ModelTree.cc 41.5 KB
Newer Older
1
/*
sebastien's avatar
trunk:    
sebastien committed
2
 * Copyright (C) 2003-2009 Dynare Team
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
#include <cstdlib>
21
#include <cassert>
22
#include <iostream>
23
#include <fstream>
24
25

#include "ModelTree.hh"
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include "MinimumFeedbackSet.hh"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/strong_components.hpp>
#include <boost/graph/topological_sort.hpp>

using namespace boost;
using namespace MFS;

void
ModelTree::computeNormalization(const set<pair<int, int> > &endo_eqs_incidence) throw (NormalizationException)
{
  const int n = equation_number();

  assert(n == symbol_table.endo_nbr());

  typedef adjacency_list<vecS, vecS, undirectedS> BipartiteGraph;

  /*
    Vertices 0 to n-1 are for endogenous (using type specific ID)
    Vertices n to 2*n-1 are for equations (using equation no.)
  */
  BipartiteGraph g(2 * n);

  // Fill in the graph
  set<pair<int, int> > endo;

53
  for (set<pair<int, int> >::const_iterator it = endo_eqs_incidence.begin(); it != endo_eqs_incidence.end(); it++)
54
55
56
57
58
59
60
61
62
63
64
65
66
    add_edge(it->first + n, it->second, g);

  // Compute maximum cardinality matching
  vector<int> mate_map(2*n);

#if 1
  bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]);
#else // Alternative way to compute normalization, by giving an initial matching using natural normalizations
  fill(mate_map.begin(), mate_map.end(), graph_traits<BipartiteGraph>::null_vertex());

  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

67
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
68
69
70
71
72
73
74
75
76
77
78
79
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      int j = natural_endo2eqs.find(i)->second;

      put(&mate_map[0], i, n+j);
      put(&mate_map[0], n+j, i);
    }

  edmonds_augmenting_path_finder<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type> augmentor(g, &mate_map[0], get(vertex_index, g));
  bool not_maximum_yet = true;
80
  while (not_maximum_yet)
81
82
83
84
85
86
87
88
89
90
91
    {
      not_maximum_yet = augmentor.augment_matching();
    }
  augmentor.get_current_matching(&mate_map[0]);

  bool check = maximum_cardinality_matching_verifier<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type>::verify_matching(g, &mate_map[0], get(vertex_index, g));
#endif

  assert(check);

#ifdef DEBUG
92
  for (int i = 0; i < n; i++)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
         << " matched with equation " << (mate_map[i]-n+1) << endl;
#endif

  // Create the resulting map, by copying the n first elements of mate_map, and substracting n to them
  endo2eq.resize(equation_number());
  transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), bind2nd(minus<int>(), n));

#ifdef DEBUG
  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

  int n1 = 0, n2 = 0;

107
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      n1++;

      pair<multimap<int, int>::const_iterator, multimap<int, int>::const_iterator> x = natural_endo2eqs.equal_range(i);
      if (find_if(x.first, x.second, compose1(bind2nd(equal_to<int>(), endo2eq[i]), select2nd<multimap<int, int>::value_type>())) == x.second)
        cout << "Natural normalization of variable " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
             << " not used." << endl;
      else
        n2++;
    }

  cout << "Used " << n2 << " natural normalizations out of " << n1 << ", for a total of " << n << " equations." << endl;
#endif

  // Check if all variables are normalized
  vector<int>::const_iterator it = find(mate_map.begin(), mate_map.begin() + n, graph_traits<BipartiteGraph>::null_vertex());
  if (it != mate_map.begin() + n)
    throw NormalizationException(symbol_table.getID(eEndogenous, it - mate_map.begin()));
}

void
ModelTree::computePossiblySingularNormalization(const jacob_map &contemporaneous_jacobian, bool try_symbolic)
{
  cout << "Normalizing the model..." << endl;

  set<pair<int, int> > endo_eqs_incidence;

138
139
  for (jacob_map::const_iterator it = contemporaneous_jacobian.begin();
       it != contemporaneous_jacobian.end(); it++)
140
141
142
143
144
145
146
    endo_eqs_incidence.insert(make_pair(it->first.first, it->first.second));

  try
    {
      computeNormalization(endo_eqs_incidence);
      return;
    }
147
  catch (NormalizationException &e)
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    {
      if (try_symbolic)
        cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
      else
        {
          cerr << "ERROR: Could not normalize the model. Variable "
               << symbol_table.getName(e.symb_id)
               << " is not in the maximum cardinality matching. Try to decrease the cutoff." << endl;
          exit(EXIT_FAILURE);
        }
    }

  // If no non-singular normalization can be found, try to find a normalization even with a potential singularity
  if (try_symbolic)
    {
      endo_eqs_incidence.clear();
      set<pair<int, int> > endo;
165
      for (int i = 0; i < equation_number(); i++)
166
167
168
        {
          endo.clear();
          equations[i]->collectEndogenous(endo);
169
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
170
171
172
173
174
175
176
            endo_eqs_incidence.insert(make_pair(i, it->first));
        }

      try
        {
          computeNormalization(endo_eqs_incidence);
        }
177
      catch (NormalizationException &e)
178
179
180
181
182
183
184
185
186
187
188
189
        {
          cerr << "ERROR: Could not normalize the model even with zero cutoff. Variable "
               << symbol_table.getName(e.symb_id)
               << " is not in the maximum cardinality matching." << endl;
          exit(EXIT_FAILURE);
        }
    }
}

void
ModelTree::computeNormalizedEquations(multimap<int, int> &endo2eqs) const
{
190
  for (int i = 0; i < equation_number(); i++)
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    {
      VariableNode *lhs = dynamic_cast<VariableNode *>(equations[i]->get_arg1());
      if (lhs == NULL)
        continue;

      int symb_id = lhs->get_symb_id();
      if (symbol_table.getType(symb_id) != eEndogenous)
        continue;

      set<pair<int, int> > endo;
      equations[i]->get_arg2()->collectEndogenous(endo);
      if (endo.find(make_pair(symbol_table.getTypeSpecificID(symb_id), 0)) != endo.end())
        continue;

      endo2eqs.insert(make_pair(symbol_table.getTypeSpecificID(symb_id), i));
      cout << "Endogenous " << symbol_table.getName(symb_id) << " normalized in equation " << (i+1) << endl;
    }
}

void
ModelTree::evaluateAndReduceJacobian(const eval_context_type &eval_context, jacob_map &contemporaneous_jacobian, jacob_map &static_jacobian, dynamic_jacob_map &dynamic_jacobian, double cutoff, bool verbose)
{
  int nb_elements_contemparenous_Jacobian = 0;
  set<pair<int, int> > jacobian_elements_to_delete;
  for (first_derivatives_type::iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
          NodeID Id = it->second;
          int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          int var = symbol_table.getTypeSpecificID(symb);
          int lag = getLagByDerivID(deriv_id);
          double val = 0;
          try
            {
              val = Id->eval(eval_context);
            }
          catch (ExprNode::EvalException &e)
            {
              cerr << "ERROR: evaluation of Jacobian failed for equation " << eq+1 << " and variable " << symbol_table.getName(symb) << "(" << lag << ") [" << symb << "] !" << endl;
              Id->writeOutput(cerr, oMatlabDynamicModelSparse, temporary_terms);
              cerr << endl;
              exit(EXIT_FAILURE);
            }

          if (fabs(val) < cutoff)
            {
              if (verbose)
                cout << "the coefficient related to variable " << var << " with lag " << lag << " in equation " << eq << " is equal to " << val << " and is set to 0 in the incidence matrix (size=" << symbol_table.endo_nbr() << ")" << endl;
              jacobian_elements_to_delete.insert(make_pair(eq, deriv_id));
            }
          else
            {
              if (lag == 0)
                {
                  nb_elements_contemparenous_Jacobian++;
250
                  contemporaneous_jacobian[make_pair(eq, var)] = val;
251
252
253
254
255
256
257
258
259
260
261
                }
              if (static_jacobian.find(make_pair(eq, var)) != static_jacobian.end())
                static_jacobian[make_pair(eq, var)] += val;
              else
                static_jacobian[make_pair(eq, var)] = val;
              dynamic_jacobian[make_pair(lag, make_pair(eq, var))] = Id;
            }
        }
    }

  // Get rid of the elements of the Jacobian matrix below the cutoff
262
  for (set<pair<int, int> >::const_iterator it = jacobian_elements_to_delete.begin(); it != jacobian_elements_to_delete.end(); it++)
263
264
    first_derivatives.erase(*it);

265
  if (jacobian_elements_to_delete.size() > 0)
266
267
268
269
270
271
272
273
274
    {
      cout << jacobian_elements_to_delete.size() << " elements among " << first_derivatives.size() << " in the incidence matrices are below the cutoff (" << cutoff << ") and are discarded" << endl
           << "The contemporaneous incidence matrix has " << nb_elements_contemparenous_Jacobian << " elements" << endl;
    }
}

void
ModelTree::computePrologueAndEpilogue(jacob_map &static_jacobian_arg, vector<int> &equation_reordered, vector<int> &variable_reordered, unsigned int &prologue, unsigned int &epilogue)
{
275
  vector<int> eq2endo(equation_number(), 0);
276
277
278
279
  equation_reordered.resize(equation_number());
  variable_reordered.resize(equation_number());
  bool *IM;
  int n = equation_number();
280
  IM = (bool *) calloc(n*n, sizeof(bool));
281
  int i = 0;
282
  for (vector<int>::const_iterator it = endo2eq.begin(); it != endo2eq.end(); it++, i++)
283
284
285
286
287
    {
      eq2endo[*it] = i;
      equation_reordered[i] = i;
      variable_reordered[*it] = i;
    }
288
  for (jacob_map::const_iterator it = static_jacobian_arg.begin(); it != static_jacobian_arg.end(); it++)
289
290
291
292
293
294
295
296
297
    IM[it->first.first * n + endo2eq[it->first.second]] = true;
  bool something_has_been_done = true;
  prologue = 0;
  int k = 0;
  // Find the prologue equations and place first the AR(1) shock equations first
  while (something_has_been_done)
    {
      int tmp_prologue = prologue;
      something_has_been_done = false;
298
      for (int i = prologue; i < n; i++)
299
300
        {
          int nze = 0;
301
302
          for (int j = tmp_prologue; j < n; j++)
            if (IM[i * n + j])
303
              {
304
                nze++;
305
306
                k = j;
              }
307
          if (nze == 1)
308
            {
309
              for (int j = 0; j < n; j++)
310
311
312
313
314
315
316
317
                {
                  bool tmp_bool = IM[tmp_prologue * n + j];
                  IM[tmp_prologue * n + j] = IM[i * n + j];
                  IM[i * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[tmp_prologue];
              equation_reordered[tmp_prologue] = equation_reordered[i];
              equation_reordered[i] = tmp;
318
              for (int j = 0; j < n; j++)
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
                {
                  bool tmp_bool = IM[j * n + tmp_prologue];
                  IM[j * n + tmp_prologue] = IM[j * n + k];
                  IM[j * n + k] = tmp_bool;
                }
              tmp = variable_reordered[tmp_prologue];
              variable_reordered[tmp_prologue] = variable_reordered[k];
              variable_reordered[k] = tmp;
              tmp_prologue++;
              something_has_been_done = true;
            }
        }
      prologue = tmp_prologue;
    }

  something_has_been_done = true;
  epilogue = 0;
  // Find the epilogue equations
  while (something_has_been_done)
    {
      int tmp_epilogue = epilogue;
      something_has_been_done = false;
341
      for (int i = prologue; i < n - (int) epilogue; i++)
342
343
        {
          int nze = 0;
344
345
          for (int j = prologue; j < n - tmp_epilogue; j++)
            if (IM[j * n + i])
346
              {
347
                nze++;
348
349
                k = j;
              }
350
          if (nze == 1)
351
            {
352
              for (int j = 0; j < n; j++)
353
354
355
356
357
358
359
360
                {
                  bool tmp_bool = IM[(n - 1 - tmp_epilogue) * n + j];
                  IM[(n - 1 - tmp_epilogue) * n + j] = IM[k * n + j];
                  IM[k * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[n - 1 - tmp_epilogue];
              equation_reordered[n - 1 - tmp_epilogue] = equation_reordered[k];
              equation_reordered[k] = tmp;
361
              for (int j = 0; j < n; j++)
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
                {
                  bool tmp_bool = IM[j * n + n - 1 - tmp_epilogue];
                  IM[j * n + n - 1 - tmp_epilogue] = IM[j * n + i];
                  IM[j * n + i] = tmp_bool;
                }
              tmp = variable_reordered[n - 1 - tmp_epilogue];
              variable_reordered[n - 1 - tmp_epilogue] = variable_reordered[i];
              variable_reordered[i] = tmp;
              tmp_epilogue++;
              something_has_been_done = true;
            }
        }
      epilogue = tmp_epilogue;
    }
  free(IM);
}

t_equation_type_and_normalized_equation
ModelTree::equationTypeDetermination(vector<BinaryOpNode *> &equations, map<pair<int, pair<int, int> >, NodeID> &first_order_endo_derivatives, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM, int mfs)
{
  NodeID lhs, rhs;
  ostringstream tmp_output;
  BinaryOpNode *eq_node;
  ostringstream tmp_s;
  temporary_terms_type temporary_terms;
  EquationType Equation_Simulation_Type;
  t_equation_type_and_normalized_equation V_Equation_Simulation_Type(equations.size());
  for (unsigned int i = 0; i < equations.size(); i++)
    {
      temporary_terms.clear();
      int eq = Index_Equ_IM[i];
      int var = Index_Var_IM[i];
      eq_node = equations[eq];
      lhs = eq_node->get_arg1();
      rhs = eq_node->get_arg2();
      Equation_Simulation_Type = E_SOLVE;
      tmp_s.str("");
      tmp_output.str("");
      lhs->writeOutput(tmp_output, oMatlabDynamicModelSparse, temporary_terms);
      tmp_s << "y(it_, " << Index_Var_IM[i]+1 << ")";
      map<pair<int, pair<int, int> >, NodeID>::iterator derivative = first_order_endo_derivatives.find(make_pair(eq, make_pair(var, 0)));
      pair<bool, NodeID> res;
404
      if (derivative != first_order_endo_derivatives.end())
405
406
407
408
409
410
411
        {
          set<pair<int, int> > result;
          derivative->second->collectEndogenous(result);
          set<pair<int, int> >::const_iterator d_endo_variable = result.find(make_pair(var, 0));
          //Determine whether the equation could be evaluated rather than to be solved
          ostringstream tt("");
          derivative->second->writeOutput(tt, oMatlabDynamicModelSparse, temporary_terms);
412
          if (tmp_output.str() == tmp_s.str() and tt.str() == "1")
413
414
415
416
417
            {
              Equation_Simulation_Type = E_EVALUATE;
            }
          else
            {
418
              vector<pair<int, pair<NodeID, NodeID> > > List_of_Op_RHS;
419
              res =  equations[eq]->normalizeEquation(var, List_of_Op_RHS);
420
              if (mfs == 2)
421
                {
422
                  if (d_endo_variable == result.end() && res.second)
423
424
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
425
              else if (mfs == 3)
426
                {
427
                  if (res.second) // The equation could be solved analytically
428
429
430
431
432
433
434
435
436
437
438
439
440
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
            }
        }
      V_Equation_Simulation_Type[eq] = make_pair(Equation_Simulation_Type, dynamic_cast<BinaryOpNode *>(res.second));
    }
  return (V_Equation_Simulation_Type);
}

void
ModelTree::getVariableLeadLagByBlock(dynamic_jacob_map &dynamic_jacobian, vector<int > &components_set, int nb_blck_sim, int prologue, int epilogue, t_lag_lead_vector &equation_lead_lag, t_lag_lead_vector &variable_lead_lag, vector<int> equation_reordered, vector<int> variable_reordered) const
{
  int nb_endo = symbol_table.endo_nbr();
441
442
  variable_lead_lag = t_lag_lead_vector(nb_endo, make_pair(0, 0));
  equation_lead_lag = t_lag_lead_vector(nb_endo, make_pair(0, 0));
443
444
445
446
447
448
449
450
  vector<int> variable_blck(nb_endo), equation_blck(nb_endo);
  for (int i = 0; i < nb_endo; i++)
    {
      if (i < prologue)
        {
          variable_blck[variable_reordered[i]] = i;
          equation_blck[equation_reordered[i]] = i;
        }
451
      else if (i < (int) components_set.size() + prologue)
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
        {
          variable_blck[variable_reordered[i]] = components_set[i-prologue] + prologue;
          equation_blck[equation_reordered[i]] = components_set[i-prologue] + prologue;
        }
      else
        {
          variable_blck[variable_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
          equation_blck[equation_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
        }
    }
  for (dynamic_jacob_map::const_iterator it = dynamic_jacobian.begin(); it != dynamic_jacobian.end(); it++)
    {
      int lag = it->first.first;
      int j_1 = it->first.second.second;
      int i_1 = it->first.second.second;
      if (variable_blck[i_1] == equation_blck[j_1])
        {
          if (lag > variable_lead_lag[i_1].second)
            variable_lead_lag[i_1] = make_pair(variable_lead_lag[i_1].first, lag);
          if (lag < -variable_lead_lag[i_1].first)
            variable_lead_lag[i_1] = make_pair(-lag, variable_lead_lag[i_1].second);
          if (lag > equation_lead_lag[j_1].second)
            equation_lead_lag[j_1] = make_pair(equation_lead_lag[j_1].first, lag);
          if (lag < -equation_lead_lag[j_1].first)
            equation_lead_lag[j_1] = make_pair(-lag, equation_lead_lag[j_1].second);
        }
    }
}

void
ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(jacob_map &static_jacobian, dynamic_jacob_map &dynamic_jacobian, int prologue, int epilogue, vector<int> &equation_reordered, vector<int> &variable_reordered, vector<pair<int, int> > &blocks, t_equation_type_and_normalized_equation &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs, vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered) const
{
  int nb_var = variable_reordered.size();
  int n = nb_var - prologue - epilogue;
  typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;

  GraphvizDigraph G2(n);

  vector<int> reverse_equation_reordered(nb_var), reverse_variable_reordered(nb_var);

492
  for (int i = 0; i < nb_var; i++)
493
494
495
496
497
    {
      reverse_equation_reordered[equation_reordered[i]] = i;
      reverse_variable_reordered[variable_reordered[i]] = i;
    }

498
499
500
501
502
  for (jacob_map::const_iterator it = static_jacobian.begin(); it != static_jacobian.end(); it++)
    if (reverse_equation_reordered[it->first.first] >= prologue && reverse_equation_reordered[it->first.first] < nb_var - epilogue
        && reverse_variable_reordered[it->first.second] >= prologue && reverse_variable_reordered[it->first.second] < nb_var - epilogue
        && it->first.first != endo2eq[it->first.second])
      add_edge(reverse_equation_reordered[it->first.first]-prologue, reverse_equation_reordered[endo2eq[it->first.second]]-prologue, G2);
503
504
505
506
507
508
509
510
511
512
513
514

  vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2));

  // Compute strongly connected components
  int num = strong_components(G2, &endo2block[0]);

  blocks = vector<pair<int, int> >(num, make_pair(0, 0));

  // Create directed acyclic graph associated to the strongly connected components
  typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;
  DirectedGraph dag(num);

515
  for (unsigned int i = 0; i < num_vertices(G2); i++)
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    {
      GraphvizDigraph::out_edge_iterator it_out, out_end;
      GraphvizDigraph::vertex_descriptor vi = vertex(i, G2);
      for (tie(it_out, out_end) = out_edges(vi, G2); it_out != out_end; ++it_out)
        {
          int t_b = endo2block[target(*it_out, G2)];
          int s_b = endo2block[source(*it_out, G2)];
          if (s_b != t_b)
            add_edge(s_b, t_b, dag);
        }
    }

  // Compute topological sort of DAG (ordered list of unordered SCC)
  deque<int> ordered2unordered;
  topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order

  // Construct mapping from unordered SCC to ordered SCC
  vector<int> unordered2ordered(num);
534
  for (int i = 0; i < num; i++)
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
    unordered2ordered[ordered2unordered[i]] = i;

  //This vector contains for each block:
  //   - first set = equations belonging to the block,
  //   - second set = the feeback variables,
  //   - third vector = the reordered non-feedback variables.
  vector<pair<set<int>, pair<set<int>, vector<int> > > > components_set(num);
  for (unsigned int i = 0; i < endo2block.size(); i++)
    {
      endo2block[i] = unordered2ordered[endo2block[i]];
      blocks[endo2block[i]].first++;
      components_set[endo2block[i]].first.insert(i);
    }

  t_lag_lead_vector equation_lag_lead, variable_lag_lead;

  getVariableLeadLagByBlock(dynamic_jacobian, endo2block, num, prologue, epilogue, equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);

  vector<int> tmp_equation_reordered(equation_reordered), tmp_variable_reordered(variable_reordered);
  int order = prologue;
  //Add a loop on vertices which could not be normalized or vertices related to lead variables => force those vertices to belong to the feedback set
556
  if (select_feedback_variable)
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE
            or variable_lag_lead[variable_reordered[i+prologue]].second > 0 or variable_lag_lead[variable_reordered[i+prologue]].first > 0
            or equation_lag_lead[equation_reordered[i+prologue]].second > 0 or equation_lag_lead[equation_reordered[i+prologue]].first > 0
            or mfs == 0)
          add_edge(i, i, G2);
    }
  else
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE || mfs == 0)
          add_edge(i, i, G2);
    }
  //For each block, the minimum set of feedback variable is computed
  // and the non-feedback variables are reordered to get
  // a sub-recursive block without feedback variables

  for (int i = 0; i < num; i++)
    {
      AdjacencyList_type G = GraphvizDigraph_2_AdjacencyList(G2, components_set[i].first);
      set<int> feed_back_vertices;
      //Print(G);
      AdjacencyList_type G1 = Minimal_set_of_feedback_vertex(feed_back_vertices, G);
      property_map<AdjacencyList_type, vertex_index_t>::type v_index = get(vertex_index, G);
      components_set[i].second.first = feed_back_vertices;
      blocks[i].second = feed_back_vertices.size();
      vector<int> Reordered_Vertice;
      Reorder_the_recursive_variables(G, feed_back_vertices, Reordered_Vertice);

      //First we have the recursive equations conditional on feedback variables
      for (vector<int>::iterator its = Reordered_Vertice.begin(); its != Reordered_Vertice.end(); its++)
        {
          equation_reordered[order] = tmp_equation_reordered[*its+prologue];
          variable_reordered[order] = tmp_variable_reordered[*its+prologue];
          order++;
        }
      components_set[i].second.second = Reordered_Vertice;
      //Second we have the equations related to the feedback variables
      for (set<int>::iterator its = feed_back_vertices.begin(); its != feed_back_vertices.end(); its++)
        {
          equation_reordered[order] = tmp_equation_reordered[v_index[vertex(*its, G)]+prologue];
          variable_reordered[order] = tmp_variable_reordered[v_index[vertex(*its, G)]+prologue];
          order++;
        }
    }
  inv_equation_reordered = vector<int>(nb_var);
  inv_variable_reordered = vector<int>(nb_var);
605
  for (int i = 0; i < nb_var; i++)
606
607
608
609
610
611
    {
      inv_variable_reordered[variable_reordered[i]] = i;
      inv_equation_reordered[equation_reordered[i]] = i;
    }
}

612
613
void
ModelTree::printBlockDecomposition(vector<pair<int, int> > blocks)
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
{
  int largest_block = 0;
  int Nb_SimulBlocks = 0;
  int Nb_feedback_variable = 0;
  unsigned int Nb_TotalBlocks = getNbBlocks();
  for (unsigned int block = 0; block < Nb_TotalBlocks; block++)
    {
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
        {
          Nb_SimulBlocks++;
          int size = getBlockSize(block);
          if (size > largest_block)
            {
              largest_block = size;
              Nb_feedback_variable = blocks[Nb_SimulBlocks-1].second;
            }
        }
    }

  int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
  cout << Nb_TotalBlocks << " block(s) found:" << endl
       << "  " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks << " simultaneous block(s)." << endl
       << "  the largest simultaneous block has " << largest_block << " equation(s)" << endl
       << "                                 and " << Nb_feedback_variable << " feedback variable(s)." << endl;
}

t_block_type_firstequation_size_mfs
ModelTree::reduceBlocksAndTypeDetermination(dynamic_jacob_map &dynamic_jacobian, int prologue, int epilogue, vector<pair<int, int> > &blocks, vector<BinaryOpNode *> &equations, t_equation_type_and_normalized_equation &Equation_Type, vector<int> &variable_reordered, vector<int> &equation_reordered)
{
  int i = 0;
  int count_equ = 0, blck_count_simult = 0;
  int Blck_Size, MFS_Size;
  int Lead, Lag;
  t_block_type_firstequation_size_mfs block_type_size_mfs;
  BlockSimulationType Simulation_Type, prev_Type = UNKNOWN;
  int eq = 0;
  for (i = 0; i < prologue+(int) blocks.size()+epilogue; i++)
    {
      int first_count_equ = count_equ;
      if (i < prologue)
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }
      else if (i < prologue+(int) blocks.size())
        {
          Blck_Size = blocks[blck_count_simult].first;
          MFS_Size = blocks[blck_count_simult].second;
          blck_count_simult++;
        }
      else if (i < prologue+(int) blocks.size()+epilogue)
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }

      Lag = Lead = 0;
      set<pair<int, int> > endo;
673
      for (count_equ  = first_count_equ; count_equ  < Blck_Size+first_count_equ; count_equ++)
674
675
676
677
678
679
680
681
        {
          endo.clear();
          equations[equation_reordered[count_equ]]->collectEndogenous(endo);
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
            {
              int curr_variable = it->first;
              int curr_lag = it->second;
              vector<int>::const_iterator it = find(variable_reordered.begin()+first_count_equ, variable_reordered.begin()+(first_count_equ+Blck_Size), curr_variable);
682
              if (it != variable_reordered.begin()+(first_count_equ+Blck_Size))
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
                if (dynamic_jacobian.find(make_pair(curr_lag, make_pair(equation_reordered[count_equ], curr_variable))) != dynamic_jacobian.end())
                  {
                    if (curr_lag > Lead)
                      Lead = curr_lag;
                    else if (-curr_lag > Lag)
                      Lag = -curr_lag;
                  }
            }
        }
      if ((Lag > 0) && (Lead > 0))
        {
          if (Blck_Size == 1)
            Simulation_Type = SOLVE_TWO_BOUNDARIES_SIMPLE;
          else
            Simulation_Type = SOLVE_TWO_BOUNDARIES_COMPLETE;
        }
      else if (Blck_Size > 1)
        {
          if (Lead > 0)
            Simulation_Type = SOLVE_BACKWARD_COMPLETE;
          else
            Simulation_Type = SOLVE_FORWARD_COMPLETE;
        }
      else
        {
          if (Lead > 0)
            Simulation_Type = SOLVE_BACKWARD_SIMPLE;
          else
            Simulation_Type = SOLVE_FORWARD_SIMPLE;
        }
      if (Blck_Size == 1)
        {
          if (Equation_Type[equation_reordered[eq]].first == E_EVALUATE or Equation_Type[equation_reordered[eq]].first == E_EVALUATE_S)
            {
              if (Simulation_Type == SOLVE_BACKWARD_SIMPLE)
                Simulation_Type = EVALUATE_BACKWARD;
              else if (Simulation_Type == SOLVE_FORWARD_SIMPLE)
                Simulation_Type = EVALUATE_FORWARD;
            }
          if (i > 0)
            {
              if ((prev_Type ==  EVALUATE_FORWARD and Simulation_Type == EVALUATE_FORWARD)
                  or (prev_Type ==  EVALUATE_BACKWARD and Simulation_Type == EVALUATE_BACKWARD))
                {
                  //merge the current block with the previous one
                  BlockSimulationType c_Type = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.first;
                  int c_Size = (block_type_size_mfs[block_type_size_mfs.size()-1]).second.first;
                  int first_equation = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.second;
                  block_type_size_mfs[block_type_size_mfs.size()-1] = make_pair(make_pair(c_Type, first_equation), make_pair(++c_Size, block_type_size_mfs[block_type_size_mfs.size()-1].second.second));
732
                  if (block_lag_lead[block_type_size_mfs.size()-1].first > Lag)
733
                    Lag = block_lag_lead[block_type_size_mfs.size()-1].first;
734
                  if (block_lag_lead[block_type_size_mfs.size()-1].second > Lead)
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
                    Lead = block_lag_lead[block_type_size_mfs.size()-1].second;
                  block_lag_lead[block_type_size_mfs.size()-1] = make_pair(Lag, Lead);
                }
              else
                {
                  block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
                  block_lag_lead.push_back(make_pair(Lag, Lead));
                }
            }
          else
            {
              block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
              block_lag_lead.push_back(make_pair(Lag, Lead));
            }
        }
      else
        {
          block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
          block_lag_lead.push_back(make_pair(Lag, Lead));
        }
      prev_Type = Simulation_Type;
      eq += Blck_Size;
    }
  return (block_type_size_mfs);
}

vector<bool>
ModelTree::BlockLinear(t_blocks_derivatives &blocks_derivatives, vector<int> &variable_reordered)
{
  unsigned int nb_blocks = getNbBlocks();
  vector<bool> blocks_linear(nb_blocks, true);
766
  for (unsigned int block = 0; block < nb_blocks; block++)
767
768
769
770
771
    {
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      int block_size = getBlockSize(block);
      t_block_derivatives_equation_variable_laglead_nodeid derivatives_block = blocks_derivatives[block];
      int first_variable_position = getBlockFirstEquation(block);
772
      if (simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
773
774
775
776
777
778
779
780
781
782
783
        {
          for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
            {
              int lag = it->second.first;
              if (lag == 0)
                {
                  NodeID Id = it->second.second;
                  set<pair<int, int> > endogenous;
                  Id->collectEndogenous(endogenous);
                  if (endogenous.size() > 0)
                    {
784
                      for (int l = 0; l < block_size; l++)
785
786
787
788
789
790
791
792
793
794
795
                        {
                          if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], 0)) != endogenous.end())
                            {
                              blocks_linear[block] = false;
                              goto the_end;
                            }
                        }
                    }
                }
            }
        }
796
      else if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
797
798
799
800
        {
          for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
            {
              int lag = it->second.first;
801
              NodeID Id = it->second.second; //
802
803
804
805
              set<pair<int, int> > endogenous;
              Id->collectEndogenous(endogenous);
              if (endogenous.size() > 0)
                {
806
                  for (int l = 0; l < block_size; l++)
807
808
809
810
811
812
813
814
815
816
                    {
                      if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], lag)) != endogenous.end())
                        {
                          blocks_linear[block] = false;
                          goto the_end;
                        }
                    }
                }
            }
        }
817
818
    the_end:
      ;
819
    }
820
  return (blocks_linear);
821
822
}

823
824
ModelTree::ModelTree(SymbolTable &symbol_table_arg,
                     NumericalConstants &num_constants_arg) :
825
  DataTree(symbol_table_arg, num_constants_arg)
826
{
827
  for (int i = 0; i < 3; i++)
828
    NNZDerivatives[i] = 0;
829
830
831
832
}

int
ModelTree::equation_number() const
833
{
834
  return (equations.size());
835
}
836
837
838
839

void
ModelTree::writeDerivative(ostream &output, int eq, int symb_id, int lag,
                           ExprNodeOutputType output_type,
sebastien's avatar
sebastien committed
840
                           const temporary_terms_type &temporary_terms) const
841
{
842
  first_derivatives_type::const_iterator it = first_derivatives.find(make_pair(eq, getDerivID(symb_id, lag)));
843
844
845
846
847
  if (it != first_derivatives.end())
    (it->second)->writeOutput(output, output_type, temporary_terms);
  else
    output << 0;
}
848
849

void
850
ModelTree::computeJacobian(const set<int> &vars)
851
{
852
853
  for (set<int>::const_iterator it = vars.begin();
       it != vars.end(); it++)
854
    for (int eq = 0; eq < (int) equations.size(); eq++)
855
      {
856
        NodeID d1 = equations[eq]->getDerivative(*it);
857
858
        if (d1 == Zero)
          continue;
859
        first_derivatives[make_pair(eq, *it)] = d1;
860
        ++NNZDerivatives[0];
861
      }
862
}
863

864
865
866
867
868
void
ModelTree::computeHessian(const set<int> &vars)
{
  for (first_derivatives_type::const_iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
869
    {
870
871
872
873
874
      int eq = it->first.first;
      int var1 = it->first.second;
      NodeID d1 = it->second;

      // Store only second derivatives with var2 <= var1
875
876
      for (set<int>::const_iterator it2 = vars.begin();
           it2 != vars.end(); it2++)
877
        {
878
879
880
881
882
883
884
885
          int var2 = *it2;
          if (var2 > var1)
            continue;

          NodeID d2 = d1->getDerivative(var2);
          if (d2 == Zero)
            continue;
          second_derivatives[make_pair(eq, make_pair(var1, var2))] = d2;
886
887
888
889
          if (var2 == var1)
            ++NNZDerivatives[1];
          else
            NNZDerivatives[1] += 2;
890
891
        }
    }
892
}
893

894
895
896
897
898
void
ModelTree::computeThirdDerivatives(const set<int> &vars)
{
  for (second_derivatives_type::const_iterator it = second_derivatives.begin();
       it != second_derivatives.end(); it++)
899
    {
900
901
902
903
904
905
906
907
908
      int eq = it->first.first;

      int var1 = it->first.second.first;
      int var2 = it->first.second.second;
      // By construction, var2 <= var1

      NodeID d2 = it->second;

      // Store only third derivatives such that var3 <= var2 <= var1
909
910
      for (set<int>::const_iterator it2 = vars.begin();
           it2 != vars.end(); it2++)
911
        {
912
913
914
915
916
917
918
919
          int var3 = *it2;
          if (var3 > var2)
            continue;

          NodeID d3 = d2->getDerivative(var3);
          if (d3 == Zero)
            continue;
          third_derivatives[make_pair(eq, make_pair(var1, make_pair(var2, var3)))] = d3;
920
921
922
923
924
925
          if (var3 == var2 && var2 == var1)
            ++NNZDerivatives[2];
          else if (var3 == var2 || var2 == var1)
            NNZDerivatives[2] += 3;
          else
            NNZDerivatives[2] += 6;
926
927
928
929
930
        }
    }
}

void
931
ModelTree::computeTemporaryTerms(bool is_matlab)
932
933
934
935
{
  map<NodeID, int> reference_count;
  temporary_terms.clear();

936
937
  for (vector<BinaryOpNode *>::iterator it = equations.begin();
       it != equations.end(); it++)
938
939
    (*it)->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);

940
941
  for (first_derivatives_type::iterator it = first_derivatives.begin();
       it != first_derivatives.end(); it++)
942
943
    it->second->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);

944
945
946
  for (second_derivatives_type::iterator it = second_derivatives.begin();
       it != second_derivatives.end(); it++)
    it->second->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
947

948
949
950
  for (third_derivatives_type::iterator it = third_derivatives.begin();
       it != third_derivatives.end(); it++)
    it->second->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
951
952
953
}

void
sebastien's avatar
sebastien committed
954
955
ModelTree::writeTemporaryTerms(const temporary_terms_type &tt, ostream &output,
                               ExprNodeOutputType output_type) const
956
{
sebastien's avatar
sebastien committed
957
  // Local var used to keep track of temp nodes already written
958
  temporary_terms_type tt2;
959

960
  if (tt.size() > 0 && (IS_C(output_type)))
sebastien's avatar
sebastien committed
961
    output << "double" << endl;
962

sebastien's avatar
sebastien committed
963
964
  for (temporary_terms_type::const_iterator it = tt.begin();
       it != tt.end(); it++)
965
    {
966
      if (IS_C(output_type) && it != tt.begin())
967
        output << "," << endl;
968

sebastien's avatar
sebastien committed
969
      (*it)->writeOutput(output, output_type, tt);
970
      output << " = ";
971

972
      (*it)->writeOutput(output, output_type, tt2);
973

974
975
      // Insert current node into tt2
      tt2.insert(*it);
976

977
      if (IS_MATLAB(output_type))
978
979
        output << ";" << endl;
    }
980
  if (IS_C(output_type))
981
982
    output << ";" << endl;
}
983
984
985

void
ModelTree::writeModelLocalVariables(ostream &output, ExprNodeOutputType output_type) const
986
987
988
989
990
991
{
  for (map<int, NodeID>::const_iterator it = local_variables_table.begin();
       it != local_variables_table.end(); it++)
    {
      int id = it->first;
      NodeID value = it->second;
992

993
      if (IS_C(output_type))
994
        output << "double ";
995

sebastien's avatar
sebastien committed
996
      output << symbol_table.getName(id) << " = ";
997
998
999
1000
      // Use an empty set for the temporary terms
      value->writeOutput(output, output_type, temporary_terms_type());
      output << ";" << endl;
    }