ModelTree.cc 88.4 KB
Newer Older
1
/*
Houtan Bastani's avatar
Houtan Bastani committed
2
 * Copyright (C) 2003-2018 Dynare Team
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
#include <cstdlib>
21
#include <cassert>
sebastien's avatar
sebastien committed
22
#include <cmath>
23
#include <iostream>
24
#include <fstream>
25
26

#include "ModelTree.hh"
27
28
29
30
31
32
33
34
#include "MinimumFeedbackSet.hh"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/strong_components.hpp>
#include <boost/graph/topological_sort.hpp>

using namespace MFS;

35
36
37
void
ModelTree::copyHelper(const ModelTree &m)
{
38
  auto f = [this](expr_t e) { return e->clone(*this); };
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

  // Equations
  for (const auto & it : m.equations)
    equations.push_back(dynamic_cast<BinaryOpNode *>(f(it)));
  for (const auto & it : m.aux_equations)
    aux_equations.push_back(dynamic_cast<BinaryOpNode *>(f(it)));

  // Derivatives
  for (const auto & it : m.first_derivatives)
    first_derivatives[it.first] = f(it.second);
  for (const auto & it : m.second_derivatives)
    second_derivatives[it.first] = f(it.second);
  for (const auto & it : m.third_derivatives)
    third_derivatives[it.first] = f(it.second);
  for (const auto & it : m.residuals_params_derivatives)
    residuals_params_derivatives[it.first] = f(it.second);
  for (const auto & it : m.residuals_params_second_derivatives)
    residuals_params_second_derivatives[it.first] = f(it.second);
  for (const auto & it : m.jacobian_params_derivatives)
    jacobian_params_derivatives[it.first] = f(it.second);
  for (const auto & it : m.jacobian_params_second_derivatives)
    jacobian_params_second_derivatives[it.first] = f(it.second);
  for (const auto & it : m.hessian_params_derivatives)
    hessian_params_derivatives[it.first] = f(it.second);

  // Temporary terms
  for (const auto & it : m.temporary_terms)
    temporary_terms.insert(f(it));
  for (const auto & it : m.temporary_terms_mlv)
    temporary_terms_mlv[f(it.first)] = f(it.second);
  for (const auto & it : m.temporary_terms_res)
    temporary_terms_res.insert(f(it));
  for (const auto & it : m.temporary_terms_g1)
    temporary_terms_g1.insert(f(it));
  for (const auto & it : m.temporary_terms_g2)
    temporary_terms_g2.insert(f(it));
  for (const auto & it : m.temporary_terms_g3)
    temporary_terms_g3.insert(f(it));
  for (const auto & it : m.temporary_terms_idxs)
    temporary_terms_idxs[f(it.first)] = it.second;
  for (const auto & it : m.params_derivs_temporary_terms)
    params_derivs_temporary_terms.insert(f(it));
  for (const auto & it : m.params_derivs_temporary_terms_res)
    params_derivs_temporary_terms_res.insert(f(it));
  for (const auto & it : m.params_derivs_temporary_terms_g1)
    params_derivs_temporary_terms_g1.insert(f(it));
  for (const auto & it : m.params_derivs_temporary_terms_res2)
    params_derivs_temporary_terms_res2.insert(f(it));
  for (const auto & it : m.params_derivs_temporary_terms_g12)
    params_derivs_temporary_terms_g12.insert(f(it));
  for (const auto & it : m.params_derivs_temporary_terms_g2)
    params_derivs_temporary_terms_g2.insert(f(it));
  for (const auto & it : m.params_derivs_temporary_terms_idxs)
    params_derivs_temporary_terms_idxs[f(it.first)] = it.second;

  // Other stuff
  for (const auto & it : m.trend_symbols_map)
    trend_symbols_map[it.first] = f(it.second);
  for (const auto & it : m.nonstationary_symbols_map)
    nonstationary_symbols_map[it.first] = make_pair(it.second.first, f(it.second.second));
}

ModelTree::ModelTree(const ModelTree &m) :
  DataTree {m},
  equations_lineno {m.equations_lineno},
  equation_tags {m.equation_tags},
  NNZDerivatives {m.NNZDerivatives},
  equation_reordered {m.equation_reordered},
  variable_reordered {m.variable_reordered},
  inv_equation_reordered {m.inv_equation_reordered},
  inv_variable_reordered {m.inv_variable_reordered},
  is_equation_linear {m.is_equation_linear},
  endo2eq {m.endo2eq},
  epilogue {m.epilogue},
  prologue {m.prologue},
  block_lag_lead {m.block_lag_lead},
  cutoff {m.cutoff},
  mfs {m.mfs}
{
  copyHelper(m);
}

ModelTree &
ModelTree::operator=(const ModelTree &m)
{
  DataTree::operator=(m);

  equations.clear();
  equations_lineno = m.equations_lineno;
  aux_equations.clear();
  equation_tags = m.equation_tags;
  NNZDerivatives = m.NNZDerivatives;

  first_derivatives.clear();
  second_derivatives.clear();
  third_derivatives.clear();
  residuals_params_derivatives.clear();
  residuals_params_second_derivatives.clear();
  jacobian_params_derivatives.clear();
  jacobian_params_second_derivatives.clear();
  hessian_params_derivatives.clear();

  temporary_terms.clear();
  temporary_terms_mlv.clear();
  temporary_terms_res.clear();
  temporary_terms_g1.clear();
  temporary_terms_g2.clear();
  temporary_terms_g3.clear();
  temporary_terms_idxs.clear();
  params_derivs_temporary_terms.clear();
  params_derivs_temporary_terms_res.clear();
  params_derivs_temporary_terms_g1.clear();
  params_derivs_temporary_terms_res2.clear();
  params_derivs_temporary_terms_g12.clear();
  params_derivs_temporary_terms_g2.clear();
  params_derivs_temporary_terms_idxs.clear();

  trend_symbols_map.clear();
  nonstationary_symbols_map.clear();

  equation_reordered = m.equation_reordered;
  variable_reordered = m.variable_reordered;
  inv_equation_reordered = m.inv_equation_reordered;
  inv_variable_reordered = m.inv_variable_reordered;
  is_equation_linear = m.is_equation_linear;
  endo2eq = m.endo2eq;
  epilogue = m.epilogue;
  prologue = m.prologue;
  block_lag_lead = m.block_lag_lead;
  cutoff = m.cutoff;
  mfs = m.mfs;

  copyHelper(m);

  return *this;
}


sebastien's avatar
sebastien committed
177
bool
178
ModelTree::computeNormalization(const jacob_map_t &contemporaneous_jacobian, bool verbose)
179
{
180
  const int n = equations.size();
181
182
183

  assert(n == symbol_table.endo_nbr());

184
  using BipartiteGraph = boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS>;
185
186
187
188
189
190
191
192

  /*
    Vertices 0 to n-1 are for endogenous (using type specific ID)
    Vertices n to 2*n-1 are for equations (using equation no.)
  */
  BipartiteGraph g(2 * n);

  // Fill in the graph
193
  set<pair<int, int>> endo;
194

195
196
  for (const auto & it : contemporaneous_jacobian)
    add_edge(it.first.first + n, it.first.second, g);
197
198
199
200
201
202
203
204
205
206
207
208

  // Compute maximum cardinality matching
  vector<int> mate_map(2*n);

#if 1
  bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]);
#else // Alternative way to compute normalization, by giving an initial matching using natural normalizations
  fill(mate_map.begin(), mate_map.end(), graph_traits<BipartiteGraph>::null_vertex());

  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

209
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
210
211
212
213
214
215
216
217
218
219
220
221
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      int j = natural_endo2eqs.find(i)->second;

      put(&mate_map[0], i, n+j);
      put(&mate_map[0], n+j, i);
    }

  edmonds_augmenting_path_finder<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type> augmentor(g, &mate_map[0], get(vertex_index, g));
  bool not_maximum_yet = true;
222
  while (not_maximum_yet)
223
224
225
226
227
228
229
230
231
232
233
    {
      not_maximum_yet = augmentor.augment_matching();
    }
  augmentor.get_current_matching(&mate_map[0]);

  bool check = maximum_cardinality_matching_verifier<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type>::verify_matching(g, &mate_map[0], get(vertex_index, g));
#endif

  assert(check);

#ifdef DEBUG
234
  for (int i = 0; i < n; i++)
235
236
237
238
239
    cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
         << " matched with equation " << (mate_map[i]-n+1) << endl;
#endif

  // Create the resulting map, by copying the n first elements of mate_map, and substracting n to them
240
  endo2eq.resize(equations.size());
241
242
243
244
245
246
247
248
  transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), bind2nd(minus<int>(), n));

#ifdef DEBUG
  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

  int n1 = 0, n2 = 0;

249
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      n1++;

      pair<multimap<int, int>::const_iterator, multimap<int, int>::const_iterator> x = natural_endo2eqs.equal_range(i);
      if (find_if(x.first, x.second, compose1(bind2nd(equal_to<int>(), endo2eq[i]), select2nd<multimap<int, int>::value_type>())) == x.second)
        cout << "Natural normalization of variable " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
             << " not used." << endl;
      else
        n2++;
    }

  cout << "Used " << n2 << " natural normalizations out of " << n1 << ", for a total of " << n << " equations." << endl;
#endif

  // Check if all variables are normalized
268
  auto it = find(mate_map.begin(), mate_map.begin() + n, boost::graph_traits<BipartiteGraph>::null_vertex());
269
  if (it != mate_map.begin() + n)
sebastien's avatar
sebastien committed
270
271
272
    {
      if (verbose)
        cerr << "ERROR: Could not normalize the model. Variable "
273
             << symbol_table.getName(symbol_table.getID(SymbolType::endogenous, it - mate_map.begin()))
sebastien's avatar
sebastien committed
274
275
276
277
             << " is not in the maximum cardinality matching." << endl;
      check = false;
    }
  return check;
278
279
280
}

void
281
ModelTree::computeNonSingularNormalization(jacob_map_t &contemporaneous_jacobian, double cutoff, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian)
282
{
sebastien's avatar
sebastien committed
283
284
  bool check = false;

285
286
  cout << "Normalizing the model..." << endl;

287
  int n = equations.size();
288

sebastien's avatar
sebastien committed
289
290
  // compute the maximum value of each row of the contemporaneous Jacobian matrix
  //jacob_map normalized_contemporaneous_jacobian;
291
  jacob_map_t normalized_contemporaneous_jacobian(contemporaneous_jacobian);
sebastien's avatar
sebastien committed
292
  vector<double> max_val(n, 0.0);
293
  for (jacob_map_t::const_iterator iter = contemporaneous_jacobian.begin(); iter != contemporaneous_jacobian.end(); iter++)
sebastien's avatar
sebastien committed
294
295
    if (fabs(iter->second) > max_val[iter->first.first])
      max_val[iter->first.first] = fabs(iter->second);
296

297
298
  for (auto & iter : normalized_contemporaneous_jacobian)
    iter.second /= max_val[iter.first.first];
sebastien's avatar
sebastien committed
299
300
301
302
303
304

  //We start with the highest value of the cutoff and try to normalize the model
  double current_cutoff = 0.99999999;

  int suppressed = 0;
  while (!check && current_cutoff > 1e-19)
305
    {
306
      jacob_map_t tmp_normalized_contemporaneous_jacobian;
sebastien's avatar
sebastien committed
307
      int suppress = 0;
308
309
      for (auto & iter : normalized_contemporaneous_jacobian)
        if (fabs(iter.second) > max(current_cutoff, cutoff))
310
          tmp_normalized_contemporaneous_jacobian[{ iter.first.first, iter.first.second }] = iter.second;
sebastien's avatar
sebastien committed
311
312
313
314
315
316
317
        else
          suppress++;

      if (suppress != suppressed)
        check = computeNormalization(tmp_normalized_contemporaneous_jacobian, false);
      suppressed = suppress;
      if (!check)
318
        {
sebastien's avatar
sebastien committed
319
320
321
322
          current_cutoff /= 2;
          // In this last case try to normalize with the complete jacobian
          if (current_cutoff <= 1e-19)
            check = computeNormalization(normalized_contemporaneous_jacobian, false);
323
324
325
        }
    }

sebastien's avatar
sebastien committed
326
  if (!check)
327
    {
sebastien's avatar
sebastien committed
328
329
      cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
      //if no non-singular normalization can be found, try to find a normalization even with a potential singularity
330
      jacob_map_t tmp_normalized_contemporaneous_jacobian;
331
      set<pair<int, int>> endo;
sebastien's avatar
sebastien committed
332
      for (int i = 0; i < n; i++)
333
334
335
        {
          endo.clear();
          equations[i]->collectEndogenous(endo);
336
          for (const auto & it : endo)
337
            tmp_normalized_contemporaneous_jacobian[{ i, it.first }] = 1;
338
        }
sebastien's avatar
sebastien committed
339
340
      check = computeNormalization(tmp_normalized_contemporaneous_jacobian, true);
      if (check)
341
        {
sebastien's avatar
sebastien committed
342
          // Update the jacobian matrix
343
          for (jacob_map_t::const_iterator it = tmp_normalized_contemporaneous_jacobian.begin(); it != tmp_normalized_contemporaneous_jacobian.end(); it++)
sebastien's avatar
sebastien committed
344
            {
345
346
347
348
349
350
              if (static_jacobian.find({ it->first.first, it->first.second }) == static_jacobian.end())
                static_jacobian[{ it->first.first, it->first.second }] = 0;
              if (dynamic_jacobian.find({ 0, { it->first.first, it->first.second } }) == dynamic_jacobian.end())
                dynamic_jacobian[{ 0, { it->first.first, it->first.second } }] = nullptr;
              if (contemporaneous_jacobian.find({ it->first.first, it->first.second }) == contemporaneous_jacobian.end())
                contemporaneous_jacobian[{ it->first.first, it->first.second }] = 0;
351
352
              try
                {
353
354
                  if (first_derivatives.find({ it->first.first, getDerivID(symbol_table.getID(SymbolType::endogenous, it->first.second), 0) }) == first_derivatives.end())
                    first_derivatives[{ it->first.first, getDerivID(symbol_table.getID(SymbolType::endogenous, it->first.second), 0) }] = Zero;
355
                }
Stéphane Adjemian's avatar
Stéphane Adjemian committed
356
              catch (DataTree::UnknownDerivIDException &e)
357
                {
358
                  cerr << "The variable " << symbol_table.getName(symbol_table.getID(SymbolType::endogenous, it->first.second))
359
360
361
                       << " does not appear at the current period (i.e. with no lead and no lag); this case is not handled by the 'block' option of the 'model' block." << endl;
                  exit(EXIT_FAILURE);
                }
sebastien's avatar
sebastien committed
362
            }
363
364
        }
    }
sebastien's avatar
sebastien committed
365
366
367
368
369
370

  if (!check)
    {
      cerr << "No normalization could be computed. Aborting." << endl;
      exit(EXIT_FAILURE);
    }
371
372
373
374
375
}

void
ModelTree::computeNormalizedEquations(multimap<int, int> &endo2eqs) const
{
376
  for (size_t i = 0; i < equations.size(); i++)
377
    {
378
      auto *lhs = dynamic_cast<VariableNode *>(equations[i]->get_arg1());
379
      if (lhs == nullptr)
380
381
382
        continue;

      int symb_id = lhs->get_symb_id();
383
      if (symbol_table.getType(symb_id) != SymbolType::endogenous)
384
385
        continue;

386
      set<pair<int, int>> endo;
387
      equations[i]->get_arg2()->collectEndogenous(endo);
388
      if (endo.find({ symbol_table.getTypeSpecificID(symb_id), 0 }) != endo.end())
389
390
        continue;

391
      endo2eqs.emplace(symbol_table.getTypeSpecificID(symb_id), (int) i);
392
393
394
395
396
      cout << "Endogenous " << symbol_table.getName(symb_id) << " normalized in equation " << (i+1) << endl;
    }
}

void
397
ModelTree::evaluateAndReduceJacobian(const eval_context_t &eval_context, jacob_map_t &contemporaneous_jacobian, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian, double cutoff, bool verbose)
398
399
{
  int nb_elements_contemparenous_Jacobian = 0;
400
  set<pair<int, int>> jacobian_elements_to_delete;
401
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
402
403
404
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
405
      if (getTypeByDerivID(deriv_id) == SymbolType::endogenous)
406
        {
407
          expr_t Id = it->second;
408
409
410
411
412
413
414
415
416
          int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          int var = symbol_table.getTypeSpecificID(symb);
          int lag = getLagByDerivID(deriv_id);
          double val = 0;
          try
            {
              val = Id->eval(eval_context);
            }
417
418
419
420
          catch (ExprNode::EvalExternalFunctionException &e)
            {
              val = 1;
            }
421
422
          catch (ExprNode::EvalException &e)
            {
423
              cerr << "ERROR: evaluation of Jacobian failed for equation " << eq+1 << " (line " << equations_lineno[eq] << ") and variable " << symbol_table.getName(symb) << "(" << lag << ") [" << symb << "] !" << endl;
424
              Id->writeOutput(cerr, ExprNodeOutputType::matlabDynamicModelSparse, temporary_terms, {});
425
426
427
428
429
430
431
              cerr << endl;
              exit(EXIT_FAILURE);
            }
          if (fabs(val) < cutoff)
            {
              if (verbose)
                cout << "the coefficient related to variable " << var << " with lag " << lag << " in equation " << eq << " is equal to " << val << " and is set to 0 in the incidence matrix (size=" << symbol_table.endo_nbr() << ")" << endl;
432
              jacobian_elements_to_delete.emplace(eq, deriv_id);
433
434
435
436
437
438
            }
          else
            {
              if (lag == 0)
                {
                  nb_elements_contemparenous_Jacobian++;
439
                  contemporaneous_jacobian[{ eq, var }] = val;
440
                }
441
442
              if (static_jacobian.find({ eq, var }) != static_jacobian.end())
                static_jacobian[{ eq, var }] += val;
443
              else
444
445
                static_jacobian[{ eq, var }] = val;
              dynamic_jacobian[{ lag, { eq, var } }] = Id;
446
447
448
449
450
            }
        }
    }

  // Get rid of the elements of the Jacobian matrix below the cutoff
451
452
  for (const auto & it : jacobian_elements_to_delete)
    first_derivatives.erase(it);
453

454
  if (jacobian_elements_to_delete.size() > 0)
455
456
457
458
459
460
    {
      cout << jacobian_elements_to_delete.size() << " elements among " << first_derivatives.size() << " in the incidence matrices are below the cutoff (" << cutoff << ") and are discarded" << endl
           << "The contemporaneous incidence matrix has " << nb_elements_contemparenous_Jacobian << " elements" << endl;
    }
}

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
vector<pair<int, int> >
ModelTree::select_non_linear_equations_and_variables(vector<bool> is_equation_linear, const dynamic_jacob_map_t &dynamic_jacobian, vector<int> &equation_reordered, vector<int> &variable_reordered,
                                                     vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered,
                                                     lag_lead_vector_t &equation_lag_lead, lag_lead_vector_t &variable_lag_lead,
                                                     vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed)
{
  vector<int> eq2endo(equations.size(), 0);
  /*equation_reordered.resize(equations.size());
  variable_reordered.resize(equations.size());*/
  unsigned int num = 0;
  for (vector<int>::const_iterator it = endo2eq.begin(); it != endo2eq.end(); it++)
    if (!is_equation_linear[*it])
      num++;
  vector<int> endo2block = vector<int>(endo2eq.size(), 1);
  vector<pair<set<int>, pair<set<int>, vector<int> > > > components_set(num);
  int i = 0, j = 0;
  for (vector<int>::const_iterator it = endo2eq.begin(); it != endo2eq.end(); it++, j++)
    {
      if (!is_equation_linear[*it])
        {
          equation_reordered[i] = *it;
          variable_reordered[i] = j;
          endo2block[j] = 0;
          components_set[endo2block[j]].first.insert(i);
          /*cout << " -----------------------------------------" << endl;
          cout.flush();
          cout << "equation_reordered[" << *it << "] = " << i << endl;
          cout.flush();
          cout << "variable_reordered[" << j << "] = " << i << endl;
          cout.flush();
          cout << "components_set[" << endo2block[j] << "].first[" << i << "] = " << i << endl;
          cout << "endo2block[" << j << "] = " << 0 << endl;
          cout.flush();
          */
          i++;
        }
    }
/*  for (unsigned int j = 0; j < is_equation_linear.size() ; j++)
     cout << "endo2block[" << j << "] = " << endo2block[j] << endl;*/
  /*cout << "before getVariableLeadLAgByBlock\n";
  cout.flush();*/
  getVariableLeadLagByBlock(dynamic_jacobian, endo2block, endo2block.size(), equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);
  n_static = vector<unsigned int>(endo2eq.size(), 0);
  n_forward = vector<unsigned int>(endo2eq.size(), 0);
  n_backward = vector<unsigned int>(endo2eq.size(), 0);
  n_mixed = vector<unsigned int>(endo2eq.size(), 0);
  for (unsigned int i = 0; i < endo2eq.size(); i++)
    {
      if      (variable_lag_lead[variable_reordered[i]].first != 0 && variable_lag_lead[variable_reordered[i]].second != 0)
        n_mixed[i]++;
      else if (variable_lag_lead[variable_reordered[i]].first == 0 && variable_lag_lead[variable_reordered[i]].second != 0)
        n_forward[i]++;
      else if (variable_lag_lead[variable_reordered[i]].first != 0 && variable_lag_lead[variable_reordered[i]].second == 0)
        n_backward[i]++;
      else if (variable_lag_lead[variable_reordered[i]].first == 0 && variable_lag_lead[variable_reordered[i]].second == 0)
        n_static[i]++;
    }
  cout.flush();
  int nb_endo = is_equation_linear.size();
  vector<pair<int, int> > blocks = vector<pair<int, int> >(1, make_pair(i, i));
  inv_equation_reordered = vector<int>(nb_endo);
  inv_variable_reordered = vector<int>(nb_endo);
  for (int i = 0; i < nb_endo; i++)
    {
      inv_variable_reordered[variable_reordered[i]] = i;
      inv_equation_reordered[equation_reordered[i]] = i;
    }
  return blocks;
}

bool
ModelTree::computeNaturalNormalization()
{
  bool bool_result = true;
  set<pair<int, int> > result;
  endo2eq.resize(equations.size());
  for (int eq = 0; eq < (int) equations.size(); eq++)
    if (!is_equation_linear[eq])
      {
        BinaryOpNode *eq_node = equations[eq];
        expr_t lhs = eq_node->get_arg1();
        result.clear();
        lhs->collectDynamicVariables(SymbolType::endogenous, result);
        if (result.size() == 1 && result.begin()->second == 0)
          {
            //check if the endogenous variable has not been already used in an other match !
             vector<int>::iterator it = find(endo2eq.begin(), endo2eq.end(), result.begin()->first);
             if (it == endo2eq.end())
               endo2eq[result.begin()->first] = eq;
             else
              {
                bool_result = false;
                break;
              }
          }
      }
  return bool_result;
}

560
void
561
ModelTree::computePrologueAndEpilogue(const jacob_map_t &static_jacobian_arg, vector<int> &equation_reordered, vector<int> &variable_reordered)
562
{
563
564
565
  vector<int> eq2endo(equations.size(), 0);
  equation_reordered.resize(equations.size());
  variable_reordered.resize(equations.size());
566
  bool *IM;
567
  int n = equations.size();
568
  IM = (bool *) calloc(n*n, sizeof(bool));
569
  int i = 0;
570
  for (vector<int>::const_iterator it = endo2eq.begin(); it != endo2eq.end(); it++, i++)
571
572
573
574
    {
      eq2endo[*it] = i;
      equation_reordered[i] = i;
      variable_reordered[*it] = i;
Stéphane Adjemian's avatar
Stéphane Adjemian committed
575
576
577
    }
  if (cutoff == 0)
    {
578
      set<pair<int, int>> endo;
FerhatMihoubi's avatar
Fix :    
FerhatMihoubi committed
579
      for (int i = 0; i < n; i++)
Stéphane Adjemian's avatar
Stéphane Adjemian committed
580
        {
FerhatMihoubi's avatar
Fix :    
FerhatMihoubi committed
581
          endo.clear();
Stéphane Adjemian's avatar
Stéphane Adjemian committed
582
          equations[i]->collectEndogenous(endo);
583
584
          for (const auto & it : endo)
            IM[i * n + endo2eq[it.first]] = true;
Stéphane Adjemian's avatar
Stéphane Adjemian committed
585
586
587
        }
    }
  else
588
589
    for (const auto & it : static_jacobian_arg)
      IM[it.first.first * n + endo2eq[it.first.second]] = true;
590
591
592
593
594
595
596
597
  bool something_has_been_done = true;
  prologue = 0;
  int k = 0;
  // Find the prologue equations and place first the AR(1) shock equations first
  while (something_has_been_done)
    {
      int tmp_prologue = prologue;
      something_has_been_done = false;
598
      for (int i = prologue; i < n; i++)
599
600
        {
          int nze = 0;
601
602
          for (int j = tmp_prologue; j < n; j++)
            if (IM[i * n + j])
603
              {
604
                nze++;
605
606
                k = j;
              }
607
          if (nze == 1)
608
            {
609
              for (int j = 0; j < n; j++)
610
611
612
613
614
615
616
617
                {
                  bool tmp_bool = IM[tmp_prologue * n + j];
                  IM[tmp_prologue * n + j] = IM[i * n + j];
                  IM[i * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[tmp_prologue];
              equation_reordered[tmp_prologue] = equation_reordered[i];
              equation_reordered[i] = tmp;
618
              for (int j = 0; j < n; j++)
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
                {
                  bool tmp_bool = IM[j * n + tmp_prologue];
                  IM[j * n + tmp_prologue] = IM[j * n + k];
                  IM[j * n + k] = tmp_bool;
                }
              tmp = variable_reordered[tmp_prologue];
              variable_reordered[tmp_prologue] = variable_reordered[k];
              variable_reordered[k] = tmp;
              tmp_prologue++;
              something_has_been_done = true;
            }
        }
      prologue = tmp_prologue;
    }

  something_has_been_done = true;
  epilogue = 0;
  // Find the epilogue equations
  while (something_has_been_done)
    {
      int tmp_epilogue = epilogue;
      something_has_been_done = false;
641
      for (int i = prologue; i < n - (int) epilogue; i++)
642
643
        {
          int nze = 0;
644
645
          for (int j = prologue; j < n - tmp_epilogue; j++)
            if (IM[j * n + i])
646
              {
647
                nze++;
648
649
                k = j;
              }
650
          if (nze == 1)
651
            {
652
              for (int j = 0; j < n; j++)
653
654
655
656
657
658
659
660
                {
                  bool tmp_bool = IM[(n - 1 - tmp_epilogue) * n + j];
                  IM[(n - 1 - tmp_epilogue) * n + j] = IM[k * n + j];
                  IM[k * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[n - 1 - tmp_epilogue];
              equation_reordered[n - 1 - tmp_epilogue] = equation_reordered[k];
              equation_reordered[k] = tmp;
661
              for (int j = 0; j < n; j++)
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
                {
                  bool tmp_bool = IM[j * n + n - 1 - tmp_epilogue];
                  IM[j * n + n - 1 - tmp_epilogue] = IM[j * n + i];
                  IM[j * n + i] = tmp_bool;
                }
              tmp = variable_reordered[n - 1 - tmp_epilogue];
              variable_reordered[n - 1 - tmp_epilogue] = variable_reordered[i];
              variable_reordered[i] = tmp;
              tmp_epilogue++;
              something_has_been_done = true;
            }
        }
      epilogue = tmp_epilogue;
    }
  free(IM);
}

679
equation_type_and_normalized_equation_t
680
ModelTree::equationTypeDetermination(const map<pair<int, pair<int, int>>, expr_t> &first_order_endo_derivatives, const vector<int> &Index_Var_IM, const vector<int> &Index_Equ_IM, int mfs) const
681
{
682
  expr_t lhs;
683
684
  BinaryOpNode *eq_node;
  EquationType Equation_Simulation_Type;
685
  equation_type_and_normalized_equation_t V_Equation_Simulation_Type(equations.size());
686
687
688
689
690
691
692
  for (unsigned int i = 0; i < equations.size(); i++)
    {
      int eq = Index_Equ_IM[i];
      int var = Index_Var_IM[i];
      eq_node = equations[eq];
      lhs = eq_node->get_arg1();
      Equation_Simulation_Type = E_SOLVE;
693
      auto derivative = first_order_endo_derivatives.find({ eq, { var, 0 } });
694
      pair<bool, expr_t> res;
695
      if (derivative != first_order_endo_derivatives.end())
696
        {
697
          set<pair<int, int>> result;
698
          derivative->second->collectEndogenous(result);
699
          auto d_endo_variable = result.find({ var, 0 });
700
          //Determine whether the equation could be evaluated rather than to be solved
701
          if (lhs->isVariableNodeEqualTo(SymbolType::endogenous, Index_Var_IM[i], 0) && derivative->second->isNumConstNodeEqualTo(1))
702
703
704
705
706
            {
              Equation_Simulation_Type = E_EVALUATE;
            }
          else
            {
707
              vector<pair<int, pair<expr_t, expr_t>>> List_of_Op_RHS;
708
              res =  equations[eq]->normalizeEquation(var, List_of_Op_RHS);
709
              if (mfs == 2)
710
                {
711
                  if (d_endo_variable == result.end() && res.second)
712
713
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
714
              else if (mfs == 3)
715
                {
716
                  if (res.second) // The equation could be solved analytically
717
718
719
720
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
            }
        }
721
      V_Equation_Simulation_Type[eq] = { Equation_Simulation_Type, dynamic_cast<BinaryOpNode *>(res.second) };
722
723
724
725
726
    }
  return (V_Equation_Simulation_Type);
}

void
727
ModelTree::getVariableLeadLagByBlock(const dynamic_jacob_map_t &dynamic_jacobian, const vector<int> &components_set, int nb_blck_sim, lag_lead_vector_t &equation_lead_lag, lag_lead_vector_t &variable_lead_lag, const vector<int> &equation_reordered, const vector<int> &variable_reordered) const
728
729
{
  int nb_endo = symbol_table.endo_nbr();
730
731
  variable_lead_lag = lag_lead_vector_t(nb_endo, { 0, 0 });
  equation_lead_lag = lag_lead_vector_t(nb_endo, { 0, 0 });
732
733
734
  vector<int> variable_blck(nb_endo), equation_blck(nb_endo);
  for (int i = 0; i < nb_endo; i++)
    {
735
      if (i < (int) prologue)
736
737
738
739
        {
          variable_blck[variable_reordered[i]] = i;
          equation_blck[equation_reordered[i]] = i;
        }
740
      else if (i < (int) (components_set.size() + prologue))
741
742
743
744
745
746
747
748
749
750
        {
          variable_blck[variable_reordered[i]] = components_set[i-prologue] + prologue;
          equation_blck[equation_reordered[i]] = components_set[i-prologue] + prologue;
        }
      else
        {
          variable_blck[variable_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
          equation_blck[equation_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
        }
    }
751
  for (const auto & it : dynamic_jacobian)
752
    {
753
754
755
      int lag = it.first.first;
      int j_1 = it.first.second.first;
      int i_1 = it.first.second.second;
756
757
758
      if (variable_blck[i_1] == equation_blck[j_1])
        {
          if (lag > variable_lead_lag[i_1].second)
759
            variable_lead_lag[i_1] = { variable_lead_lag[i_1].first, lag };
760
          if (lag < -variable_lead_lag[i_1].first)
761
            variable_lead_lag[i_1] = { -lag, variable_lead_lag[i_1].second };
762
          if (lag > equation_lead_lag[j_1].second)
763
            equation_lead_lag[j_1] = { equation_lead_lag[j_1].first, lag };
764
          if (lag < -equation_lead_lag[j_1].first)
765
            equation_lead_lag[j_1] = { -lag, equation_lead_lag[j_1].second };
766
767
768
769
770
        }
    }
}

void
771
ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(const jacob_map_t &static_jacobian, const dynamic_jacob_map_t &dynamic_jacobian, vector<int> &equation_reordered, vector<int> &variable_reordered, vector<pair<int, int>> &blocks, const equation_type_and_normalized_equation_t &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs, vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered, lag_lead_vector_t &equation_lag_lead, lag_lead_vector_t &variable_lag_lead, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed) const
772
773
774
775
{
  int nb_var = variable_reordered.size();
  int n = nb_var - prologue - epilogue;

776
777
778
  AdjacencyList_t G2(n);

  // It is necessary to manually initialize vertex_index property since this graph uses listS and not vecS as underlying vertex container
779
  auto v_index = get(boost::vertex_index, G2);
780
781
  for (int i = 0; i < n; i++)
    put(v_index, vertex(i, G2), i);
782
783
784

  vector<int> reverse_equation_reordered(nb_var), reverse_variable_reordered(nb_var);

785
  for (int i = 0; i < nb_var; i++)
786
787
788
    {
      reverse_equation_reordered[equation_reordered[i]] = i;
      reverse_variable_reordered[variable_reordered[i]] = i;
Stéphane Adjemian's avatar
Stéphane Adjemian committed
789
790
791
792
    }
  jacob_map_t tmp_normalized_contemporaneous_jacobian;
  if (cutoff == 0)
    {
793
      set<pair<int, int>> endo;
FerhatMihoubi's avatar
Fix :    
FerhatMihoubi committed
794
      for (int i = 0; i < nb_var; i++)
Stéphane Adjemian's avatar
Stéphane Adjemian committed
795
        {
FerhatMihoubi's avatar
Fix :    
FerhatMihoubi committed
796
          endo.clear();
Stéphane Adjemian's avatar
Stéphane Adjemian committed
797
          equations[i]->collectEndogenous(endo);
798
          for (const auto & it : endo)
799
            tmp_normalized_contemporaneous_jacobian[{ i, it.first }] = 1;
Stéphane Adjemian's avatar
Stéphane Adjemian committed
800
801
802
803
804

        }
    }
  else
    tmp_normalized_contemporaneous_jacobian = static_jacobian;
FerhatMihoubi's avatar
Fix :    
FerhatMihoubi committed
805
  for (jacob_map_t::const_iterator it = tmp_normalized_contemporaneous_jacobian.begin(); it != tmp_normalized_contemporaneous_jacobian.end(); it++)
806
807
    if (reverse_equation_reordered[it->first.first] >= (int) prologue && reverse_equation_reordered[it->first.first] < (int) (nb_var - epilogue)
        && reverse_variable_reordered[it->first.second] >= (int) prologue && reverse_variable_reordered[it->first.second] < (int) (nb_var - epilogue)
808
        && it->first.first != endo2eq[it->first.second])
809
810
811
      add_edge(vertex(reverse_equation_reordered[endo2eq[it->first.second]]-prologue, G2),
               vertex(reverse_equation_reordered[it->first.first]-prologue, G2),
               G2);
812
813

  vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2));
814
  boost::iterator_property_map<int *, boost::property_map<AdjacencyList_t, boost::vertex_index_t>::type, int, int &> endo2block_map(&endo2block[0], get(boost::vertex_index, G2));
815
816

  // Compute strongly connected components
817
  int num = strong_components(G2, endo2block_map);
818

819
  blocks = vector<pair<int, int>>(num, { 0, 0 });
820
821

  // Create directed acyclic graph associated to the strongly connected components
822
  using DirectedGraph = boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS>;
823
824
  DirectedGraph dag(num);

825
  for (unsigned int i = 0; i < num_vertices(G2); i++)
826
    {
827
828
      AdjacencyList_t::out_edge_iterator it_out, out_end;
      AdjacencyList_t::vertex_descriptor vi = vertex(i, G2);
829
830
      for (tie(it_out, out_end) = out_edges(vi, G2); it_out != out_end; ++it_out)
        {
831
832
          int t_b = endo2block_map[target(*it_out, G2)];
          int s_b = endo2block_map[source(*it_out, G2)];
833
834
835
836
837
838
839
840
841
842
843
          if (s_b != t_b)
            add_edge(s_b, t_b, dag);
        }
    }

  // Compute topological sort of DAG (ordered list of unordered SCC)
  deque<int> ordered2unordered;
  topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order

  // Construct mapping from unordered SCC to ordered SCC
  vector<int> unordered2ordered(num);
844
  for (int i = 0; i < num; i++)
845
846
847
848
849
850
    unordered2ordered[ordered2unordered[i]] = i;

  //This vector contains for each block:
  //   - first set = equations belonging to the block,
  //   - second set = the feeback variables,
  //   - third vector = the reordered non-feedback variables.
851
  vector<pair<set<int>, pair<set<int>, vector<int>>>> components_set(num);
852
853
854
855
856
857
858
  for (unsigned int i = 0; i < endo2block.size(); i++)
    {
      endo2block[i] = unordered2ordered[endo2block[i]];
      blocks[endo2block[i]].first++;
      components_set[endo2block[i]].first.insert(i);
    }

859
  getVariableLeadLagByBlock(dynamic_jacobian, endo2block, num, equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);
860
861
862
863

  vector<int> tmp_equation_reordered(equation_reordered), tmp_variable_reordered(variable_reordered);
  int order = prologue;
  //Add a loop on vertices which could not be normalized or vertices related to lead variables => force those vertices to belong to the feedback set
864
  if (select_feedback_variable)
865
866
867
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE
868
869
870
871
872
            || variable_lag_lead[variable_reordered[i+prologue]].second > 0
            || variable_lag_lead[variable_reordered[i+prologue]].first > 0
            || equation_lag_lead[equation_reordered[i+prologue]].second > 0
            || equation_lag_lead[equation_reordered[i+prologue]].first > 0
            || mfs == 0)
873
          add_edge(vertex(i, G2), vertex(i, G2), G2);
874
875
876
877
878
    }
  else
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE || mfs == 0)
879
          add_edge(vertex(i, G2), vertex(i, G2), G2);
880
    }
881
882
883
884
885
886
  //Determines the dynamic structure of each equation
  n_static = vector<unsigned int>(prologue+num+epilogue, 0);
  n_forward = vector<unsigned int>(prologue+num+epilogue, 0);
  n_backward = vector<unsigned int>(prologue+num+epilogue, 0);
  n_mixed = vector<unsigned int>(prologue+num+epilogue, 0);

887
  for (int i = 0; i < (int) prologue; i++)
888
889
890
891
892
893
894
895
896
897
    {
      if      (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
        n_mixed[i]++;
      else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
        n_forward[i]++;
      else if (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
        n_backward[i]++;
      else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
        n_static[i]++;
    }
898
899
900
901
902
903
  //For each block, the minimum set of feedback variable is computed
  // and the non-feedback variables are reordered to get
  // a sub-recursive block without feedback variables

  for (int i = 0; i < num; i++)
    {
904
      AdjacencyList_t G = extract_subgraph(G2, components_set[i].first);
905
906
      set<int> feed_back_vertices;
      //Print(G);
907
      AdjacencyList_t G1 = Minimal_set_of_feedback_vertex(feed_back_vertices, G);
908
      auto v_index = get(boost::vertex_index, G);
909
910
911
912
913
914
      components_set[i].second.first = feed_back_vertices;
      blocks[i].second = feed_back_vertices.size();
      vector<int> Reordered_Vertice;
      Reorder_the_recursive_variables(G, feed_back_vertices, Reordered_Vertice);

      //First we have the recursive equations conditional on feedback variables
915
      for (int j = 0; j < 4; j++)
916
        {
917
          for (int & its : Reordered_Vertice)
918
919
            {
              bool something_done = false;
920
              if      (j == 2 && variable_lag_lead[tmp_variable_reordered[its +prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[its +prologue]].second != 0)
921
922
923
924
                {
                  n_mixed[prologue+i]++;
                  something_done = true;
                }
925
              else if (j == 3 && variable_lag_lead[tmp_variable_reordered[its +prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[its +prologue]].second != 0)
926
927
928
929
                {
                  n_forward[prologue+i]++;
                  something_done = true;
                }
930
              else if (j == 1 && variable_lag_lead[tmp_variable_reordered[its +prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[its +prologue]].second == 0)
931
932
933
934
                {
                  n_backward[prologue+i]++;
                  something_done = true;
                }
935
              else if (j == 0 && variable_lag_lead[tmp_variable_reordered[its +prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[its +prologue]].second == 0)
936
937
938
939
940
941
                {
                  n_static[prologue+i]++;
                  something_done = true;
                }
              if (something_done)
                {
942
943
                  equation_reordered[order] = tmp_equation_reordered[its+prologue];
                  variable_reordered[order] = tmp_variable_reordered[its+prologue];
944
945
946
                  order++;
                }
            }
947
948
949
        }
      components_set[i].second.second = Reordered_Vertice;
      //Second we have the equations related to the feedback variables
950
      for (int j = 0; j < 4; j++)
951
        {
952
          for (int feed_back_vertice : feed_back_vertices)
953
954
            {
              bool something_done = false;
955
              if      (j == 2 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].second != 0)
956
957
958
959
                {
                  n_mixed[prologue+i]++;
                  something_done = true;
                }
960
              else if (j == 3 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].second != 0)
961
962
963
964
                {
                  n_forward[prologue+i]++;
                  something_done = true;
                }
965
              else if (j == 1 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].second == 0)
966
967
968
969
                {
                  n_backward[prologue+i]++;
                  something_done = true;
                }
970
              else if (j == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].second == 0)
971
972
973
974
975
976
                {
                  n_static[prologue+i]++;
                  something_done = true;
                }
              if (something_done)
                {
977
978
                  equation_reordered[order] = tmp_equation_reordered[v_index[vertex(feed_back_vertice, G)]+prologue];
                  variable_reordered[order] = tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue];
979
980
981
                  order++;
                }
            }
982
983
        }
    }
984

985
  for (int i = 0; i < (int) epilogue; i++)
986
    {
987
      if      (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second != 0)
988
        n_mixed[prologue+num+i]++;
989
      else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second != 0)
990
        n_forward[prologue+num+i]++;
991
      else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second == 0)
992
        n_backward[prologue+num+i]++;
993
      else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second == 0)
994
995
996
        n_static[prologue+num+i]++;
    }

997
998
  inv_equation_reordered = vector<int>(nb_var);
  inv_variable_reordered = vector<int>(nb_var);
999
  for (int i = 0; i < nb_var; i++)
1000
1001
1002
1003
1004
1005
    {
      inv_variable_reordered[variable_reordered[i]] = i;
      inv_equation_reordered[equation_reordered[i]] = i;
    }
}

1006
void
1007
ModelTree::printBlockDecomposition(const vector<pair<int, int>> &blocks) const
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
{
  int largest_block = 0;
  int Nb_SimulBlocks = 0;
  int Nb_feedback_variable = 0;
  unsigned int Nb_TotalBlocks = getNbBlocks();
  for (unsigned int block = 0; block < Nb_TotalBlocks; block++)
    {
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
        {
          Nb_SimulBlocks++;
          int size = getBlockSize(block);
          if (size > largest_block)
            {
              largest_block = size;
1023
              Nb_feedback_variable = getBlockMfs(block);
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
            }
        }
    }

  int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
  cout << Nb_TotalBlocks << " block(s) found:" << endl
       << "  " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks << " simultaneous block(s)." << endl
       << "  the largest simultaneous block has " << largest_block << " equation(s)" << endl
       << "                                 and " << Nb_feedback_variable << " feedback variable(s)." << endl;
}

1035
block_type_firstequation_size_mfs_t
1036
ModelTree::reduceBlocksAndTypeDetermination(const dynamic_jacob_map_t &dynamic_jacobian, vector<pair<int, int>> &blocks, const equation_type_and_normalized_equation_t &Equation_Type, const vector<int> &variable_reordered, const vector<int> &equation_reordered, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed, vector<pair< pair<int, int>, pair<int, int>>> &block_col_type, bool linear_decomposition)
1037
1038
1039
1040
1041
{
  int i = 0;
  int count_equ = 0, blck_count_simult = 0;
  int Blck_Size, MFS_Size;
  int Lead, Lag;
1042
  block_type_firstequation_size_mfs_t block_type_size_mfs;
1043
1044
  BlockSimulationType Simulation_Type, prev_Type = UNKNOWN;
  int eq = 0;
1045
1046
1047
1048
  unsigned int l_n_static = 0;
  unsigned int l_n_forward = 0;
  unsigned int l_n_backward = 0;
  unsigned int l_n_mixed = 0;
1049
  for (i = 0; i < (int) (prologue+blocks.size()+epilogue); i++)
1050
1051
    {
      int first_count_equ = count_equ;
1052
      if (i < (int) prologue)
1053
1054
1055
1056
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }