ModelTree.cc 47.6 KB
Newer Older
1
/*
sebastien's avatar
sebastien committed
2
 * Copyright (C) 2003-2010 Dynare Team
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
#include <cstdlib>
21
#include <cassert>
sebastien's avatar
sebastien committed
22
#include <cmath>
23
#include <iostream>
24
#include <fstream>
25
26

#include "ModelTree.hh"
27
28
29
30
31
32
33
34
35
#include "MinimumFeedbackSet.hh"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/strong_components.hpp>
#include <boost/graph/topological_sort.hpp>

using namespace boost;
using namespace MFS;

sebastien's avatar
sebastien committed
36
37
bool
ModelTree::computeNormalization(const jacob_map &contemporaneous_jacobian, bool verbose)
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
{
  const int n = equation_number();

  assert(n == symbol_table.endo_nbr());

  typedef adjacency_list<vecS, vecS, undirectedS> BipartiteGraph;

  /*
    Vertices 0 to n-1 are for endogenous (using type specific ID)
    Vertices n to 2*n-1 are for equations (using equation no.)
  */
  BipartiteGraph g(2 * n);

  // Fill in the graph
  set<pair<int, int> > endo;

sebastien's avatar
sebastien committed
54
55
  for (jacob_map::const_iterator it = contemporaneous_jacobian.begin(); it != contemporaneous_jacobian.end(); it++)
    add_edge(it->first.first + n, it->first.second, g);
56
57
58
59
60
61
62
63
64
65
66
67

  // Compute maximum cardinality matching
  vector<int> mate_map(2*n);

#if 1
  bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]);
#else // Alternative way to compute normalization, by giving an initial matching using natural normalizations
  fill(mate_map.begin(), mate_map.end(), graph_traits<BipartiteGraph>::null_vertex());

  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

68
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
69
70
71
72
73
74
75
76
77
78
79
80
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      int j = natural_endo2eqs.find(i)->second;

      put(&mate_map[0], i, n+j);
      put(&mate_map[0], n+j, i);
    }

  edmonds_augmenting_path_finder<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type> augmentor(g, &mate_map[0], get(vertex_index, g));
  bool not_maximum_yet = true;
81
  while (not_maximum_yet)
82
83
84
85
86
87
88
89
90
91
92
    {
      not_maximum_yet = augmentor.augment_matching();
    }
  augmentor.get_current_matching(&mate_map[0]);

  bool check = maximum_cardinality_matching_verifier<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type>::verify_matching(g, &mate_map[0], get(vertex_index, g));
#endif

  assert(check);

#ifdef DEBUG
93
  for (int i = 0; i < n; i++)
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
         << " matched with equation " << (mate_map[i]-n+1) << endl;
#endif

  // Create the resulting map, by copying the n first elements of mate_map, and substracting n to them
  endo2eq.resize(equation_number());
  transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), bind2nd(minus<int>(), n));

#ifdef DEBUG
  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

  int n1 = 0, n2 = 0;

108
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      n1++;

      pair<multimap<int, int>::const_iterator, multimap<int, int>::const_iterator> x = natural_endo2eqs.equal_range(i);
      if (find_if(x.first, x.second, compose1(bind2nd(equal_to<int>(), endo2eq[i]), select2nd<multimap<int, int>::value_type>())) == x.second)
        cout << "Natural normalization of variable " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
             << " not used." << endl;
      else
        n2++;
    }

  cout << "Used " << n2 << " natural normalizations out of " << n1 << ", for a total of " << n << " equations." << endl;
#endif

  // Check if all variables are normalized
  vector<int>::const_iterator it = find(mate_map.begin(), mate_map.begin() + n, graph_traits<BipartiteGraph>::null_vertex());
  if (it != mate_map.begin() + n)
sebastien's avatar
sebastien committed
129
130
131
132
133
134
135
136
    {
      if (verbose)
        cerr << "ERROR: Could not normalize the model. Variable "
             << symbol_table.getName(symbol_table.getID(eEndogenous, it - mate_map.begin()))
             << " is not in the maximum cardinality matching." << endl;
      check = false;
    }
  return check;
137
138
139
}

void
sebastien's avatar
sebastien committed
140
ModelTree::computeNonSingularNormalization(jacob_map &contemporaneous_jacobian, double cutoff, jacob_map &static_jacobian, dynamic_jacob_map &dynamic_jacobian)
141
{
sebastien's avatar
sebastien committed
142
143
  bool check = false;

144
145
  cout << "Normalizing the model..." << endl;

sebastien's avatar
sebastien committed
146
  int n = equation_number();
147

sebastien's avatar
sebastien committed
148
149
150
151
152
153
154
  // compute the maximum value of each row of the contemporaneous Jacobian matrix
  //jacob_map normalized_contemporaneous_jacobian;
  jacob_map normalized_contemporaneous_jacobian(contemporaneous_jacobian);
  vector<double> max_val(n, 0.0);
  for (jacob_map::const_iterator iter = contemporaneous_jacobian.begin(); iter != contemporaneous_jacobian.end(); iter++)
    if (fabs(iter->second) > max_val[iter->first.first])
      max_val[iter->first.first] = fabs(iter->second);
155

sebastien's avatar
sebastien committed
156
157
158
159
160
161
162
163
  for (jacob_map::iterator iter = normalized_contemporaneous_jacobian.begin(); iter != normalized_contemporaneous_jacobian.end(); iter++)
    iter->second /= max_val[iter->first.first];

  //We start with the highest value of the cutoff and try to normalize the model
  double current_cutoff = 0.99999999;

  int suppressed = 0;
  while (!check && current_cutoff > 1e-19)
164
    {
sebastien's avatar
sebastien committed
165
166
167
168
169
170
171
172
173
174
175
176
      jacob_map tmp_normalized_contemporaneous_jacobian;
      int suppress = 0;
      for (jacob_map::iterator iter = normalized_contemporaneous_jacobian.begin(); iter != normalized_contemporaneous_jacobian.end(); iter++)
        if (fabs(iter->second) > max(current_cutoff, cutoff))
          tmp_normalized_contemporaneous_jacobian[make_pair(iter->first.first, iter->first.second)] = iter->second;
        else
          suppress++;

      if (suppress != suppressed)
        check = computeNormalization(tmp_normalized_contemporaneous_jacobian, false);
      suppressed = suppress;
      if (!check)
177
        {
sebastien's avatar
sebastien committed
178
179
180
181
          current_cutoff /= 2;
          // In this last case try to normalize with the complete jacobian
          if (current_cutoff <= 1e-19)
            check = computeNormalization(normalized_contemporaneous_jacobian, false);
182
183
184
        }
    }

sebastien's avatar
sebastien committed
185
  if (!check)
186
    {
sebastien's avatar
sebastien committed
187
188
189
      cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
      //if no non-singular normalization can be found, try to find a normalization even with a potential singularity
      jacob_map tmp_normalized_contemporaneous_jacobian;
190
      set<pair<int, int> > endo;
sebastien's avatar
sebastien committed
191
      for (int i = 0; i < n; i++)
192
193
194
        {
          endo.clear();
          equations[i]->collectEndogenous(endo);
195
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
sebastien's avatar
sebastien committed
196
            tmp_normalized_contemporaneous_jacobian[make_pair(i, it->first)] = 1;
197
        }
sebastien's avatar
sebastien committed
198
199
      check = computeNormalization(tmp_normalized_contemporaneous_jacobian, true);
      if (check)
200
        {
sebastien's avatar
sebastien committed
201
202
203
204
205
206
207
208
209
210
          // Update the jacobian matrix
          for (jacob_map::const_iterator it = tmp_normalized_contemporaneous_jacobian.begin(); it != tmp_normalized_contemporaneous_jacobian.end(); it++)
            {
              if (static_jacobian.find(make_pair(it->first.first, it->first.second)) == static_jacobian.end())
                static_jacobian[make_pair(it->first.first, it->first.second)] = 0;
              if (dynamic_jacobian.find(make_pair(0, make_pair(it->first.first, it->first.second))) == dynamic_jacobian.end())
                dynamic_jacobian[make_pair(0, make_pair(it->first.first, it->first.second))] = 0;
              if (contemporaneous_jacobian.find(make_pair(it->first.first, it->first.second)) == contemporaneous_jacobian.end())
                contemporaneous_jacobian[make_pair(it->first.first, it->first.second)] = 0;
            }
211
212
        }
    }
sebastien's avatar
sebastien committed
213
214
215
216
217
218

  if (!check)
    {
      cerr << "No normalization could be computed. Aborting." << endl;
      exit(EXIT_FAILURE);
    }
219
220
221
222
223
}

void
ModelTree::computeNormalizedEquations(multimap<int, int> &endo2eqs) const
{
224
  for (int i = 0; i < equation_number(); i++)
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    {
      VariableNode *lhs = dynamic_cast<VariableNode *>(equations[i]->get_arg1());
      if (lhs == NULL)
        continue;

      int symb_id = lhs->get_symb_id();
      if (symbol_table.getType(symb_id) != eEndogenous)
        continue;

      set<pair<int, int> > endo;
      equations[i]->get_arg2()->collectEndogenous(endo);
      if (endo.find(make_pair(symbol_table.getTypeSpecificID(symb_id), 0)) != endo.end())
        continue;

      endo2eqs.insert(make_pair(symbol_table.getTypeSpecificID(symb_id), i));
      cout << "Endogenous " << symbol_table.getName(symb_id) << " normalized in equation " << (i+1) << endl;
    }
}

void
ModelTree::evaluateAndReduceJacobian(const eval_context_type &eval_context, jacob_map &contemporaneous_jacobian, jacob_map &static_jacobian, dynamic_jacob_map &dynamic_jacobian, double cutoff, bool verbose)
{
  int nb_elements_contemparenous_Jacobian = 0;
  set<pair<int, int> > jacobian_elements_to_delete;
  for (first_derivatives_type::iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
          NodeID Id = it->second;
          int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          int var = symbol_table.getTypeSpecificID(symb);
          int lag = getLagByDerivID(deriv_id);
          double val = 0;
          try
            {
              val = Id->eval(eval_context);
            }
          catch (ExprNode::EvalException &e)
            {
              cerr << "ERROR: evaluation of Jacobian failed for equation " << eq+1 << " and variable " << symbol_table.getName(symb) << "(" << lag << ") [" << symb << "] !" << endl;
              Id->writeOutput(cerr, oMatlabDynamicModelSparse, temporary_terms);
              cerr << endl;
              exit(EXIT_FAILURE);
            }

          if (fabs(val) < cutoff)
            {
              if (verbose)
                cout << "the coefficient related to variable " << var << " with lag " << lag << " in equation " << eq << " is equal to " << val << " and is set to 0 in the incidence matrix (size=" << symbol_table.endo_nbr() << ")" << endl;
              jacobian_elements_to_delete.insert(make_pair(eq, deriv_id));
            }
          else
            {
              if (lag == 0)
                {
                  nb_elements_contemparenous_Jacobian++;
284
                  contemporaneous_jacobian[make_pair(eq, var)] = val;
285
286
287
288
289
290
291
292
293
294
295
                }
              if (static_jacobian.find(make_pair(eq, var)) != static_jacobian.end())
                static_jacobian[make_pair(eq, var)] += val;
              else
                static_jacobian[make_pair(eq, var)] = val;
              dynamic_jacobian[make_pair(lag, make_pair(eq, var))] = Id;
            }
        }
    }

  // Get rid of the elements of the Jacobian matrix below the cutoff
296
  for (set<pair<int, int> >::const_iterator it = jacobian_elements_to_delete.begin(); it != jacobian_elements_to_delete.end(); it++)
297
298
    first_derivatives.erase(*it);

299
  if (jacobian_elements_to_delete.size() > 0)
300
301
302
303
304
305
306
307
308
    {
      cout << jacobian_elements_to_delete.size() << " elements among " << first_derivatives.size() << " in the incidence matrices are below the cutoff (" << cutoff << ") and are discarded" << endl
           << "The contemporaneous incidence matrix has " << nb_elements_contemparenous_Jacobian << " elements" << endl;
    }
}

void
ModelTree::computePrologueAndEpilogue(jacob_map &static_jacobian_arg, vector<int> &equation_reordered, vector<int> &variable_reordered, unsigned int &prologue, unsigned int &epilogue)
{
309
  vector<int> eq2endo(equation_number(), 0);
310
311
312
313
  equation_reordered.resize(equation_number());
  variable_reordered.resize(equation_number());
  bool *IM;
  int n = equation_number();
314
  IM = (bool *) calloc(n*n, sizeof(bool));
315
  int i = 0;
316
  for (vector<int>::const_iterator it = endo2eq.begin(); it != endo2eq.end(); it++, i++)
317
318
319
320
321
    {
      eq2endo[*it] = i;
      equation_reordered[i] = i;
      variable_reordered[*it] = i;
    }
322
  for (jacob_map::const_iterator it = static_jacobian_arg.begin(); it != static_jacobian_arg.end(); it++)
323
324
325
326
327
328
329
330
331
    IM[it->first.first * n + endo2eq[it->first.second]] = true;
  bool something_has_been_done = true;
  prologue = 0;
  int k = 0;
  // Find the prologue equations and place first the AR(1) shock equations first
  while (something_has_been_done)
    {
      int tmp_prologue = prologue;
      something_has_been_done = false;
332
      for (int i = prologue; i < n; i++)
333
334
        {
          int nze = 0;
335
336
          for (int j = tmp_prologue; j < n; j++)
            if (IM[i * n + j])
337
              {
338
                nze++;
339
340
                k = j;
              }
341
          if (nze == 1)
342
            {
343
              for (int j = 0; j < n; j++)
344
345
346
347
348
349
350
351
                {
                  bool tmp_bool = IM[tmp_prologue * n + j];
                  IM[tmp_prologue * n + j] = IM[i * n + j];
                  IM[i * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[tmp_prologue];
              equation_reordered[tmp_prologue] = equation_reordered[i];
              equation_reordered[i] = tmp;
352
              for (int j = 0; j < n; j++)
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
                {
                  bool tmp_bool = IM[j * n + tmp_prologue];
                  IM[j * n + tmp_prologue] = IM[j * n + k];
                  IM[j * n + k] = tmp_bool;
                }
              tmp = variable_reordered[tmp_prologue];
              variable_reordered[tmp_prologue] = variable_reordered[k];
              variable_reordered[k] = tmp;
              tmp_prologue++;
              something_has_been_done = true;
            }
        }
      prologue = tmp_prologue;
    }

  something_has_been_done = true;
  epilogue = 0;
  // Find the epilogue equations
  while (something_has_been_done)
    {
      int tmp_epilogue = epilogue;
      something_has_been_done = false;
375
      for (int i = prologue; i < n - (int) epilogue; i++)
376
377
        {
          int nze = 0;
378
379
          for (int j = prologue; j < n - tmp_epilogue; j++)
            if (IM[j * n + i])
380
              {
381
                nze++;
382
383
                k = j;
              }
384
          if (nze == 1)
385
            {
386
              for (int j = 0; j < n; j++)
387
388
389
390
391
392
393
394
                {
                  bool tmp_bool = IM[(n - 1 - tmp_epilogue) * n + j];
                  IM[(n - 1 - tmp_epilogue) * n + j] = IM[k * n + j];
                  IM[k * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[n - 1 - tmp_epilogue];
              equation_reordered[n - 1 - tmp_epilogue] = equation_reordered[k];
              equation_reordered[k] = tmp;
395
              for (int j = 0; j < n; j++)
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
                {
                  bool tmp_bool = IM[j * n + n - 1 - tmp_epilogue];
                  IM[j * n + n - 1 - tmp_epilogue] = IM[j * n + i];
                  IM[j * n + i] = tmp_bool;
                }
              tmp = variable_reordered[n - 1 - tmp_epilogue];
              variable_reordered[n - 1 - tmp_epilogue] = variable_reordered[i];
              variable_reordered[i] = tmp;
              tmp_epilogue++;
              something_has_been_done = true;
            }
        }
      epilogue = tmp_epilogue;
    }
  free(IM);
}

t_equation_type_and_normalized_equation
ModelTree::equationTypeDetermination(vector<BinaryOpNode *> &equations, map<pair<int, pair<int, int> >, NodeID> &first_order_endo_derivatives, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM, int mfs)
{
  NodeID lhs, rhs;
  BinaryOpNode *eq_node;
  EquationType Equation_Simulation_Type;
  t_equation_type_and_normalized_equation V_Equation_Simulation_Type(equations.size());
  for (unsigned int i = 0; i < equations.size(); i++)
    {
      temporary_terms.clear();
      int eq = Index_Equ_IM[i];
      int var = Index_Var_IM[i];
      eq_node = equations[eq];
      lhs = eq_node->get_arg1();
      rhs = eq_node->get_arg2();
      Equation_Simulation_Type = E_SOLVE;
      map<pair<int, pair<int, int> >, NodeID>::iterator derivative = first_order_endo_derivatives.find(make_pair(eq, make_pair(var, 0)));
      pair<bool, NodeID> res;
431
      if (derivative != first_order_endo_derivatives.end())
432
433
434
435
436
        {
          set<pair<int, int> > result;
          derivative->second->collectEndogenous(result);
          set<pair<int, int> >::const_iterator d_endo_variable = result.find(make_pair(var, 0));
          //Determine whether the equation could be evaluated rather than to be solved
437
          if (lhs->isVariableNodeEqualTo(eEndogenous, Index_Var_IM[i], 0) && derivative->second->isNumConstNodeEqualTo(1))
438
439
440
441
442
            {
              Equation_Simulation_Type = E_EVALUATE;
            }
          else
            {
443
              vector<pair<int, pair<NodeID, NodeID> > > List_of_Op_RHS;
444
              res =  equations[eq]->normalizeEquation(var, List_of_Op_RHS);
445
              if (mfs == 2)
446
                {
447
                  if (d_endo_variable == result.end() && res.second)
448
449
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
450
              else if (mfs == 3)
451
                {
452
                  if (res.second) // The equation could be solved analytically
453
454
455
456
457
458
459
460
461
462
463
464
465
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
            }
        }
      V_Equation_Simulation_Type[eq] = make_pair(Equation_Simulation_Type, dynamic_cast<BinaryOpNode *>(res.second));
    }
  return (V_Equation_Simulation_Type);
}

void
ModelTree::getVariableLeadLagByBlock(dynamic_jacob_map &dynamic_jacobian, vector<int > &components_set, int nb_blck_sim, int prologue, int epilogue, t_lag_lead_vector &equation_lead_lag, t_lag_lead_vector &variable_lead_lag, vector<int> equation_reordered, vector<int> variable_reordered) const
{
  int nb_endo = symbol_table.endo_nbr();
466
467
  variable_lead_lag = t_lag_lead_vector(nb_endo, make_pair(0, 0));
  equation_lead_lag = t_lag_lead_vector(nb_endo, make_pair(0, 0));
468
469
470
471
472
473
474
475
  vector<int> variable_blck(nb_endo), equation_blck(nb_endo);
  for (int i = 0; i < nb_endo; i++)
    {
      if (i < prologue)
        {
          variable_blck[variable_reordered[i]] = i;
          equation_blck[equation_reordered[i]] = i;
        }
476
      else if (i < (int) components_set.size() + prologue)
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
        {
          variable_blck[variable_reordered[i]] = components_set[i-prologue] + prologue;
          equation_blck[equation_reordered[i]] = components_set[i-prologue] + prologue;
        }
      else
        {
          variable_blck[variable_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
          equation_blck[equation_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
        }
    }
  for (dynamic_jacob_map::const_iterator it = dynamic_jacobian.begin(); it != dynamic_jacobian.end(); it++)
    {
      int lag = it->first.first;
      int j_1 = it->first.second.second;
      int i_1 = it->first.second.second;
      if (variable_blck[i_1] == equation_blck[j_1])
        {
          if (lag > variable_lead_lag[i_1].second)
            variable_lead_lag[i_1] = make_pair(variable_lead_lag[i_1].first, lag);
          if (lag < -variable_lead_lag[i_1].first)
            variable_lead_lag[i_1] = make_pair(-lag, variable_lead_lag[i_1].second);
          if (lag > equation_lead_lag[j_1].second)
            equation_lead_lag[j_1] = make_pair(equation_lead_lag[j_1].first, lag);
          if (lag < -equation_lead_lag[j_1].first)
            equation_lead_lag[j_1] = make_pair(-lag, equation_lead_lag[j_1].second);
        }
    }
}

void
ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(jacob_map &static_jacobian, dynamic_jacob_map &dynamic_jacobian, int prologue, int epilogue, vector<int> &equation_reordered, vector<int> &variable_reordered, vector<pair<int, int> > &blocks, t_equation_type_and_normalized_equation &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs, vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered) const
{
  int nb_var = variable_reordered.size();
  int n = nb_var - prologue - epilogue;
  typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;

  GraphvizDigraph G2(n);

  vector<int> reverse_equation_reordered(nb_var), reverse_variable_reordered(nb_var);

517
  for (int i = 0; i < nb_var; i++)
518
519
520
521
522
    {
      reverse_equation_reordered[equation_reordered[i]] = i;
      reverse_variable_reordered[variable_reordered[i]] = i;
    }

523
524
525
526
527
  for (jacob_map::const_iterator it = static_jacobian.begin(); it != static_jacobian.end(); it++)
    if (reverse_equation_reordered[it->first.first] >= prologue && reverse_equation_reordered[it->first.first] < nb_var - epilogue
        && reverse_variable_reordered[it->first.second] >= prologue && reverse_variable_reordered[it->first.second] < nb_var - epilogue
        && it->first.first != endo2eq[it->first.second])
      add_edge(reverse_equation_reordered[it->first.first]-prologue, reverse_equation_reordered[endo2eq[it->first.second]]-prologue, G2);
528
529
530
531
532
533
534
535
536
537
538
539

  vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2));

  // Compute strongly connected components
  int num = strong_components(G2, &endo2block[0]);

  blocks = vector<pair<int, int> >(num, make_pair(0, 0));

  // Create directed acyclic graph associated to the strongly connected components
  typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;
  DirectedGraph dag(num);

540
  for (unsigned int i = 0; i < num_vertices(G2); i++)
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    {
      GraphvizDigraph::out_edge_iterator it_out, out_end;
      GraphvizDigraph::vertex_descriptor vi = vertex(i, G2);
      for (tie(it_out, out_end) = out_edges(vi, G2); it_out != out_end; ++it_out)
        {
          int t_b = endo2block[target(*it_out, G2)];
          int s_b = endo2block[source(*it_out, G2)];
          if (s_b != t_b)
            add_edge(s_b, t_b, dag);
        }
    }

  // Compute topological sort of DAG (ordered list of unordered SCC)
  deque<int> ordered2unordered;
  topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order

  // Construct mapping from unordered SCC to ordered SCC
  vector<int> unordered2ordered(num);
559
  for (int i = 0; i < num; i++)
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
    unordered2ordered[ordered2unordered[i]] = i;

  //This vector contains for each block:
  //   - first set = equations belonging to the block,
  //   - second set = the feeback variables,
  //   - third vector = the reordered non-feedback variables.
  vector<pair<set<int>, pair<set<int>, vector<int> > > > components_set(num);
  for (unsigned int i = 0; i < endo2block.size(); i++)
    {
      endo2block[i] = unordered2ordered[endo2block[i]];
      blocks[endo2block[i]].first++;
      components_set[endo2block[i]].first.insert(i);
    }

  t_lag_lead_vector equation_lag_lead, variable_lag_lead;

  getVariableLeadLagByBlock(dynamic_jacobian, endo2block, num, prologue, epilogue, equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);

  vector<int> tmp_equation_reordered(equation_reordered), tmp_variable_reordered(variable_reordered);
  int order = prologue;
  //Add a loop on vertices which could not be normalized or vertices related to lead variables => force those vertices to belong to the feedback set
581
  if (select_feedback_variable)
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE
            or variable_lag_lead[variable_reordered[i+prologue]].second > 0 or variable_lag_lead[variable_reordered[i+prologue]].first > 0
            or equation_lag_lead[equation_reordered[i+prologue]].second > 0 or equation_lag_lead[equation_reordered[i+prologue]].first > 0
            or mfs == 0)
          add_edge(i, i, G2);
    }
  else
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE || mfs == 0)
          add_edge(i, i, G2);
    }
  //For each block, the minimum set of feedback variable is computed
  // and the non-feedback variables are reordered to get
  // a sub-recursive block without feedback variables

  for (int i = 0; i < num; i++)
    {
      AdjacencyList_type G = GraphvizDigraph_2_AdjacencyList(G2, components_set[i].first);
      set<int> feed_back_vertices;
      //Print(G);
      AdjacencyList_type G1 = Minimal_set_of_feedback_vertex(feed_back_vertices, G);
      property_map<AdjacencyList_type, vertex_index_t>::type v_index = get(vertex_index, G);
      components_set[i].second.first = feed_back_vertices;
      blocks[i].second = feed_back_vertices.size();
      vector<int> Reordered_Vertice;
      Reorder_the_recursive_variables(G, feed_back_vertices, Reordered_Vertice);

      //First we have the recursive equations conditional on feedback variables
      for (vector<int>::iterator its = Reordered_Vertice.begin(); its != Reordered_Vertice.end(); its++)
        {
          equation_reordered[order] = tmp_equation_reordered[*its+prologue];
          variable_reordered[order] = tmp_variable_reordered[*its+prologue];
          order++;
        }
      components_set[i].second.second = Reordered_Vertice;
      //Second we have the equations related to the feedback variables
      for (set<int>::iterator its = feed_back_vertices.begin(); its != feed_back_vertices.end(); its++)
        {
          equation_reordered[order] = tmp_equation_reordered[v_index[vertex(*its, G)]+prologue];
          variable_reordered[order] = tmp_variable_reordered[v_index[vertex(*its, G)]+prologue];
          order++;
        }
    }
  inv_equation_reordered = vector<int>(nb_var);
  inv_variable_reordered = vector<int>(nb_var);
630
  for (int i = 0; i < nb_var; i++)
631
632
633
634
635
636
    {
      inv_variable_reordered[variable_reordered[i]] = i;
      inv_equation_reordered[equation_reordered[i]] = i;
    }
}

637
638
void
ModelTree::printBlockDecomposition(vector<pair<int, int> > blocks)
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
{
  int largest_block = 0;
  int Nb_SimulBlocks = 0;
  int Nb_feedback_variable = 0;
  unsigned int Nb_TotalBlocks = getNbBlocks();
  for (unsigned int block = 0; block < Nb_TotalBlocks; block++)
    {
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
        {
          Nb_SimulBlocks++;
          int size = getBlockSize(block);
          if (size > largest_block)
            {
              largest_block = size;
              Nb_feedback_variable = blocks[Nb_SimulBlocks-1].second;
            }
        }
    }

  int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
  cout << Nb_TotalBlocks << " block(s) found:" << endl
       << "  " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks << " simultaneous block(s)." << endl
       << "  the largest simultaneous block has " << largest_block << " equation(s)" << endl
       << "                                 and " << Nb_feedback_variable << " feedback variable(s)." << endl;
}

t_block_type_firstequation_size_mfs
ModelTree::reduceBlocksAndTypeDetermination(dynamic_jacob_map &dynamic_jacobian, int prologue, int epilogue, vector<pair<int, int> > &blocks, vector<BinaryOpNode *> &equations, t_equation_type_and_normalized_equation &Equation_Type, vector<int> &variable_reordered, vector<int> &equation_reordered)
{
  int i = 0;
  int count_equ = 0, blck_count_simult = 0;
  int Blck_Size, MFS_Size;
  int Lead, Lag;
  t_block_type_firstequation_size_mfs block_type_size_mfs;
  BlockSimulationType Simulation_Type, prev_Type = UNKNOWN;
  int eq = 0;
  for (i = 0; i < prologue+(int) blocks.size()+epilogue; i++)
    {
      int first_count_equ = count_equ;
      if (i < prologue)
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }
      else if (i < prologue+(int) blocks.size())
        {
          Blck_Size = blocks[blck_count_simult].first;
          MFS_Size = blocks[blck_count_simult].second;
          blck_count_simult++;
        }
      else if (i < prologue+(int) blocks.size()+epilogue)
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }

      Lag = Lead = 0;
      set<pair<int, int> > endo;
698
      for (count_equ  = first_count_equ; count_equ  < Blck_Size+first_count_equ; count_equ++)
699
700
701
702
703
704
705
706
        {
          endo.clear();
          equations[equation_reordered[count_equ]]->collectEndogenous(endo);
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
            {
              int curr_variable = it->first;
              int curr_lag = it->second;
              vector<int>::const_iterator it = find(variable_reordered.begin()+first_count_equ, variable_reordered.begin()+(first_count_equ+Blck_Size), curr_variable);
707
              if (it != variable_reordered.begin()+(first_count_equ+Blck_Size))
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
                if (dynamic_jacobian.find(make_pair(curr_lag, make_pair(equation_reordered[count_equ], curr_variable))) != dynamic_jacobian.end())
                  {
                    if (curr_lag > Lead)
                      Lead = curr_lag;
                    else if (-curr_lag > Lag)
                      Lag = -curr_lag;
                  }
            }
        }
      if ((Lag > 0) && (Lead > 0))
        {
          if (Blck_Size == 1)
            Simulation_Type = SOLVE_TWO_BOUNDARIES_SIMPLE;
          else
            Simulation_Type = SOLVE_TWO_BOUNDARIES_COMPLETE;
        }
      else if (Blck_Size > 1)
        {
          if (Lead > 0)
            Simulation_Type = SOLVE_BACKWARD_COMPLETE;
          else
            Simulation_Type = SOLVE_FORWARD_COMPLETE;
        }
      else
        {
          if (Lead > 0)
            Simulation_Type = SOLVE_BACKWARD_SIMPLE;
          else
            Simulation_Type = SOLVE_FORWARD_SIMPLE;
        }
      if (Blck_Size == 1)
        {
          if (Equation_Type[equation_reordered[eq]].first == E_EVALUATE or Equation_Type[equation_reordered[eq]].first == E_EVALUATE_S)
            {
              if (Simulation_Type == SOLVE_BACKWARD_SIMPLE)
                Simulation_Type = EVALUATE_BACKWARD;
              else if (Simulation_Type == SOLVE_FORWARD_SIMPLE)
                Simulation_Type = EVALUATE_FORWARD;
            }
          if (i > 0)
            {
              if ((prev_Type ==  EVALUATE_FORWARD and Simulation_Type == EVALUATE_FORWARD)
                  or (prev_Type ==  EVALUATE_BACKWARD and Simulation_Type == EVALUATE_BACKWARD))
                {
                  //merge the current block with the previous one
                  BlockSimulationType c_Type = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.first;
                  int c_Size = (block_type_size_mfs[block_type_size_mfs.size()-1]).second.first;
                  int first_equation = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.second;
                  block_type_size_mfs[block_type_size_mfs.size()-1] = make_pair(make_pair(c_Type, first_equation), make_pair(++c_Size, block_type_size_mfs[block_type_size_mfs.size()-1].second.second));
757
                  if (block_lag_lead[block_type_size_mfs.size()-1].first > Lag)
758
                    Lag = block_lag_lead[block_type_size_mfs.size()-1].first;
759
                  if (block_lag_lead[block_type_size_mfs.size()-1].second > Lead)
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
                    Lead = block_lag_lead[block_type_size_mfs.size()-1].second;
                  block_lag_lead[block_type_size_mfs.size()-1] = make_pair(Lag, Lead);
                }
              else
                {
                  block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
                  block_lag_lead.push_back(make_pair(Lag, Lead));
                }
            }
          else
            {
              block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
              block_lag_lead.push_back(make_pair(Lag, Lead));
            }
        }
      else
        {
          block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
          block_lag_lead.push_back(make_pair(Lag, Lead));
        }
      prev_Type = Simulation_Type;
      eq += Blck_Size;
    }
  return (block_type_size_mfs);
}

vector<bool>
ModelTree::BlockLinear(t_blocks_derivatives &blocks_derivatives, vector<int> &variable_reordered)
{
  unsigned int nb_blocks = getNbBlocks();
  vector<bool> blocks_linear(nb_blocks, true);
791
  for (unsigned int block = 0; block < nb_blocks; block++)
792
793
794
795
796
    {
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      int block_size = getBlockSize(block);
      t_block_derivatives_equation_variable_laglead_nodeid derivatives_block = blocks_derivatives[block];
      int first_variable_position = getBlockFirstEquation(block);
797
      if (simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
798
799
800
801
802
803
804
805
806
807
808
        {
          for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
            {
              int lag = it->second.first;
              if (lag == 0)
                {
                  NodeID Id = it->second.second;
                  set<pair<int, int> > endogenous;
                  Id->collectEndogenous(endogenous);
                  if (endogenous.size() > 0)
                    {
809
                      for (int l = 0; l < block_size; l++)
810
811
812
813
814
815
816
817
818
819
820
                        {
                          if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], 0)) != endogenous.end())
                            {
                              blocks_linear[block] = false;
                              goto the_end;
                            }
                        }
                    }
                }
            }
        }
821
      else if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
822
823
824
825
        {
          for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
            {
              int lag = it->second.first;
826
              NodeID Id = it->second.second; //
827
828
829
830
              set<pair<int, int> > endogenous;
              Id->collectEndogenous(endogenous);
              if (endogenous.size() > 0)
                {
831
                  for (int l = 0; l < block_size; l++)
832
833
834
835
836
837
838
839
840
841
                    {
                      if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], lag)) != endogenous.end())
                        {
                          blocks_linear[block] = false;
                          goto the_end;
                        }
                    }
                }
            }
        }
842
843
    the_end:
      ;
844
    }
845
  return (blocks_linear);
846
847
}

848
ModelTree::ModelTree(SymbolTable &symbol_table_arg,
849
850
851
                     NumericalConstants &num_constants_arg,
                     ExternalFunctionsTable &external_functions_table_arg) :
  DataTree(symbol_table_arg, num_constants_arg, external_functions_table_arg)
852
{
853
  for (int i = 0; i < 3; i++)
854
    NNZDerivatives[i] = 0;
855
856
857
858
}

int
ModelTree::equation_number() const
859
{
860
  return (equations.size());
861
}
862
863
864
865

void
ModelTree::writeDerivative(ostream &output, int eq, int symb_id, int lag,
                           ExprNodeOutputType output_type,
sebastien's avatar
sebastien committed
866
                           const temporary_terms_type &temporary_terms) const
867
{
868
  first_derivatives_type::const_iterator it = first_derivatives.find(make_pair(eq, getDerivID(symb_id, lag)));
869
870
871
872
873
  if (it != first_derivatives.end())
    (it->second)->writeOutput(output, output_type, temporary_terms);
  else
    output << 0;
}
874
875

void
876
ModelTree::computeJacobian(const set<int> &vars)
877
{
878
879
  for (set<int>::const_iterator it = vars.begin();
       it != vars.end(); it++)
880
    for (int eq = 0; eq < (int) equations.size(); eq++)
881
      {
882
        NodeID d1 = equations[eq]->getDerivative(*it);
883
884
        if (d1 == Zero)
          continue;
885
        first_derivatives[make_pair(eq, *it)] = d1;
886
        ++NNZDerivatives[0];
887
      }
888
}
889

890
891
892
893
894
void
ModelTree::computeHessian(const set<int> &vars)
{
  for (first_derivatives_type::const_iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
895
    {
896
897
898
899
900
      int eq = it->first.first;
      int var1 = it->first.second;
      NodeID d1 = it->second;

      // Store only second derivatives with var2 <= var1
901
902
      for (set<int>::const_iterator it2 = vars.begin();
           it2 != vars.end(); it2++)
903
        {
904
905
906
907
908
909
910
911
          int var2 = *it2;
          if (var2 > var1)
            continue;

          NodeID d2 = d1->getDerivative(var2);
          if (d2 == Zero)
            continue;
          second_derivatives[make_pair(eq, make_pair(var1, var2))] = d2;
912
913
914
915
          if (var2 == var1)
            ++NNZDerivatives[1];
          else
            NNZDerivatives[1] += 2;
916
917
        }
    }
918
}
919

920
921
922
923
924
void
ModelTree::computeThirdDerivatives(const set<int> &vars)
{
  for (second_derivatives_type::const_iterator it = second_derivatives.begin();
       it != second_derivatives.end(); it++)
925
    {
926
927
928
929
930
931
932
933
934
      int eq = it->first.first;

      int var1 = it->first.second.first;
      int var2 = it->first.second.second;
      // By construction, var2 <= var1

      NodeID d2 = it->second;

      // Store only third derivatives such that var3 <= var2 <= var1
935
936
      for (set<int>::const_iterator it2 = vars.begin();
           it2 != vars.end(); it2++)
937
        {
938
939
940
941
942
943
944
945
          int var3 = *it2;
          if (var3 > var2)
            continue;

          NodeID d3 = d2->getDerivative(var3);
          if (d3 == Zero)
            continue;
          third_derivatives[make_pair(eq, make_pair(var1, make_pair(var2, var3)))] = d3;
946
947
948
949
950
951
          if (var3 == var2 && var2 == var1)
            ++NNZDerivatives[2];
          else if (var3 == var2 || var2 == var1)
            NNZDerivatives[2] += 3;
          else
            NNZDerivatives[2] += 6;
952
953
954
955
956
        }
    }
}

void
957
ModelTree::computeTemporaryTerms(bool is_matlab)
958
959
960
961
{
  map<NodeID, int> reference_count;
  temporary_terms.clear();

962
963
  for (vector<BinaryOpNode *>::iterator it = equations.begin();
       it != equations.end(); it++)
964
965
    (*it)->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);

966
967
  for (first_derivatives_type::iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
968
969
    it->second->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);

970
971
972
  for (second_derivatives_type::iterator it = second_derivatives.begin();
       it != second_derivatives.end(); it++)
    it->second->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
973

974
975
976
  for (third_derivatives_type::iterator it = third_derivatives.begin();
       it != third_derivatives.end(); it++)
    it->second->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
977
978
979
}

void
sebastien's avatar
sebastien committed
980
981
ModelTree::writeTemporaryTerms(const temporary_terms_type &tt, ostream &output,
                               ExprNodeOutputType output_type) const
982
{
sebastien's avatar
sebastien committed
983
  // Local var used to keep track of temp nodes already written
984
  temporary_terms_type tt2;
985

986
987
988
  // To store the functions that have already been written in the form TEF* = ext_fun();
  deriv_node_temp_terms_type tef_terms;

989
  if (tt.size() > 0 && (IS_C(output_type)))
sebastien's avatar
sebastien committed
990
    output << "double" << endl;
991

sebastien's avatar
sebastien committed
992
993
  for (temporary_terms_type::const_iterator it = tt.begin();
       it != tt.end(); it++)
994
    {
995
      if (IS_C(output_type) && it != tt.begin())
996
        output << "," << endl;
997

998
999
1000
      if (dynamic_cast<ExternalFunctionNode *>(*it) != NULL)
        (*it)->writeExternalFunctionOutput(output, output_type, tt2, tef_terms);