv_id);
          double val = 0;
          try
            {
              val = Id->eval(eval_context);
            }
276
277
278
279
          catch (ExprNode::EvalExternalFunctionException &e)
            {
              val = 1;
            }
280
281
          catch (ExprNode::EvalException &e)
            {
282
              cerr << "ERROR: evaluation of Jacobian failed for equation " << eq+1 << " (line " << equations_lineno[eq] << ") and variable " << symbol_table.getName(symb) << "(" << lag << ") [" << symb << "] !" << endl;
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
              Id->writeOutput(cerr, oMatlabDynamicModelSparse, temporary_terms);
              cerr << endl;
              exit(EXIT_FAILURE);
            }
          if (fabs(val) < cutoff)
            {
              if (verbose)
                cout << "the coefficient related to variable " << var << " with lag " << lag << " in equation " << eq << " is equal to " << val << " and is set to 0 in the incidence matrix (size=" << symbol_table.endo_nbr() << ")" << endl;
              jacobian_elements_to_delete.insert(make_pair(eq, deriv_id));
            }
          else
            {
              if (lag == 0)
                {
                  nb_elements_contemparenous_Jacobian++;
298
                  contemporaneous_jacobian[make_pair(eq, var)] = val;
299
300
301
302
303
304
305
306
307
308
309
                }
              if (static_jacobian.find(make_pair(eq, var)) != static_jacobian.end())
                static_jacobian[make_pair(eq, var)] += val;
              else
                static_jacobian[make_pair(eq, var)] = val;
              dynamic_jacobian[make_pair(lag, make_pair(eq, var))] = Id;
            }
        }
    }

  // Get rid of the elements of the Jacobian matrix below the cutoff
310
  for (set<pair<int, int> >::const_iterator it = jacobian_elements_to_delete.begin(); it != jacobian_elements_to_delete.end(); it++)
311
312
    first_derivatives.erase(*it);

313
  if (jacobian_elements_to_delete.size() > 0)
314
315
316
317
318
319
320
    {
      cout << jacobian_elements_to_delete.size() << " elements among " << first_derivatives.size() << " in the incidence matrices are below the cutoff (" << cutoff << ") and are discarded" << endl
           << "The contemporaneous incidence matrix has " << nb_elements_contemparenous_Jacobian << " elements" << endl;
    }
}

void
321
ModelTree::computePrologueAndEpilogue(const jacob_map_t &static_jacobian_arg, vector<int> &equation_reordered, vector<int> &variable_reordered)
322
{
323
324
325
  vector<int> eq2endo(equations.size(), 0);
  equation_reordered.resize(equations.size());
  variable_reordered.resize(equations.size());
326
  bool *IM;
327
  int n = equations.size();
328
  IM = (bool *) calloc(n*n, sizeof(bool));
329
  int i = 0;
330
  for (vector<int>::const_iterator it = endo2eq.begin(); it != endo2eq.end(); it++, i++)
331
332
333
334
    {
      eq2endo[*it] = i;
      equation_reordered[i] = i;
      variable_reordered[*it] = i;
FerhatMihoubi's avatar
Fix :    
FerhatMihoubi committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    }
  if (cutoff == 0)
    {
      set<pair<int, int> > endo;
      for (int i = 0; i < n; i++)
        {
          endo.clear();
          equations[i]->collectEndogenous(endo);
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
            IM[i * n + endo2eq[it->first]] = true;
        }
    }
  else
    for (jacob_map_t::const_iterator it = static_jacobian_arg.begin(); it != static_jacobian_arg.end(); it++)
      IM[it->first.first * n + endo2eq[it->first.second]] = true;
350
351
352
353
354
355
356
357
  bool something_has_been_done = true;
  prologue = 0;
  int k = 0;
  // Find the prologue equations and place first the AR(1) shock equations first
  while (something_has_been_done)
    {
      int tmp_prologue = prologue;
      something_has_been_done = false;
358
      for (int i = prologue; i < n; i++)
359
360
        {
          int nze = 0;
361
362
          for (int j = tmp_prologue; j < n; j++)
            if (IM[i * n + j])
363
              {
364
                nze++;
365
366
                k = j;
              }
367
          if (nze == 1)
368
            {
369
              for (int j = 0; j < n; j++)
370
371
372
373
374
375
376
377
                {
                  bool tmp_bool = IM[tmp_prologue * n + j];
                  IM[tmp_prologue * n + j] = IM[i * n + j];
                  IM[i * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[tmp_prologue];
              equation_reordered[tmp_prologue] = equation_reordered[i];
              equation_reordered[i] = tmp;
378
              for (int j = 0; j < n; j++)
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
                {
                  bool tmp_bool = IM[j * n + tmp_prologue];
                  IM[j * n + tmp_prologue] = IM[j * n + k];
                  IM[j * n + k] = tmp_bool;
                }
              tmp = variable_reordered[tmp_prologue];
              variable_reordered[tmp_prologue] = variable_reordered[k];
              variable_reordered[k] = tmp;
              tmp_prologue++;
              something_has_been_done = true;
            }
        }
      prologue = tmp_prologue;
    }

  something_has_been_done = true;
  epilogue = 0;
  // Find the epilogue equations
  while (something_has_been_done)
    {
      int tmp_epilogue = epilogue;
      something_has_been_done = false;
401
      for (int i = prologue; i < n - (int) epilogue; i++)
402
403
        {
          int nze = 0;
404
405
          for (int j = prologue; j < n - tmp_epilogue; j++)
            if (IM[j * n + i])
406
              {
407
                nze++;
408
409
                k = j;
              }
410
          if (nze == 1)
411
            {
412
              for (int j = 0; j < n; j++)
413
414
415
416
417
418
419
420
                {
                  bool tmp_bool = IM[(n - 1 - tmp_epilogue) * n + j];
                  IM[(n - 1 - tmp_epilogue) * n + j] = IM[k * n + j];
                  IM[k * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[n - 1 - tmp_epilogue];
              equation_reordered[n - 1 - tmp_epilogue] = equation_reordered[k];
              equation_reordered[k] = tmp;
421
              for (int j = 0; j < n; j++)
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
                {
                  bool tmp_bool = IM[j * n + n - 1 - tmp_epilogue];
                  IM[j * n + n - 1 - tmp_epilogue] = IM[j * n + i];
                  IM[j * n + i] = tmp_bool;
                }
              tmp = variable_reordered[n - 1 - tmp_epilogue];
              variable_reordered[n - 1 - tmp_epilogue] = variable_reordered[i];
              variable_reordered[i] = tmp;
              tmp_epilogue++;
              something_has_been_done = true;
            }
        }
      epilogue = tmp_epilogue;
    }
  free(IM);
}

439
equation_type_and_normalized_equation_t
440
ModelTree::equationTypeDetermination(const map<pair<int, pair<int, int> >, expr_t> &first_order_endo_derivatives, const vector<int> &Index_Var_IM, const vector<int> &Index_Equ_IM, int mfs) const
441
{
442
  expr_t lhs;
443
444
  BinaryOpNode *eq_node;
  EquationType Equation_Simulation_Type;
445
  equation_type_and_normalized_equation_t V_Equation_Simulation_Type(equations.size());
446
447
448
449
450
451
452
  for (unsigned int i = 0; i < equations.size(); i++)
    {
      int eq = Index_Equ_IM[i];
      int var = Index_Var_IM[i];
      eq_node = equations[eq];
      lhs = eq_node->get_arg1();
      Equation_Simulation_Type = E_SOLVE;
453
454
      map<pair<int, pair<int, int> >, expr_t>::const_iterator derivative = first_order_endo_derivatives.find(make_pair(eq, make_pair(var, 0)));
      pair<bool, expr_t> res;
455
      if (derivative != first_order_endo_derivatives.end())
456
457
458
459
460
        {
          set<pair<int, int> > result;
          derivative->second->collectEndogenous(result);
          set<pair<int, int> >::const_iterator d_endo_variable = result.find(make_pair(var, 0));
          //Determine whether the equation could be evaluated rather than to be solved
461
          if (lhs->isVariableNodeEqualTo(eEndogenous, Index_Var_IM[i], 0) && derivative->second->isNumConstNodeEqualTo(1))
462
463
464
465
466
            {
              Equation_Simulation_Type = E_EVALUATE;
            }
          else
            {
467
              vector<pair<int, pair<expr_t, expr_t> > > List_of_Op_RHS;
468
              res =  equations[eq]->normalizeEquation(var, List_of_Op_RHS);
469
              if (mfs == 2)
470
                {
471
                  if (d_endo_variable == result.end() && res.second)
472
473
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
474
              else if (mfs == 3)
475
                {
476
                  if (res.second) // The equation could be solved analytically
477
478
479
480
481
482
483
484
485
486
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
            }
        }
      V_Equation_Simulation_Type[eq] = make_pair(Equation_Simulation_Type, dynamic_cast<BinaryOpNode *>(res.second));
    }
  return (V_Equation_Simulation_Type);
}

void
487
ModelTree::getVariableLeadLagByBlock(const dynamic_jacob_map_t &dynamic_jacobian, const vector<int> &components_set, int nb_blck_sim, lag_lead_vector_t &equation_lead_lag, lag_lead_vector_t &variable_lead_lag, const vector<int> &equation_reordered, const vector<int> &variable_reordered) const
488
489
{
  int nb_endo = symbol_table.endo_nbr();
490
491
  variable_lead_lag = lag_lead_vector_t(nb_endo, make_pair(0, 0));
  equation_lead_lag = lag_lead_vector_t(nb_endo, make_pair(0, 0));
492
493
494
  vector<int> variable_blck(nb_endo), equation_blck(nb_endo);
  for (int i = 0; i < nb_endo; i++)
    {
495
      if (i < (int) prologue)
496
497
498
499
        {
          variable_blck[variable_reordered[i]] = i;
          equation_blck[equation_reordered[i]] = i;
        }
500
      else if (i < (int) (components_set.size() + prologue))
501
502
503
504
505
506
507
508
509
510
        {
          variable_blck[variable_reordered[i]] = components_set[i-prologue] + prologue;
          equation_blck[equation_reordered[i]] = components_set[i-prologue] + prologue;
        }
      else
        {
          variable_blck[variable_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
          equation_blck[equation_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
        }
    }
511
  for (dynamic_jacob_map_t::const_iterator it = dynamic_jacobian.begin(); it != dynamic_jacobian.end(); it++)
512
513
    {
      int lag = it->first.first;
514
      int j_1 = it->first.second.first;
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
      int i_1 = it->first.second.second;
      if (variable_blck[i_1] == equation_blck[j_1])
        {
          if (lag > variable_lead_lag[i_1].second)
            variable_lead_lag[i_1] = make_pair(variable_lead_lag[i_1].first, lag);
          if (lag < -variable_lead_lag[i_1].first)
            variable_lead_lag[i_1] = make_pair(-lag, variable_lead_lag[i_1].second);
          if (lag > equation_lead_lag[j_1].second)
            equation_lead_lag[j_1] = make_pair(equation_lead_lag[j_1].first, lag);
          if (lag < -equation_lead_lag[j_1].first)
            equation_lead_lag[j_1] = make_pair(-lag, equation_lead_lag[j_1].second);
        }
    }
}

void
531
ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(const jacob_map_t &static_jacobian, const dynamic_jacob_map_t &dynamic_jacobian, vector<int> &equation_reordered, vector<int> &variable_reordered, vector<pair<int, int> > &blocks, const equation_type_and_normalized_equation_t &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs, vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered, lag_lead_vector_t &equation_lag_lead, lag_lead_vector_t &variable_lag_lead, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed) const
532
533
534
535
{
  int nb_var = variable_reordered.size();
  int n = nb_var - prologue - epilogue;

536
537
538
539
540
541
  AdjacencyList_t G2(n);

  // It is necessary to manually initialize vertex_index property since this graph uses listS and not vecS as underlying vertex container
  property_map<AdjacencyList_t, vertex_index_t>::type v_index = get(vertex_index, G2);
  for (int i = 0; i < n; i++)
    put(v_index, vertex(i, G2), i);
542
543
544

  vector<int> reverse_equation_reordered(nb_var), reverse_variable_reordered(nb_var);

545
  for (int i = 0; i < nb_var; i++)
546
547
548
    {
      reverse_equation_reordered[equation_reordered[i]] = i;
      reverse_variable_reordered[variable_reordered[i]] = i;
FerhatMihoubi's avatar
Fix :    
FerhatMihoubi committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    }
  jacob_map_t tmp_normalized_contemporaneous_jacobian;
  if (cutoff == 0)
    {
      set<pair<int, int> > endo;
      for (int i = 0; i < nb_var; i++)
        {
          endo.clear();
          equations[i]->collectEndogenous(endo);
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
            tmp_normalized_contemporaneous_jacobian[make_pair(i, it->first)] = 1;

        }
    }
  else
    tmp_normalized_contemporaneous_jacobian = static_jacobian;
  for (jacob_map_t::const_iterator it = tmp_normalized_contemporaneous_jacobian.begin(); it != tmp_normalized_contemporaneous_jacobian.end(); it++)
566
567
    if (reverse_equation_reordered[it->first.first] >= (int) prologue && reverse_equation_reordered[it->first.first] < (int) (nb_var - epilogue)
        && reverse_variable_reordered[it->first.second] >= (int) prologue && reverse_variable_reordered[it->first.second] < (int) (nb_var - epilogue)
568
        && it->first.first != endo2eq[it->first.second])
569
570
571
      add_edge(vertex(reverse_equation_reordered[endo2eq[it->first.second]]-prologue, G2),
               vertex(reverse_equation_reordered[it->first.first]-prologue, G2),
               G2);
572
573

  vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2));
574
  iterator_property_map<int *, property_map<AdjacencyList_t, vertex_index_t>::type, int, int &> endo2block_map(&endo2block[0], get(vertex_index, G2));
575
576

  // Compute strongly connected components
577
  int num = strong_components(G2, endo2block_map);
578
579
580
581
582
583
584

  blocks = vector<pair<int, int> >(num, make_pair(0, 0));

  // Create directed acyclic graph associated to the strongly connected components
  typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;
  DirectedGraph dag(num);

585
  for (unsigned int i = 0; i < num_vertices(G2); i++)
586
    {
587
588
      AdjacencyList_t::out_edge_iterator it_out, out_end;
      AdjacencyList_t::vertex_descriptor vi = vertex(i, G2);
589
590
      for (tie(it_out, out_end) = out_edges(vi, G2); it_out != out_end; ++it_out)
        {
591
592
          int t_b = endo2block_map[target(*it_out, G2)];
          int s_b = endo2block_map[source(*it_out, G2)];
593
594
595
596
597
598
599
600
601
602
603
          if (s_b != t_b)
            add_edge(s_b, t_b, dag);
        }
    }

  // Compute topological sort of DAG (ordered list of unordered SCC)
  deque<int> ordered2unordered;
  topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order

  // Construct mapping from unordered SCC to ordered SCC
  vector<int> unordered2ordered(num);
604
  for (int i = 0; i < num; i++)
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    unordered2ordered[ordered2unordered[i]] = i;

  //This vector contains for each block:
  //   - first set = equations belonging to the block,
  //   - second set = the feeback variables,
  //   - third vector = the reordered non-feedback variables.
  vector<pair<set<int>, pair<set<int>, vector<int> > > > components_set(num);
  for (unsigned int i = 0; i < endo2block.size(); i++)
    {
      endo2block[i] = unordered2ordered[endo2block[i]];
      blocks[endo2block[i]].first++;
      components_set[endo2block[i]].first.insert(i);
    }

619
  getVariableLeadLagByBlock(dynamic_jacobian, endo2block, num, equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);
620
621
622
623

  vector<int> tmp_equation_reordered(equation_reordered), tmp_variable_reordered(variable_reordered);
  int order = prologue;
  //Add a loop on vertices which could not be normalized or vertices related to lead variables => force those vertices to belong to the feedback set
624
  if (select_feedback_variable)
625
626
627
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE
628
629
630
631
632
            || variable_lag_lead[variable_reordered[i+prologue]].second > 0
            || variable_lag_lead[variable_reordered[i+prologue]].first > 0
            || equation_lag_lead[equation_reordered[i+prologue]].second > 0
            || equation_lag_lead[equation_reordered[i+prologue]].first > 0
            || mfs == 0)
633
          add_edge(vertex(i, G2), vertex(i, G2), G2);
634
635
636
637
638
    }
  else
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE || mfs == 0)
639
          add_edge(vertex(i, G2), vertex(i, G2), G2);
640
    }
641
642
643
644
645
646
  //Determines the dynamic structure of each equation
  n_static = vector<unsigned int>(prologue+num+epilogue, 0);
  n_forward = vector<unsigned int>(prologue+num+epilogue, 0);
  n_backward = vector<unsigned int>(prologue+num+epilogue, 0);
  n_mixed = vector<unsigned int>(prologue+num+epilogue, 0);

647
  for (int i = 0; i < (int) prologue; i++)
648
649
650
651
652
653
654
655
656
657
    {
      if      (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
        n_mixed[i]++;
      else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
        n_forward[i]++;
      else if (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
        n_backward[i]++;
      else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
        n_static[i]++;
    }
658
659
660
661
662
663
  //For each block, the minimum set of feedback variable is computed
  // and the non-feedback variables are reordered to get
  // a sub-recursive block without feedback variables

  for (int i = 0; i < num; i++)
    {
664
      AdjacencyList_t G = extract_subgraph(G2, components_set[i].first);
665
666
      set<int> feed_back_vertices;
      //Print(G);
667
668
      AdjacencyList_t G1 = Minimal_set_of_feedback_vertex(feed_back_vertices, G);
      property_map<AdjacencyList_t, vertex_index_t>::type v_index = get(vertex_index, G);
669
670
671
672
673
674
      components_set[i].second.first = feed_back_vertices;
      blocks[i].second = feed_back_vertices.size();
      vector<int> Reordered_Vertice;
      Reorder_the_recursive_variables(G, feed_back_vertices, Reordered_Vertice);

      //First we have the recursive equations conditional on feedback variables
675
      for (int j = 0; j < 4; j++)
676
        {
677
678
679
          for (vector<int>::iterator its = Reordered_Vertice.begin(); its != Reordered_Vertice.end(); its++)
            {
              bool something_done = false;
680
              if      (j == 2 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second != 0)
681
682
683
684
                {
                  n_mixed[prologue+i]++;
                  something_done = true;
                }
685
              else if (j == 3 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second != 0)
686
687
688
689
                {
                  n_forward[prologue+i]++;
                  something_done = true;
                }
690
              else if (j == 1 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second == 0)
691
692
693
694
                {
                  n_backward[prologue+i]++;
                  something_done = true;
                }
695
              else if (j == 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second == 0)
696
697
698
699
700
701
702
703
704
705
706
                {
                  n_static[prologue+i]++;
                  something_done = true;
                }
              if (something_done)
                {
                  equation_reordered[order] = tmp_equation_reordered[*its+prologue];
                  variable_reordered[order] = tmp_variable_reordered[*its+prologue];
                  order++;
                }
            }
707
708
709
        }
      components_set[i].second.second = Reordered_Vertice;
      //Second we have the equations related to the feedback variables
710
      for (int j = 0; j < 4; j++)
711
        {
712
713
714
          for (set<int>::iterator its = feed_back_vertices.begin(); its != feed_back_vertices.end(); its++)
            {
              bool something_done = false;
715
              if      (j == 2 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second != 0)
716
717
718
719
                {
                  n_mixed[prologue+i]++;
                  something_done = true;
                }
720
              else if (j == 3 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second != 0)
721
722
723
724
                {
                  n_forward[prologue+i]++;
                  something_done = true;
                }
725
              else if (j == 1 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second == 0)
726
727
728
729
                {
                  n_backward[prologue+i]++;
                  something_done = true;
                }
730
              else if (j == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second == 0)
731
732
733
734
735
736
737
738
739
740
741
                {
                  n_static[prologue+i]++;
                  something_done = true;
                }
              if (something_done)
                {
                  equation_reordered[order] = tmp_equation_reordered[v_index[vertex(*its, G)]+prologue];
                  variable_reordered[order] = tmp_variable_reordered[v_index[vertex(*its, G)]+prologue];
                  order++;
                }
            }
742
743
        }
    }
744

745
  for (int i = 0; i < (int) epilogue; i++)
746
    {
747
      if      (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second != 0)
748
        n_mixed[prologue+num+i]++;
749
      else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second != 0)
750
        n_forward[prologue+num+i]++;
751
      else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second == 0)
752
        n_backward[prologue+num+i]++;
753
      else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second == 0)
754
755
756
        n_static[prologue+num+i]++;
    }

757
758
  inv_equation_reordered = vector<int>(nb_var);
  inv_variable_reordered = vector<int>(nb_var);
759
  for (int i = 0; i < nb_var; i++)
760
761
762
763
764
765
    {
      inv_variable_reordered[variable_reordered[i]] = i;
      inv_equation_reordered[equation_reordered[i]] = i;
    }
}

766
void
767
ModelTree::printBlockDecomposition(const vector<pair<int, int> > &blocks) const
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
{
  int largest_block = 0;
  int Nb_SimulBlocks = 0;
  int Nb_feedback_variable = 0;
  unsigned int Nb_TotalBlocks = getNbBlocks();
  for (unsigned int block = 0; block < Nb_TotalBlocks; block++)
    {
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
        {
          Nb_SimulBlocks++;
          int size = getBlockSize(block);
          if (size > largest_block)
            {
              largest_block = size;
783
              Nb_feedback_variable = getBlockMfs(block);
784
785
786
787
788
789
790
791
792
793
794
            }
        }
    }

  int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
  cout << Nb_TotalBlocks << " block(s) found:" << endl
       << "  " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks << " simultaneous block(s)." << endl
       << "  the largest simultaneous block has " << largest_block << " equation(s)" << endl
       << "                                 and " << Nb_feedback_variable << " feedback variable(s)." << endl;
}

795
block_type_firstequation_size_mfs_t
796
ModelTree::reduceBlocksAndTypeDetermination(const dynamic_jacob_map_t &dynamic_jacobian, vector<pair<int, int> > &blocks, const equation_type_and_normalized_equation_t &Equation_Type, const vector<int> &variable_reordered, const vector<int> &equation_reordered, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed, vector<pair< pair<int, int>, pair<int, int> > > &block_col_type)
797
798
799
800
801
{
  int i = 0;
  int count_equ = 0, blck_count_simult = 0;
  int Blck_Size, MFS_Size;
  int Lead, Lag;
802
  block_type_firstequation_size_mfs_t block_type_size_mfs;
803
804
  BlockSimulationType Simulation_Type, prev_Type = UNKNOWN;
  int eq = 0;
805
806
807
808
  unsigned int l_n_static = 0;
  unsigned int l_n_forward = 0;
  unsigned int l_n_backward = 0;
  unsigned int l_n_mixed = 0;
809
  for (i = 0; i < (int) (prologue+blocks.size()+epilogue); i++)
810
811
    {
      int first_count_equ = count_equ;
812
      if (i < (int) prologue)
813
814
815
816
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }
817
      else if (i < (int) (prologue+blocks.size()))
818
819
820
821
822
        {
          Blck_Size = blocks[blck_count_simult].first;
          MFS_Size = blocks[blck_count_simult].second;
          blck_count_simult++;
        }
823
      else if (i < (int) (prologue+blocks.size()+epilogue))
824
825
826
827
828
829
830
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }

      Lag = Lead = 0;
      set<pair<int, int> > endo;
831
      for (count_equ  = first_count_equ; count_equ  < Blck_Size+first_count_equ; count_equ++)
832
833
834
835
836
837
838
        {
          endo.clear();
          equations[equation_reordered[count_equ]]->collectEndogenous(endo);
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
            {
              int curr_variable = it->first;
              int curr_lag = it->second;
839
840
              vector<int>::const_iterator it1 = find(variable_reordered.begin()+first_count_equ, variable_reordered.begin()+(first_count_equ+Blck_Size), curr_variable);
              if (it1 != variable_reordered.begin()+(first_count_equ+Blck_Size))
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
                if (dynamic_jacobian.find(make_pair(curr_lag, make_pair(equation_reordered[count_equ], curr_variable))) != dynamic_jacobian.end())
                  {
                    if (curr_lag > Lead)
                      Lead = curr_lag;
                    else if (-curr_lag > Lag)
                      Lag = -curr_lag;
                  }
            }
        }
      if ((Lag > 0) && (Lead > 0))
        {
          if (Blck_Size == 1)
            Simulation_Type = SOLVE_TWO_BOUNDARIES_SIMPLE;
          else
            Simulation_Type = SOLVE_TWO_BOUNDARIES_COMPLETE;
        }
      else if (Blck_Size > 1)
        {
          if (Lead > 0)
            Simulation_Type = SOLVE_BACKWARD_COMPLETE;
          else
            Simulation_Type = SOLVE_FORWARD_COMPLETE;
        }
      else
        {
          if (Lead > 0)
            Simulation_Type = SOLVE_BACKWARD_SIMPLE;
          else
            Simulation_Type = SOLVE_FORWARD_SIMPLE;
        }
871
872
873
874
      l_n_static = n_static[i];
      l_n_forward = n_forward[i];
      l_n_backward = n_backward[i];
      l_n_mixed = n_mixed[i];
875
876
      if (Blck_Size == 1)
        {
877
          if (Equation_Type[equation_reordered[eq]].first == E_EVALUATE || Equation_Type[equation_reordered[eq]].first == E_EVALUATE_S)
878
879
880
881
882
883
884
885
            {
              if (Simulation_Type == SOLVE_BACKWARD_SIMPLE)
                Simulation_Type = EVALUATE_BACKWARD;
              else if (Simulation_Type == SOLVE_FORWARD_SIMPLE)
                Simulation_Type = EVALUATE_FORWARD;
            }
          if (i > 0)
            {
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
              bool is_lead = false, is_lag = false;
              int c_Size = (block_type_size_mfs[block_type_size_mfs.size()-1]).second.first;
              int first_equation = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.second;
              if (c_Size > 0 && ((prev_Type ==  EVALUATE_FORWARD && Simulation_Type == EVALUATE_FORWARD && !is_lead)
                  || (prev_Type ==  EVALUATE_BACKWARD && Simulation_Type == EVALUATE_BACKWARD && !is_lag)))
                {
                  for (int j = first_equation; j < first_equation+c_Size; j++)
                    {
                      dynamic_jacob_map_t::const_iterator it = dynamic_jacobian.find(make_pair(-1, make_pair(equation_reordered[eq], variable_reordered[j])));
                      if (it != dynamic_jacobian.end())
                        is_lag = true;
                      it = dynamic_jacobian.find(make_pair(+1, make_pair(equation_reordered[eq], variable_reordered[j])));
                      if (it != dynamic_jacobian.end())
                        is_lead = true;
                    }
                }
              if ((prev_Type ==  EVALUATE_FORWARD && Simulation_Type == EVALUATE_FORWARD && !is_lead)
                  || (prev_Type ==  EVALUATE_BACKWARD && Simulation_Type == EVALUATE_BACKWARD && !is_lag))
904
905
906
                {
                  //merge the current block with the previous one
                  BlockSimulationType c_Type = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.first;
907
908
                  c_Size++;
                  block_type_size_mfs[block_type_size_mfs.size()-1] = make_pair(make_pair(c_Type, first_equation), make_pair(c_Size, c_Size));
909
                  if (block_lag_lead[block_type_size_mfs.size()-1].first > Lag)
910
                    Lag = block_lag_lead[block_type_size_mfs.size()-1].first;
911
                  if (block_lag_lead[block_type_size_mfs.size()-1].second > Lead)
912
913
                    Lead = block_lag_lead[block_type_size_mfs.size()-1].second;
                  block_lag_lead[block_type_size_mfs.size()-1] = make_pair(Lag, Lead);
914
                  pair< pair< unsigned int, unsigned int>, pair<unsigned int, unsigned int> > tmp = block_col_type[block_col_type.size()-1];
915
                  block_col_type[block_col_type.size()-1] = make_pair(make_pair(tmp.first.first+l_n_static, tmp.first.second+l_n_forward), make_pair(tmp.second.first+l_n_backward, tmp.second.second+l_n_mixed));
916
917
918
919
920
                }
              else
                {
                  block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
                  block_lag_lead.push_back(make_pair(Lag, Lead));
921
                  block_col_type.push_back(make_pair(make_pair(l_n_static, l_n_forward), make_pair(l_n_backward, l_n_mixed)));
922
923
924
925
926
927
                }
            }
          else
            {
              block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
              block_lag_lead.push_back(make_pair(Lag, Lead));
928
              block_col_type.push_back(make_pair(make_pair(l_n_static, l_n_forward), make_pair(l_n_backward, l_n_mixed)));
929
930
931
932
933
934
            }
        }
      else
        {
          block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
          block_lag_lead.push_back(make_pair(Lag, Lead));
935
          block_col_type.push_back(make_pair(make_pair(l_n_static, l_n_forward), make_pair(l_n_backward, l_n_mixed)));
936
937
938
939
940
941
942
943
        }
      prev_Type = Simulation_Type;
      eq += Blck_Size;
    }
  return (block_type_size_mfs);
}

vector<bool>
944
ModelTree::BlockLinear(const blocks_derivatives_t &blocks_derivatives, const vector<int> &variable_reordered) const
945
946
947
{
  unsigned int nb_blocks = getNbBlocks();
  vector<bool> blocks_linear(nb_blocks, true);
948
  for (unsigned int block = 0; block < nb_blocks; block++)
949
950
951
    {
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      int block_size = getBlockSize(block);
952
      block_derivatives_equation_variable_laglead_nodeid_t derivatives_block = blocks_derivatives[block];
953
      int first_variable_position = getBlockFirstEquation(block);
954
      if (simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
955
        {
956
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
957
958
959
960
            {
              int lag = it->second.first;
              if (lag == 0)
                {
961
                  expr_t Id = it->second.second;
962
963
964
965
                  set<pair<int, int> > endogenous;
                  Id->collectEndogenous(endogenous);
                  if (endogenous.size() > 0)
                    {
966
                      for (int l = 0; l < block_size; l++)
967
968
969
970
971
972
973
974
975
976
977
                        {
                          if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], 0)) != endogenous.end())
                            {
                              blocks_linear[block] = false;
                              goto the_end;
                            }
                        }
                    }
                }
            }
        }
978
      else if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
979
        {
980
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
981
982
            {
              int lag = it->second.first;
983
              expr_t Id = it->second.second; //
984
985
986
987
              set<pair<int, int> > endogenous;
              Id->collectEndogenous(endogenous);
              if (endogenous.size() > 0)
                {
988
                  for (int l = 0; l < block_size; l++)
989
990
991
992
993
994
995
996
997
998
                    {
                      if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], lag)) != endogenous.end())
                        {
                          blocks_linear[block] = false;
                          goto the_end;
                        }
                    }
                }
            }
        }
999
1000
    the_end:
      ;